

# Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200908203

# **FCC REPORT**

(Bluetooth)

Applicant: TECNO MOBILE LIMITED

Address of Applicant: ROOM 604 6/F SOUTH TOWER WORLD FINANCE CTR

HARBOUR CITY 17 CANTON ROAD TST KL

**Equipment Under Test (EUT)** 

Product Name: Mobile Phone

Model No.: BC1s

Trade mark: TECNO

FCC ID: 2ADYY-BC1S

**Applicable standards:** FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 21 Sep., 2020

**Date of Test:** 21 Sep., to 19 Oct., 2020

Date of report issued: 20 Oct., 2020

Test Result: PASS \*

\* In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 20 Oct., 2020 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Test Engineer Tested by: Date: 20 Oct., 2020

Reviewed by: 20 Oct., 2020 Date:

**Project Engineer** 

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



# 3 Contents

|                                                             | Page |
|-------------------------------------------------------------|------|
| 1 COVER PAGE                                                | 1    |
| 2 VERSION                                                   | 2    |
| 3 CONTENTS                                                  | 3    |
| 4 TEST SUMMARY                                              |      |
|                                                             |      |
| 5 GENERAL INFORMATION                                       |      |
| 5.1 CLIENT INFORMATION                                      |      |
| 5.2 GENERAL DESCRIPTION OF E.U.T.                           |      |
| 5.3 TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS       |      |
| 5.5 MEASUREMENT UNCERTAINTY                                 |      |
| 5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD |      |
| 5.7 LABORATORY FACILITY                                     |      |
| 5.8 LABORATORY LOCATION                                     |      |
| 5.9 TEST INSTRUMENTS LIST                                   | 7    |
| 6 TEST RESULTS AND MEASUREMENT DATA                         | 8    |
| 6.1 Antenna Requirement                                     | 8    |
| 6.2 CONDUCTED EMISSIONS                                     |      |
| 6.3 CONDUCTED OUTPUT POWER                                  |      |
| 6.4 20DB OCCUPY BANDWIDTH                                   |      |
| 6.5 CARRIER FREQUENCIES SEPARATION                          |      |
| 6.7 DWELL TIME                                              |      |
| 6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE                 |      |
| 6.9 BAND EDGE                                               |      |
| 6.9.1 Conducted Emission Method                             |      |
| 6.9.2 Radiated Emission Method                              | _    |
| 6.10 SPURIOUS EMISSION                                      |      |
| 6.10.2 Radiated Emission Method                             |      |
| 7 TEST SETUP PHOTO                                          | 53   |
| 8 EUT CONSTRUCTIONAL DETAILS                                |      |
| 0 EUT CUNSTRUCTIUNAL DETAILS                                |      |





# **4 Test Summary**

| Test Items                       | Section in CFR 47   | Result |
|----------------------------------|---------------------|--------|
| Antenna Requirement              | 15.203 & 15.247 (b) | Pass   |
| AC Power Line Conducted Emission | 15.207              | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(1)       | Pass   |
| 20dB Occupied Bandwidth          | 15.247 (a)(1)       | Pass   |
| Carrier Frequencies Separation   | 15.247 (a)(1)       | Pass   |
| Hopping Channel Number           | 15.247 (a)(1)       | Pass   |
| Dwell Time                       | 15.247 (a)(1)       | Pass   |
| Spurious Emission                | 15.205 & 15.209     | Pass   |
| Band Edge                        | 15.247(d)           | Pass   |

#### Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02





# **5** General Information

# **5.1 Client Information**

| Applicant:             | TECNO MOBILE LIMITED                                                                                                    |
|------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Address:               | ROOM 604 6/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON ROAD TST KL                                           |
| Manufacturer/ Factory: | SHENZHEN TECNO TECHNOLOGY CO., LTD.                                                                                     |
| Address:               | 101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R. China |

5.2 General Description of E.U.T.

| o.z ochorar besoript   |                                                                               |
|------------------------|-------------------------------------------------------------------------------|
| Product Name:          | Mobile Phone                                                                  |
| Model No.:             | BC1s                                                                          |
| Operation Frequency:   | 2402MHz~2480MHz                                                               |
| Transfer rate:         | 1/2/3 Mbits/s                                                                 |
| Number of channel:     | 79                                                                            |
| Modulation type:       | GFSK, π/4-DQPSK, 8DPSK                                                        |
| Modulation technology: | FHSS                                                                          |
| Antenna Type:          | Internal Antenna                                                              |
| Antenna gain:          | 0 dBi                                                                         |
| Power supply:          | Rechargeable Li-ion Battery DC3.85V, 5000mAh                                  |
| AC adapter:            | Model: A8-501000                                                              |
|                        | Input: AC100-240V, 50/60Hz, 0.2A                                              |
|                        | Output: DC 5.0V, 1000mA                                                       |
| Test Sample Condition: | The test samples were provided in good working order with no visible defects. |

| Operation   | Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK |                                                                   |           |         |           |         |           |
|-------------|----------------------------------------------------------------|-------------------------------------------------------------------|-----------|---------|-----------|---------|-----------|
| Channel     | Frequency                                                      | Channel                                                           | Frequency | Channel | Frequency | Channel | Frequency |
| 0           | 2402MHz                                                        | 20                                                                | 2422MHz   | 40      | 2442MHz   | 60      | 2462MHz   |
| 1           | 2403MHz                                                        | 21                                                                | 2423MHz   | 41      | 2443MHz   | 61      | 2463MHz   |
| 2           | 2404MHz                                                        | 22                                                                | 2424MHz   | 42      | 2444MHz   | 62      | 2464MHz   |
| 3           | 2405MHz                                                        | 23                                                                | 2425MHz   | 43      | 2445MHz   | 63      | 2465MHz   |
| 4           | 2406MHz                                                        | 24                                                                | 2426MHz   | 44      | 2446MHz   | 64      | 2466MHz   |
| 5           | 2407MHz                                                        | 25                                                                | 2427MHz   | 45      | 2447MHz   | 65      | 2467MHz   |
|             |                                                                |                                                                   |           |         |           |         |           |
| 15          | 2417MHz                                                        | 35                                                                | 2437MHz   | 55      | 2457MHz   | 75      | 2477MHz   |
| 16          | 2418MHz                                                        | 36                                                                | 2438MHz   | 56      | 2458MHz   | 76      | 2478MHz   |
| 17          | 2419MHz                                                        | 37                                                                | 2439MHz   | 57      | 2459MHz   | 77      | 2479MHz   |
| 18          | 2420MHz                                                        | 38                                                                | 2440MHz   | 58      | 2460MHz   | 78      | 2480MHz   |
| 19          | 2421MHz                                                        | 39                                                                | 2441MHz   | 59      | 2461MHz   |         |           |
| Remark: Cha | annel 0, 39 &78 se                                             | Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK and 8DPSK. |           |         |           |         |           |



# 5.3 Test environment and mode, and test samples plans

| Operating Environment: |                                                                         |
|------------------------|-------------------------------------------------------------------------|
| Temperature:           | 24.0 °C                                                                 |
| Humidity:              | 54 % RH                                                                 |
| Atmospheric Pressure:  | 1010 mbar                                                               |
| Test Modes:            |                                                                         |
| Non-hopping mode:      | Keep the EUT in continuous transmitting mode with worst case data rate. |
| Hopping mode:          | Keep the EUT in hopping mode.                                           |
| Remark                 | GFSK (1 Mbps) is the worst case mode.                                   |

Report No: CCISE200908203

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber\*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

# 5.4 Description of Support Units

The EUT has been tested as an independent unit.

## 5.5 Measurement Uncertainty

| Parameters                          | Expanded Uncertainty |
|-------------------------------------|----------------------|
| Conducted Emission (9kHz ~ 30MHz)   | ±1.60 dB (k=2)       |
| Radiated Emission (9kHz ~ 30MHz)    | ±3.12 dB (k=2)       |
| Radiated Emission (30MHz ~ 1000MHz) | ±4.32 dB (k=2)       |
| Radiated Emission (1GHz ~ 18GHz)    | ±5.16 dB (k=2)       |
| Radiated Emission (18GHz ~ 40GHz)   | ±3.20 dB (k=2)       |

# 5.6 Additions to, deviations, or exclusions from the method

No

# 5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

#### ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

### • A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf



Report No: CCISE200908203

# 5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

### **5.9 Test Instruments list**

| Radiated Emission: |                 |               |             |                         |                             |
|--------------------|-----------------|---------------|-------------|-------------------------|-----------------------------|
| Test Equipment     | Manufacturer    | Model No.     | Serial No.  | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| 3m SAC             | SAEMC           | 9m*6m*6m      | 966         | 07-22-2020              | 07-21-2021                  |
| Loop Antenna       | SCHWARZBECK     | FMZB1519B     | 044         | 03-07-2020              | 03-06-2021                  |
| BiConiLog Antenna  | SCHWARZBECK     | VULB9163      | 497         | 03-07-2020              | 03-06-2021                  |
| Horn Antenna       | SCHWARZBECK     | BBHA9120D     | 916         | 03-07-2020              | 03-06-2021                  |
| Horn Antenna       | SCHWARZBECK     | BBHA9120D     | 1805        | 06-22-2020              | 06-21-2021                  |
| Horn Antenna       | SCHWARZBECK     | BBHA 9170     | BBHA9170582 | 11-18-2019              | 11-17-2020                  |
| EMI Test Software  | AUDIX           | E3            | ١           | /ersion: 6.110919b      | )                           |
| Pre-amplifier      | HP              | 8447D         | 2944A09358  | 03-07-2020              | 03-06-2021                  |
| Pre-amplifier      | CD              | PAP-1G18      | 11804       | 03-07-2020              | 03-06-2021                  |
| Spectrum analyzer  | Rohde & Schwarz | FSP30         | 101454      | 03-05-2020              | 03-04-2021                  |
| Spectrum analyzer  | Rohde & Schwarz | FSP40         | 100363      | 11-18-2019              | 11-17-2020                  |
| EMI Test Receiver  | Rohde & Schwarz | ESRP7         | 101070      | 03-05-2020              | 03-04-2021                  |
| Cable              | ZDECL           | Z108-NJ-NJ-81 | 1608458     | 03-07-2020              | 03-06-2021                  |
| Cable              | MICRO-COAX      | MFR64639      | K10742-5    | 03-07-2020              | 03-06-2021                  |
| Cable              | SUHNER          | SUCOFLEX100   | 58193/4PE   | 03-07-2020              | 03-06-2021                  |
| RF Switch Unit     | MWRFTEST        | MW200         | N/A         | N/A                     | N/A                         |
| Test Software      | MWRFTEST        | MTS8200       |             | Version: 2.0.0.0        |                             |

| Conducted Emission: |                 |            |                    |                         |                             |
|---------------------|-----------------|------------|--------------------|-------------------------|-----------------------------|
| Test Equipment      | Manufacturer    | Model No.  | Serial No.         | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| EMI Test Receiver   | Rohde & Schwarz | ESCI       | 101189             | 03-05-2020              | 03-04-2021                  |
| Pulse Limiter       | SCHWARZBECK     | OSRAM 2306 | 9731               | 03-05-2020              | 03-04-2021                  |
| LISN                | CHASE           | MN2050D    | 1447               | 03-05-2020              | 03-04-2021                  |
| LISN                | Rohde & Schwarz | ESH3-Z5    | 8438621/010        | 07-21-2020              | 07-20-2021                  |
| Cable               | HP              | 10503A     | N/A                | 03-05-2020              | 03-04-2021                  |
| EMI Test Software   | AUDIX           | E3         | Version: 6.110919b |                         |                             |



Report No: CCISE200908203

## 6 Test results and measurement data

# 6.1 Antenna Requirement

# Standard requirement: FCC Part 15 C Section 15.203 & 247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

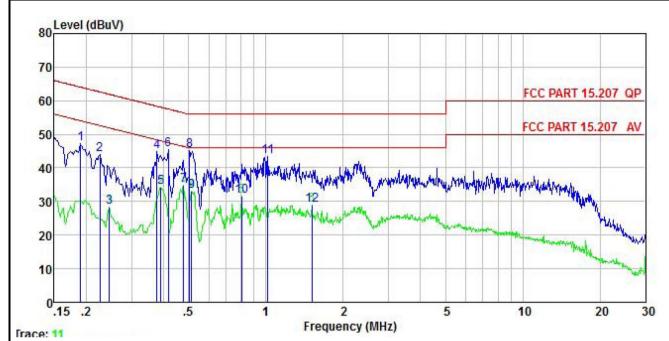
15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **E.U.T Antenna:**

The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is 0 dBi.




# **6.2 Conducted Emissions**

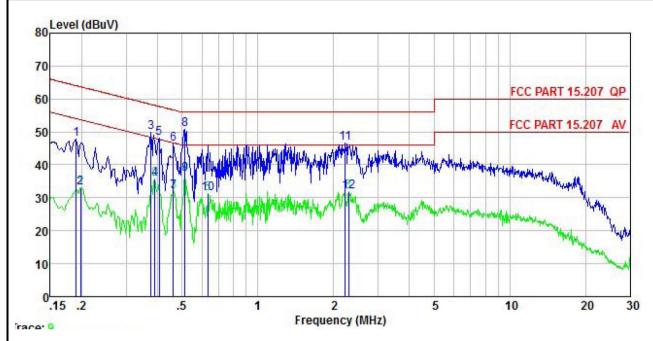
| Test Requirement:     | FCC Part 15 C Section 15.                                                                                                                                                                  | 207                                                      |                                                                                                                                          |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                          | 150 kHz to 30 MHz                                        |                                                                                                                                          |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                    | Class B                                                  |                                                                                                                                          |  |  |
| Receiver setup:       | RBW=9 kHz, VBW=30 kHz                                                                                                                                                                      | RBW=9 kHz, VBW=30 kHz, Sweep time=auto                   |                                                                                                                                          |  |  |
| Limit:                | Frequency range (MHz)                                                                                                                                                                      | Limit (d                                                 | dBuV)                                                                                                                                    |  |  |
|                       |                                                                                                                                                                                            | Quasi-peak                                               | Average                                                                                                                                  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                   | 66 to 56*                                                | 56 to 46*                                                                                                                                |  |  |
|                       | 0.5-5                                                                                                                                                                                      | 56                                                       | 46                                                                                                                                       |  |  |
|                       | 5-30                                                                                                                                                                                       | 60                                                       | 50                                                                                                                                       |  |  |
| Test setup:           | * Decreases with the logar                                                                                                                                                                 |                                                          |                                                                                                                                          |  |  |
|                       | Remark E.U.T  Remark E.U.T: Equipment Under Test LISN Line Impedence Stabilization Netword Test table height=0.8m                                                                          | Filter — AC pow                                          | er                                                                                                                                       |  |  |
| Test procedure:       | 500hm/50uH coupling in 2. The peripheral devices LISN that provides a 50 termination. (Please refephotographs).  3. Both sides of A.C. line interference. In order positions of equipments | ition network (L.I.S.N.). Th<br>mpedance for the measuri | is provides a ng equipment. main power through a lance with 50ohm the test setup and n conducted sion, the relative ables must be change |  |  |
| Test Instruments:     | Refer to section 5.9 for det                                                                                                                                                               | ails                                                     |                                                                                                                                          |  |  |
| Test mode:            | Hopping mode                                                                                                                                                                               |                                                          |                                                                                                                                          |  |  |
| Test results:         | Pass                                                                                                                                                                                       |                                                          |                                                                                                                                          |  |  |



#### **Measurement Data:**

| Product name:   | Mobile Phone     | Product model: | BC1s                  |
|-----------------|------------------|----------------|-----------------------|
| Test by:        | YT               | Test mode:     | BT Tx mode            |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Line                  |
| Test voltage:   | AC 120 V/60 Hz   | Environment:   | Temp: 22.5℃ Huni: 55% |




|             | Freq  | Read<br>Level | LISN<br>Factor | Aux<br>Factor | Cable<br>Loss | Level | Limit<br>Line |           | Remark  |
|-------------|-------|---------------|----------------|---------------|---------------|-------|---------------|-----------|---------|
| -           | MHz   | dBu₹          | <u>dB</u>      | <u>d</u> B    | ₫B            | dBu₹  | dBu₹          | <u>dB</u> |         |
| 1           | 0.190 | 37.14         | -0.59          | -0.14         | 10.76         | 47.17 | 64.02         | -16.85    | QP      |
| 2           | 0.226 | 34.14         | -0.58          | -0.19         | 10.75         | 44.12 | 62.61         | -18.49    | QP      |
| 2           | 0.246 | 18.45         | -0.57          | -0.21         | 10.75         | 28.42 | 51.91         | -23.49    | Average |
| 4           | 0.377 | 34.39         | -0.50          | 0.27          | 10.72         | 44.88 | 58.34         | -13.46    | QP      |
| 4<br>5<br>6 | 0.389 | 23.66         | -0.49          | 0.34          | 10.72         | 34.23 | 48.08         | -13.85    | Average |
| 6           | 0.417 | 34.89         | -0.47          | 0.28          | 10.73         | 45.43 | 57.51         | -12.08    | QP      |
| 7           | 0.479 | 24.75         | -0.44          | -0.21         | 10.75         | 34.85 | 46.36         | -11.51    | Average |
| 8<br>9      | 0.505 | 35.30         | -0.43          | -0.35         | 10.76         | 45.28 | 56.00         | -10.72    | QP      |
| 9           | 0.513 | 23.06         | -0.44          | -0.35         | 10.76         | 33.03 | 46.00         | -12.97    | Average |
| 10          | 0.804 | 21.41         | -0.56          | -0.07         | 10.81         | 31.59 | 46.00         | -14.41    | Average |
| 11          | 1.016 | 32.57         | -0.62          | 0.44          | 10.87         | 43.26 | 56.00         | -12.74    | QP      |
| 12          | 1.511 | 18.58         | -0.55          | -0.01         | 10.92         | 28.94 | 46.00         | -17.06    | Äverage |

#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



| Product name:   | Mobile Phone     | Product model: | BC1s                  |
|-----------------|------------------|----------------|-----------------------|
| Test by:        | YT               | Test mode:     | BT Tx mode            |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Neutral               |
| Test voltage:   | AC 120 V/60 Hz   | Environment:   | Temp: 22.5℃ Huni: 55% |



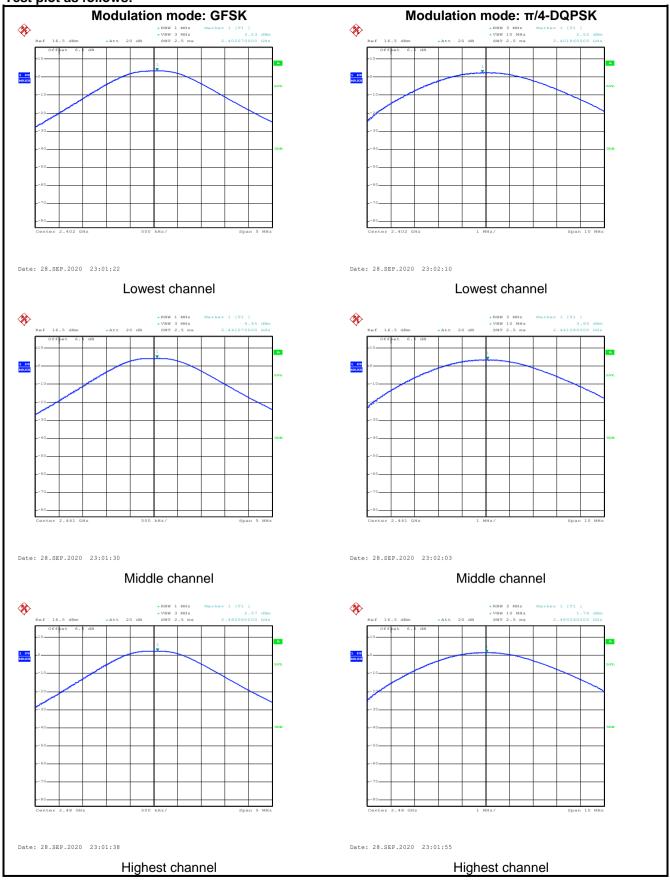
|                                      | Freq  | Read<br>Level | LISN<br>Factor | Aux<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|--------------------------------------|-------|---------------|----------------|---------------|---------------|-------|---------------|---------------|---------|
| <u>2</u>                             | MHz   | dBu∀          | <u>ab</u>      | <u>ā</u> B    | <u>ab</u>     | —dBu∀ | dBu∜          | <u>ab</u>     |         |
| 1                                    | 0.190 | 37.80         | -0.67          | 0.00          | 10.76         | 47.89 | 64.02         | -16.13        | QP      |
| 2                                    | 0.198 | 22.88         | -0.67          | 0.00          | 10.76         | 32.97 | 53.71         | -20.74        | Average |
| 3                                    | 0.377 | 39.76         | -0.64          | -0.04         | 10.72         | 49.80 | 58.34         | -8.54         | QP      |
| 4                                    | 0.389 | 25.78         | -0.63          | -0.05         | 10.72         | 35.82 | 48.08         | -12.26        | Average |
| 5                                    | 0.406 | 38.12         | -0.63          | -0.05         | 10.72         | 48.16 | 57.73         | -9.57         | QP      |
| 6                                    | 0.461 | 36.15         | -0.64          | 0.00          | 10.74         | 46.25 | 56.67         | -10.42        | QP      |
| 7                                    | 0.461 | 21.86         | -0.64          | 0.00          | 10.74         | 31.96 | 46.67         | -14.71        | Average |
| 8                                    | 0.513 | 40.68         | -0.65          | 0.03          | 10.76         | 50.82 | 56.00         | -5.18         | QP      |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.513 | 27.09         | -0.65          | 0.03          | 10.76         | 37.23 | 46.00         | -8.77         | Average |
| 10                                   | 0.634 | 21.08         | -0.64          | 0.04          | 10.77         | 31.25 | 46.00         |               | Average |
| 11                                   | 2.225 | 36.32         | -0.69          | 0.21          | 10.95         | 46.79 | 56.00         |               |         |
| 12                                   | 2.297 | 21.40         | -0.69          | 0.22          | 10.95         | 31.88 |               |               | Average |
|                                      |       |               |                |               |               |       |               |               |         |

#### Notes:

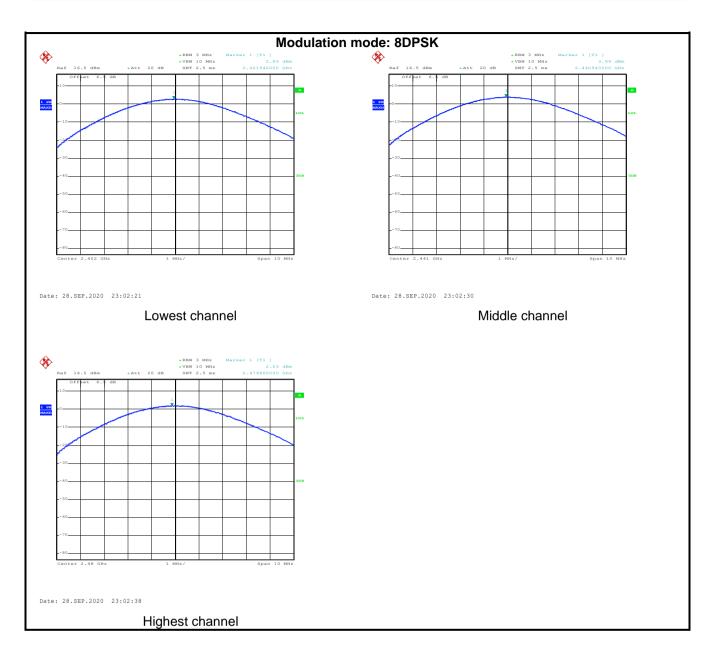
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



# **6.3 Conducted Output Power**


| Test Requirement: | FCC Part 15 C Section 15.247 (b)(1)                                                                                                                                                                                   |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Receiver setup:   | RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)                                                                                              |  |  |  |  |
| Limit:            | For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                 |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                      |  |  |  |  |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                      |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                  |  |  |  |  |

#### **Measurement Data:**


| Test channel    | Peak Output Power (dBm) | Limit (dBm) | Result |  |  |  |  |
|-----------------|-------------------------|-------------|--------|--|--|--|--|
|                 | GFSK mode               |             |        |  |  |  |  |
| Lowest channel  | 3.53                    | 30.00       | Pass   |  |  |  |  |
| Middle channel  | 4.45                    | 30.00       | Pass   |  |  |  |  |
| Highest channel | 2.57                    | 30.00       | Pass   |  |  |  |  |
|                 | π/4-DQPSK mode          |             |        |  |  |  |  |
| Lowest channel  | 2.52                    | 21.00       | Pass   |  |  |  |  |
| Middle channel  | 3.65                    | 21.00       | Pass   |  |  |  |  |
| Highest channel | 1.76                    | 21.00       | Pass   |  |  |  |  |
|                 | 8DPSK mode              |             |        |  |  |  |  |
| Lowest channel  | 2.89                    | 21.00       | Pass   |  |  |  |  |
| Middle channel  | 3.99                    | 21.00       | Pass   |  |  |  |  |
| Highest channel | 2.03                    | 21.00       | Pass   |  |  |  |  |



Test plot as follows:

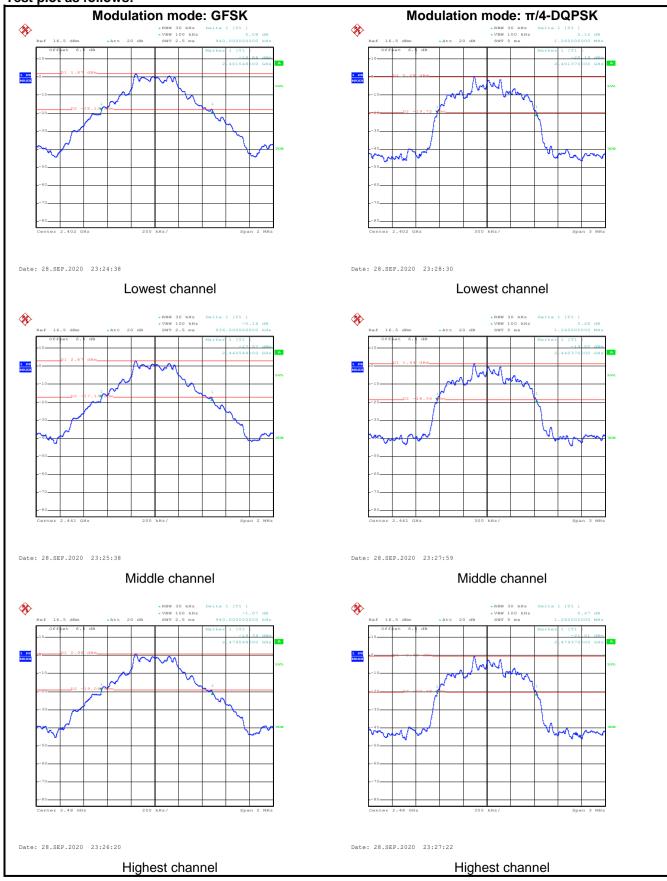




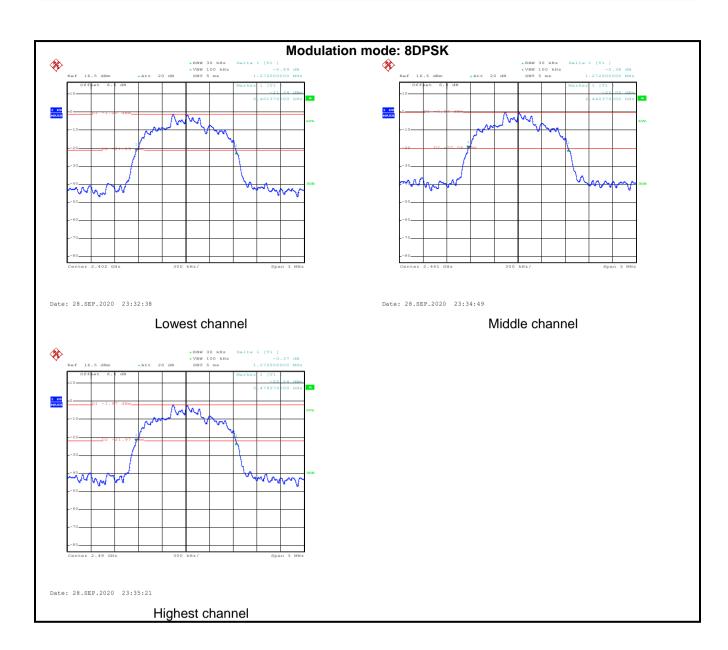




6.4 20dB Occupy Bandwidth


| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                   |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|
| Receiver setup:   | RBW=30 kHz, VBW=100 kHz, detector=Peak                                |  |  |  |
| Limit:            | N/A                                                                   |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                      |  |  |  |
| Test mode:        | Non-hopping mode                                                      |  |  |  |
| Test results:     | Pass                                                                  |  |  |  |

#### **Measurement Data:**


| Took observed |      | 20dB Occupy Bandwidth (kHz) |       |  |  |
|---------------|------|-----------------------------|-------|--|--|
| Test channel  | GFSK | π/4-DQPSK                   | 8DPSK |  |  |
| Lowest        | 940  | 1260                        | 1272  |  |  |
| Middle        | 936  | 1260                        | 1272  |  |  |
| Highest       | 940  | 1260                        | 1272  |  |  |



Test plot as follows:











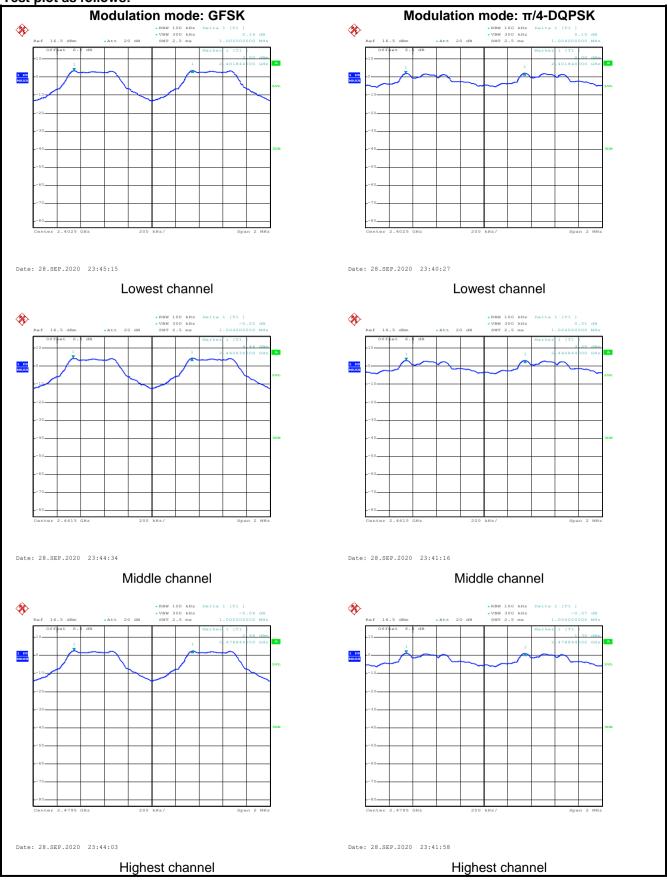
6.5 Carrier Frequencies Separation

| olo Gallion I roquoni | cheres ocparation                                                                                                                                         |  |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Requirement:     | FCC Part 15 C Section 15.247 (a)(1)                                                                                                                       |  |  |  |  |
| Receiver setup:       | RBW=100 kHz, VBW=300 kHz, detector=Peak                                                                                                                   |  |  |  |  |
| Limit:                | <ul><li>a) 0.025MHz or the 20dB bandwidth (whichever is greater)</li><li>b) 0.025MHz or two-thirds of the 20dB bandwidth (whichever is greater)</li></ul> |  |  |  |  |
| Test setup:           | Spectrum Analyzer  Non-Conducted Table  Ground Reference Plane                                                                                            |  |  |  |  |
| Test Instruments:     | Refer to section 5.9 for details                                                                                                                          |  |  |  |  |
| Test mode:            | Hopping mode                                                                                                                                              |  |  |  |  |
| Test results:         | Pass                                                                                                                                                      |  |  |  |  |

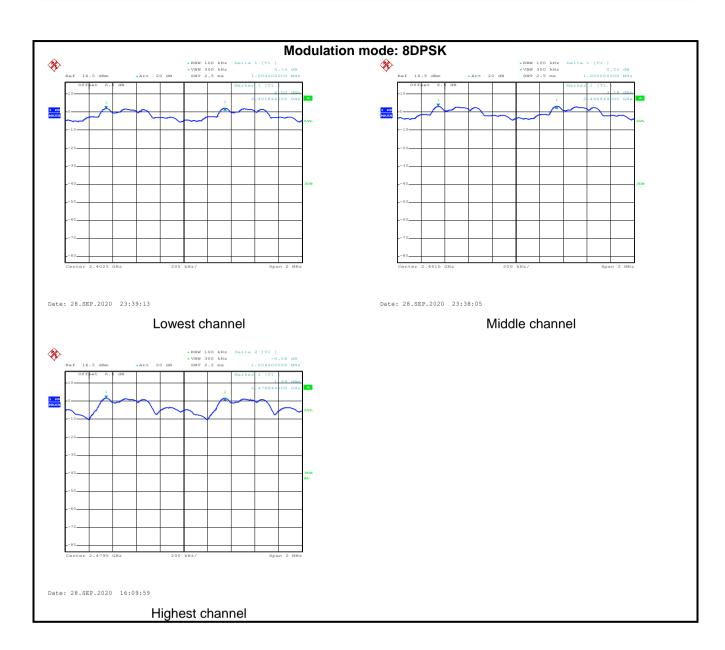




### **Measurement Data:**


| Test channel | Carrier Frequencies Separation (kHz) | Limit (kHz) | Result |  |  |  |  |  |
|--------------|--------------------------------------|-------------|--------|--|--|--|--|--|
|              | GFSK                                 |             |        |  |  |  |  |  |
| Lowest       | 1000                                 | 940         | Pass   |  |  |  |  |  |
| Middle       | 1004                                 | 940         | Pass   |  |  |  |  |  |
| Highest      | 1000                                 | 940         | Pass   |  |  |  |  |  |
|              | π/4-DQPSK mode                       |             |        |  |  |  |  |  |
| Lowest       | 1004                                 | 840         | Pass   |  |  |  |  |  |
| Middle       | 1004                                 | 840         | Pass   |  |  |  |  |  |
| Highest      | 1004                                 | 840         | Pass   |  |  |  |  |  |
|              | 8DPSK mode                           |             |        |  |  |  |  |  |
| Lowest       | 1004                                 | 848         | Pass   |  |  |  |  |  |
| Middle       | 1000                                 | 848         | Pass   |  |  |  |  |  |
| Highest      | 1004                                 | 848         | Pass   |  |  |  |  |  |

Note: According to section 6.4


| Mode      | 20dB bandwidth (kHz)<br>(worse case) | Limit (kHz)<br>(Carrier Frequencies Separation) |
|-----------|--------------------------------------|-------------------------------------------------|
| GFSK      | 940                                  | 940                                             |
| π/4-DQPSK | 1260                                 | 840                                             |
| 8DPSK     | 1272                                 | 848                                             |



Test plot as follows:

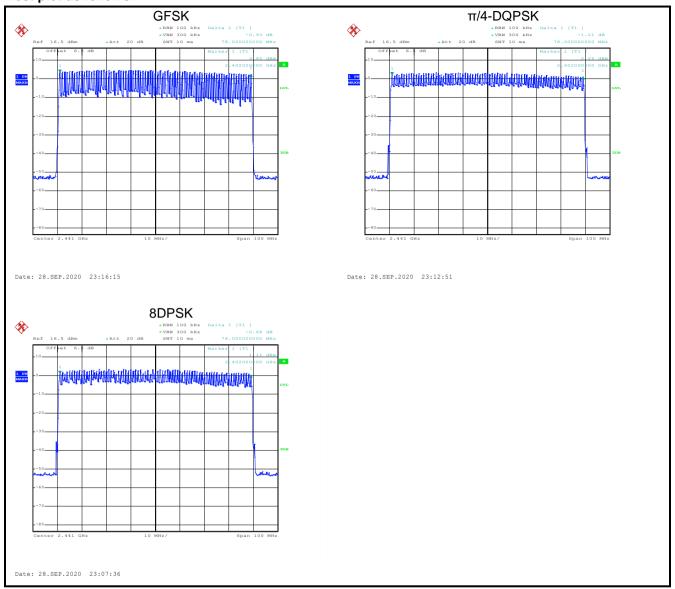








**6.6 Hopping Channel Number** 


| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                                |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------|--|--|--|--|
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz,<br>Span= 100MHz, Detector=Peak |  |  |  |  |
| Limit:            | 15 channels                                                                        |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane              |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                   |  |  |  |  |
| Test mode:        | Hopping mode                                                                       |  |  |  |  |
| Test results:     | Pass                                                                               |  |  |  |  |

### **Measurement Data:**

| Mode                   | Hopping channel numbers | Limit | Result |
|------------------------|-------------------------|-------|--------|
| GFSK, π/4-DQPSK, 8DPSK | 79                      | 15    | Pass   |



### Test plot as follows:





### 6.7 Dwell Time

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                   |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Receiver setup:   | RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak                        |  |  |  |  |  |
| Limit:            | 0.4 Second                                                            |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                      |  |  |  |  |  |
| Test mode:        | Hopping mode                                                          |  |  |  |  |  |
| Test results:     | Pass                                                                  |  |  |  |  |  |

### Measurement Data (Worse case):

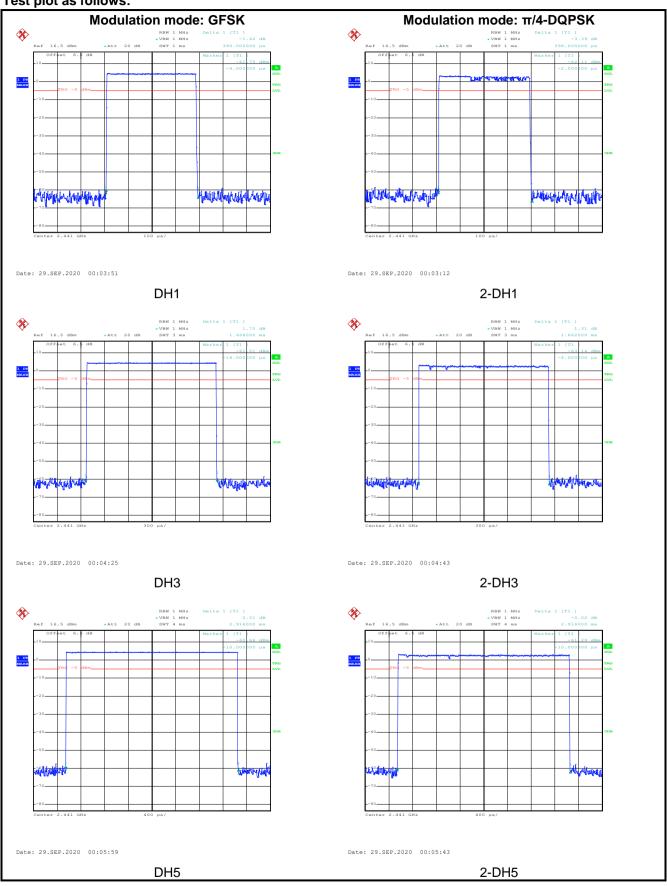
| Mode      | Packet | Dwell time (second) | Limit (second) | Result |  |  |
|-----------|--------|---------------------|----------------|--------|--|--|
|           | DH1    | 0.12480             |                |        |  |  |
| GFSK      | DH3    | 0.26688             | 0.4            | Pass   |  |  |
|           | DH5    | 0.31104             |                |        |  |  |
|           | 2-DH1  | 0.12672             |                |        |  |  |
| π/4-DQPSK | 2-DH3  | 0.26592             | 0.4            | Pass   |  |  |
|           | 2-DH5  | 0.31104             |                |        |  |  |
|           | 3-DH1  | 0.12672             |                |        |  |  |
| 8DPSK     | 3-DH3  | 0.26688             | 0.4            | Pass   |  |  |
|           | 3-DH5  | 0.31104             |                |        |  |  |

Note:

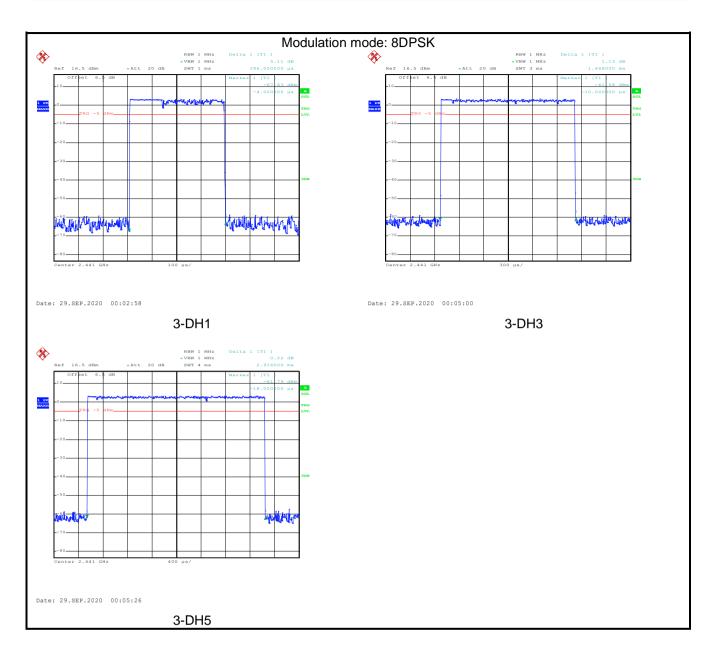
The test period = 0.4 Second/Channel x 79 Channel = 31.6 s

Calculation Formula: Dwell time = Ton time per hop \* Hopping numbers \* Period

For example:


DH1 time slot=0.390\*(1600/ (2\*79)) \* 31.6=124.80ms

DH3 time slot=1.668\*(1600/ (4\*79)) \* 31.6=266.88ms


DH5 time slot=2.916\*(1600/ (6\*79)) \* 31.6=311.04ms



Test plot as follows:





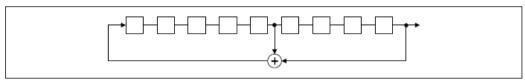




6.8 Pseudorandom Frequency Hopping Sequence

### Test Requirement: FCC

FCC Part 15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

### **EUT Pseudorandom Frequency Hopping Sequence**

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

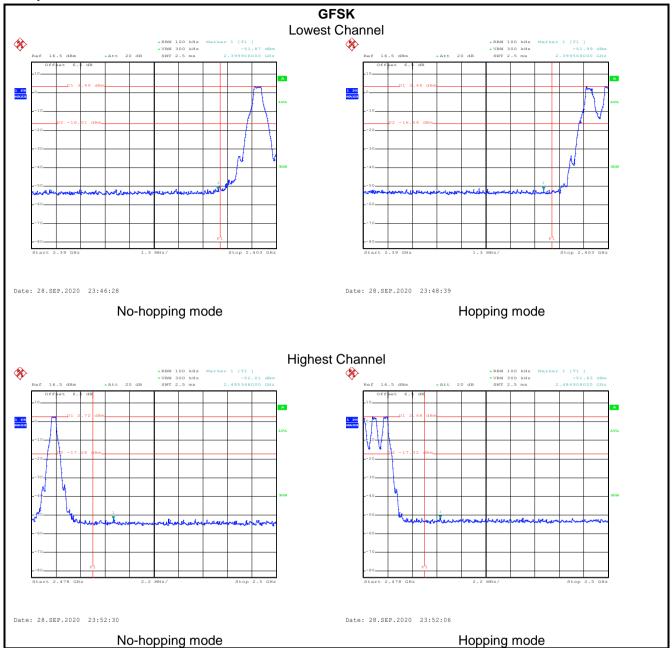
An example of Pseudorandom Frequency Hopping Sequence as follow:



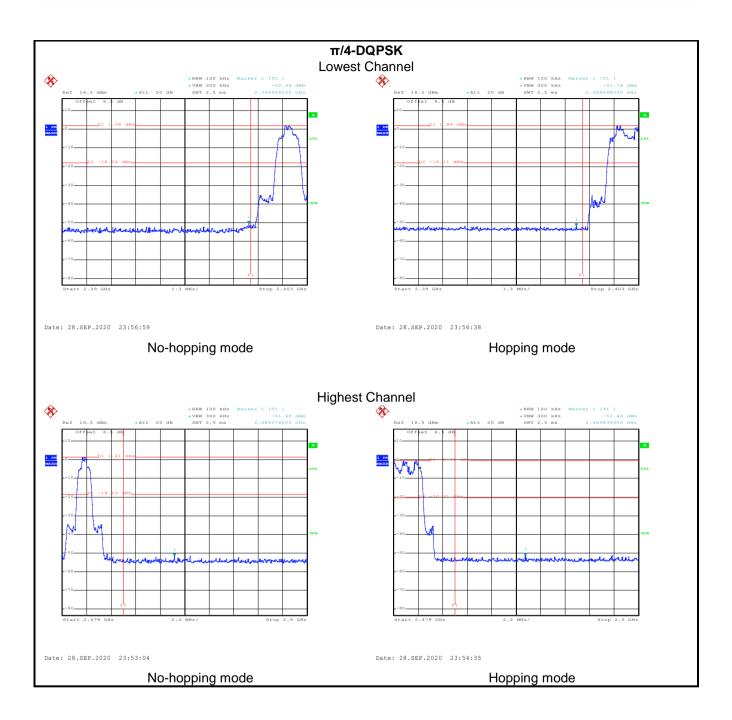
Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.




# 6.9 Band Edge

# 6.9.1 Conducted Emission Method


| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, Detector=Peak                                                                                                                                                                                                                                                                                                                                                 |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                        |
| Test mode:        | Non-hopping mode and hopping mode                                                                                                                                                                                                                                                                                                                                                       |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |




### Test plot as follows:



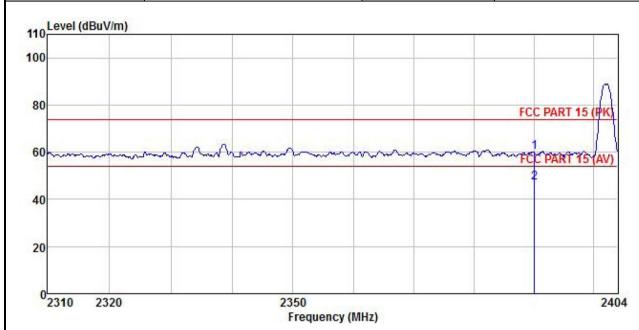











### 6.9.2 Radiated Emission Method

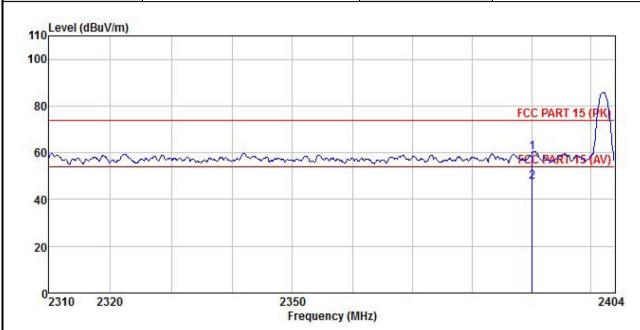
| Test Requirement:     | FCC Part 15 C                                                                                                                                                                                                                                              | Section 15.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 09 a                                                           | and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                                  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Frequency Range: | 2310 MHz to 23                                                                                                                                                                                                                                             | 2310 MHz to 2390 MHz and 2483.5 MHz to 2500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                                  |  |  |
| Test Distance:        | 3m                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                                  |  |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                  | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BW                                                                                                  | Remark                                                                                                                                                                                           |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                 | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     | Peak Value                                                                                                                                                                                       |  |  |
|                       | Above IGHZ                                                                                                                                                                                                                                                 | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3MHz Average Value                                                                                  |                                                                                                                                                                                                  |  |  |
| Limit:                | Frequenc                                                                                                                                                                                                                                                   | cy L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limi                                                           | it (dBuV/m @3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n) Remark                                                                                           |                                                                                                                                                                                                  |  |  |
|                       | Above 1G                                                                                                                                                                                                                                                   | iHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                | 54.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Average Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                     |                                                                                                                                                                                                  |  |  |
|                       | 7.5575.15                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak Value                                                                                          |                                                                                                                                                                                                  |  |  |
| Test setup:           | ATE EUT  Horn Antenna Tower  Ground Reference Plane  Test Receiver  Test Receiver  Controller                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                                  |  |  |
| Test Procedure:       | determine the  2. The EUT was antenna, whi tower.  3. The antenna ground to de horizontal an measuremer  4. For each sus and then the the rota table maximum rea  5. The test-rece Bandwidth w  6. If the emissic limit specified EUT would b margin would | a meter camble position of the | per. the rs average ied naxi lariz sion was Ho e El g cc b the | The table was highest radiation way from the interpretation of the actions of the | er to for the finance of the finance | rence-reable-he our meterna are s nged to 1 meterna degrees Functions 1 the pease that die k, quasi | degrees to ecciving ight antenna ers above the ngth. Both et to make the its worst case to 4 meters and is to find the on and Specified lower than the ak values of the d not have 10dB -peak or |  |  |
| Test Instruments:     | Refer to section                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                                  |  |  |
| Test mode:            | Non-hopping m                                                                                                                                                                                                                                              | ode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                                  |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                                  |  |  |



#### **GFSK Mode:**

| Product Name: | Mobile Phone   | Product Model: | BC1s                |
|---------------|----------------|----------------|---------------------|
| Test By:      | YT             | Test mode:     | DH1 Tx mode         |
| Test Channel: | Lowest channel | Polarization:  | Vertical            |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57% |




|     | Freq                 |      | Antenna<br>Factor |               |           |                     | Limit<br>Line |           | Remark |
|-----|----------------------|------|-------------------|---------------|-----------|---------------------|---------------|-----------|--------|
|     | MHz                  | dBu∇ | — <u>dB</u> /π    | <br><u>ab</u> | <u>dB</u> | $\overline{dBuV/m}$ | dBuV/m        | <u>dB</u> |        |
| 1 2 | 2390.000<br>2390.000 |      |                   |               |           |                     |               |           |        |

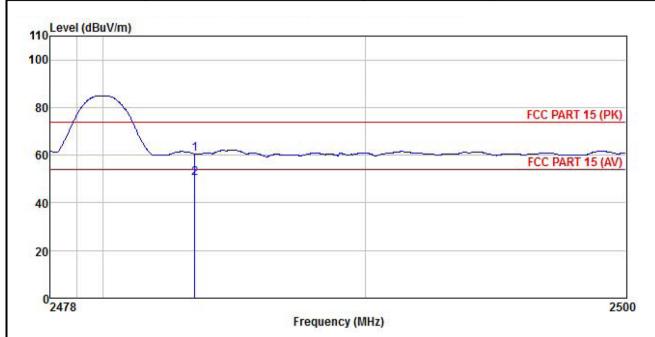
### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



| Product Name: | Mobile Phone   | Product Model: | BC1s                 |
|---------------|----------------|----------------|----------------------|
| Test By:      | YT             | Test mode:     | DH1 Tx mode          |
| Test Channel: | Lowest channel | Polarization:  | Horizontal           |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24°C Huni: 57% |




| Freq                 |      | Antenna<br>Factor |           |           |           |                     |        |      |
|----------------------|------|-------------------|-----------|-----------|-----------|---------------------|--------|------|
| MHz                  | dBu₹ | <u>dB</u> /m      | <u>dB</u> | <u>ab</u> | <u>ab</u> | $\overline{dBuV/m}$ | dBuV/m | <br> |
| 2390.000<br>2390.000 |      |                   |           |           |           |                     |        |      |

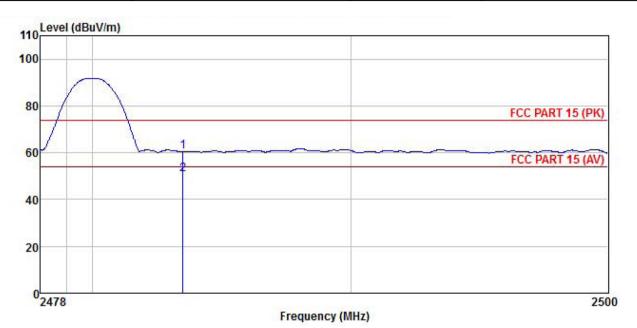
### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



| Product Name: | Mobile Phone    | Product Model: | BC1s                |
|---------------|-----------------|----------------|---------------------|
| Test By:      | YT              | Test mode:     | DH1 Tx mode         |
| Test Channel: | Highest channel | Polarization:  | Vertical            |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24℃ Huni: 57% |




| Freq                 |      | Antenna<br>Factor |                |           |        | Limit<br>Line |           |  |
|----------------------|------|-------------------|----------------|-----------|--------|---------------|-----------|--|
| MHz                  | dBu₹ | <u>dB</u> /m      | <br><u>d</u> B | <u>dB</u> | dBuV/m | dBuV/m        | <u>dB</u> |  |
| 2483.500<br>2483.500 |      |                   |                |           |        |               |           |  |

#### Remark:

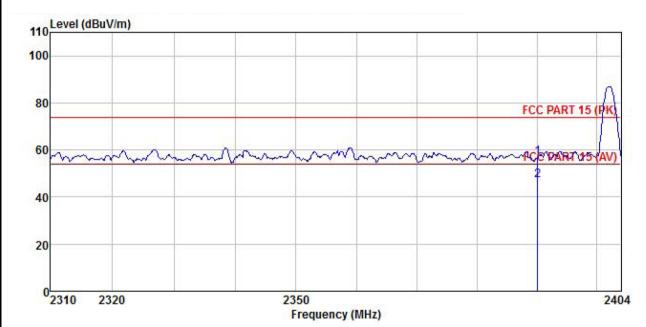
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



| Product Name: | Mobile Phone    | Product Model: | BC1s                |
|---------------|-----------------|----------------|---------------------|
| Test By:      | YT              | Test mode:     | DH1 Tx mode         |
| Test Channel: | Highest channel | Polarization:  | Horizontal          |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24℃ Huni: 57% |



| Freq                 | Read<br>Level | Antenna<br>Factor | Cable<br>Loss | Aux<br>Factor | Preamp<br>Factor | Level               | Limit<br>Line       | Over<br>Limit | Remark |
|----------------------|---------------|-------------------|---------------|---------------|------------------|---------------------|---------------------|---------------|--------|
| MHz                  | dBu∜          | <u>dB</u> /m      | <u>ap</u>     | <u>ab</u>     | <u>ab</u>        | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | <u>dB</u>     |        |
| 2483.500<br>2483.500 |               |                   |               |               |                  |                     |                     |               |        |


#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



## π/4-DQPSK mode

| Product Name: | Mobile Phone   | Product Model: | BC1s                |  |  |
|---------------|----------------|----------------|---------------------|--|--|
| Test By:      | YT             | Test mode:     | 2DH1 Tx mode        |  |  |
| Test Channel: | Lowest channel | Polarization:  | Vertical            |  |  |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57% |  |  |

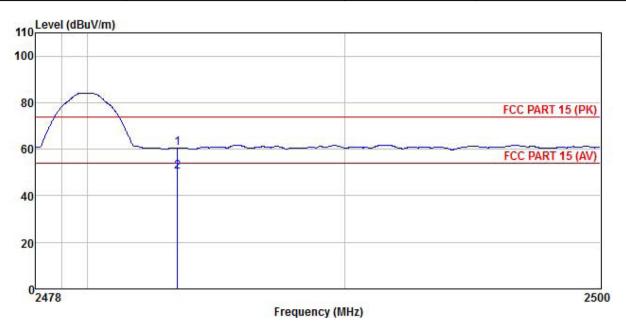


|        | Freq                 |      | Antenna<br>Factor |               |           |                     |                     | Remark |
|--------|----------------------|------|-------------------|---------------|-----------|---------------------|---------------------|--------|
|        | MHz                  | dBu∜ | <u>dB</u> /m      | <br><u>ab</u> | <u>ab</u> | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | <br>   |
| 1<br>2 | 2390.000<br>2390.000 |      |                   |               |           |                     |                     |        |

### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



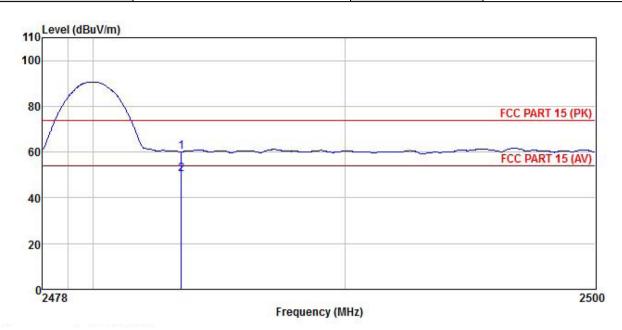

| oduct Name:       | Mobile Phone Product Model:              |                                       |                         | BC1s            |                 |              |  |
|-------------------|------------------------------------------|---------------------------------------|-------------------------|-----------------|-----------------|--------------|--|
| est By:           | YT                                       |                                       | Test mode:              |                 | 2DH1 Tx mod     | de           |  |
| est Channel:      | Lowest channel                           |                                       | Polarization:           |                 | Horizontal      |              |  |
| est Voltage:      | AC 120/60Hz                              |                                       | Environment: Temp: 24°C |                 |                 | Huni: 57%    |  |
| Level (dRuV/m     | N.                                       |                                       |                         |                 |                 |              |  |
| 110 Level (dBuV/m |                                          |                                       |                         |                 |                 |              |  |
| 100               |                                          |                                       |                         |                 |                 |              |  |
|                   |                                          |                                       |                         |                 |                 | 0            |  |
| 80                |                                          |                                       |                         |                 | FCC PART        | 15 (PK)      |  |
|                   |                                          |                                       |                         |                 |                 |              |  |
| 60                |                                          | · · · · · · · · · · · · · · · · · · · | ~~~~                    | m               | FCC PART        | 15 (AV)      |  |
|                   |                                          |                                       |                         |                 | 2               |              |  |
| 40                |                                          |                                       |                         |                 |                 |              |  |
|                   |                                          |                                       |                         |                 |                 |              |  |
| 20                |                                          |                                       |                         |                 |                 |              |  |
|                   |                                          |                                       |                         |                 |                 |              |  |
| 02310 2320        |                                          | 2350                                  | 117                     |                 |                 | 2404         |  |
|                   |                                          | Frequency (M                          | Hz)                     |                 |                 |              |  |
|                   |                                          |                                       |                         |                 |                 |              |  |
|                   |                                          |                                       |                         |                 |                 |              |  |
| Freq              | ReadAntenna Cable<br>Level Factor Loss F | Aux Preamp<br>actor Factor            | Limit<br>Level Line     | : Ove<br>: Limi | er<br>It Remark |              |  |
| MHz               | dBuV dB/m dB                             |                                       | dBuV/m dBuV/r           |                 | ib              | <del>-</del> |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

2390.000 26.70 27.03 4.69 1.68 0.00 60.10 74.00 -13.90 Peak 2390.000 14.45 27.03 4.69 1.68 0.00 47.85 54.00 -6.15 Average



| Product Name: | Mobile Phone    | Product Model: | BC1s                |
|---------------|-----------------|----------------|---------------------|
| Test By:      | YT              | Test mode:     | 2DH1 Tx mode        |
| Test Channel: | Highest channel | Polarization:  | Vertical            |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24℃ Huni: 57% |



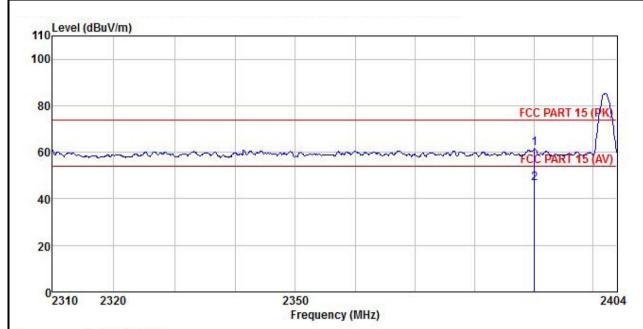

|     | Freq                 |      | Antenna<br>Factor |            |           |           |                     |        |           |  |
|-----|----------------------|------|-------------------|------------|-----------|-----------|---------------------|--------|-----------|--|
|     | MHz                  | dBu₹ | <u>dB</u> /m      | d <u>B</u> | <u>dB</u> | <u>dB</u> | $\overline{dBuV/m}$ | dBuV/m | <u>dB</u> |  |
| 1 2 | 2483.500<br>2483.500 |      |                   |            |           |           |                     |        |           |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



| Product Name: | Mobile Phone    | Product Model: | BC1s                 |
|---------------|-----------------|----------------|----------------------|
| Test By:      | YT              | Test mode:     | 2DH1 Tx mode         |
| Test Channel: | Highest channel | Polarization:  | Horizontal           |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24°C Huni: 57% |




| Freq                 | Read/<br>Level | Antenna<br>Factor | Cable<br>Loss | Aux<br>Factor | Preamp<br>Factor | Level               | Limit<br>Line | Over<br>Limit | Remark |
|----------------------|----------------|-------------------|---------------|---------------|------------------|---------------------|---------------|---------------|--------|
| MHz                  | dBu∜           | <u>dB</u> /m      |               | <u>d</u> B    | <u>dB</u>        | $\overline{dBuV/m}$ | dBuV/m        | <u>dB</u>     |        |
| 2483.500<br>2483.500 |                |                   |               |               |                  |                     |               |               |        |

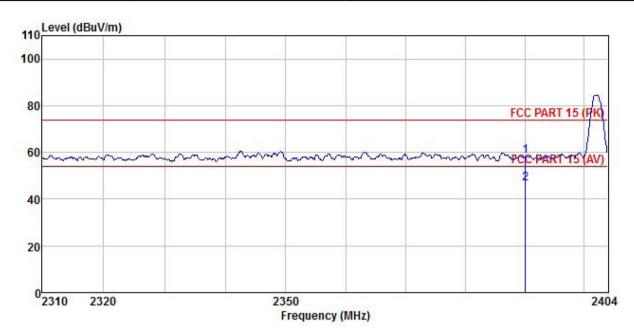
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



### 8DPSK mode

| Product Name: | Mobile Phone   | Product Model: | BC1s                 |
|---------------|----------------|----------------|----------------------|
| Test By:      | YT             | Test mode:     | 3DH1 Tx mode         |
| Test Channel: | Lowest channel | Polarization:  | Vertical             |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24°C Huni: 57% |



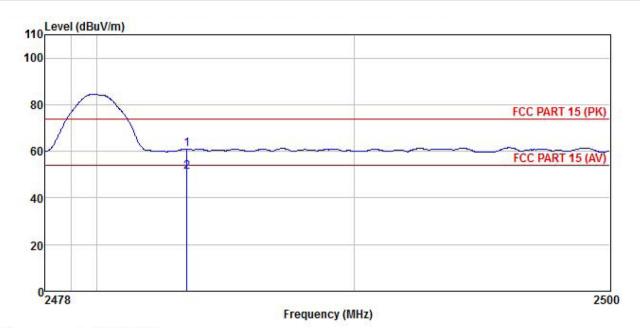

|    | Freq                 |       | Antenna<br>Factor |               |           |                     | Limit<br>Line |           |  |
|----|----------------------|-------|-------------------|---------------|-----------|---------------------|---------------|-----------|--|
| .2 | MHz                  | —dBu∜ | — <u>dB</u> /m    | <br><u>ab</u> | <u>dB</u> | $\overline{dBuV/m}$ | dBuV/m        | <u>dB</u> |  |
|    | 2390.000<br>2390.000 |       |                   |               |           |                     |               |           |  |

## Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



| Product Name: | Mobile Phone   | Product Model: | BC1s                |
|---------------|----------------|----------------|---------------------|
| Test By:      | YT             | Test mode:     | 3DH1 Tx mode        |
| Test Channel: | Lowest channel | Polarization:  | Horizontal          |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57% |

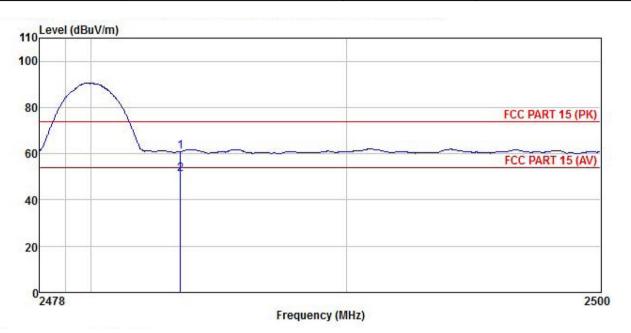



|   | Freq                 |      | Antenna<br>Factor |               |    |                     |                     |           |  |
|---|----------------------|------|-------------------|---------------|----|---------------------|---------------------|-----------|--|
| 2 | MHz                  | dBu∀ |                   | <br><u>dB</u> | dB | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | <u>dB</u> |  |
|   | 2390.000<br>2390.000 |      |                   |               |    |                     |                     |           |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



| Product Name: | Mobile Phone    | Product Model: | BC1s                |
|---------------|-----------------|----------------|---------------------|
| Test By:      | YT              | Test mode:     | 3DH1 Tx mode        |
| Test Channel: | Highest channel | Polarization:  | Vertical            |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24℃ Huni: 57% |




|     | Freq                 | ReadAntenna<br>Freq Level Factor |              | Cable<br>Loss | Cable Aux Preamp<br>Loss Factor Factor |    |                     | Limit<br>Line | Over<br>Limit | Remark |
|-----|----------------------|----------------------------------|--------------|---------------|----------------------------------------|----|---------------------|---------------|---------------|--------|
|     | MHz                  | dBu₹                             | <u>dB</u> /m |               | <u>d</u> B                             | dB | $\overline{dBuV/m}$ | dBuV/m        | <u>dB</u>     |        |
| 1 2 | 2483.500<br>2483.500 |                                  |              |               |                                        |    |                     |               |               |        |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



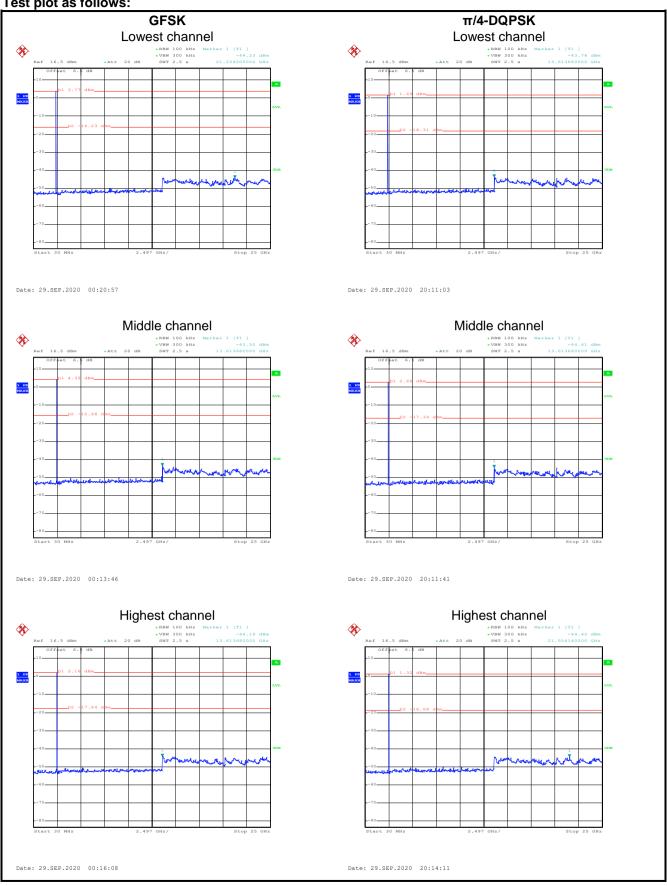
| Product Name: | Mobile Phone    | Product Model: | BC1s                 |
|---------------|-----------------|----------------|----------------------|
| Test By:      | YT              | Test mode:     | 3DH1 Tx mode         |
| Test Channel: | Highest channel | Polarization:  | Horizontal           |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24°C Huni: 57% |



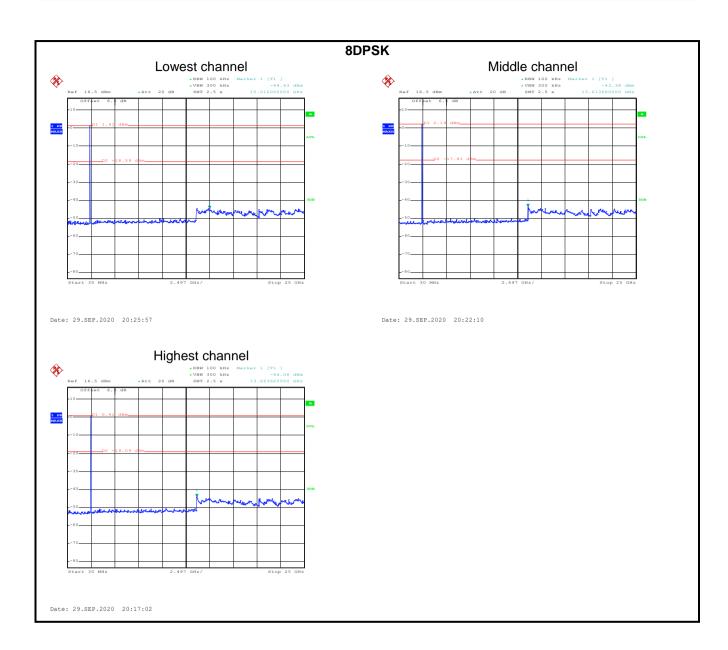
|   | Freq                 | ReadAntenna<br>q Level Factor |              |               |           |                     | Limit<br>Line |           |  |
|---|----------------------|-------------------------------|--------------|---------------|-----------|---------------------|---------------|-----------|--|
| 2 | MHz                  | dBu∜                          | <u>dB</u> /π | <br><u>ab</u> | <u>ab</u> | $\overline{dBuV/m}$ | dBuV/m        | <u>dB</u> |  |
|   | 2483.500<br>2483.500 |                               |              |               |           |                     |               |           |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.




# **6.10 Spurious Emission**

# 6.10.1 Conducted Emission Method


| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |



Test plot as follows:







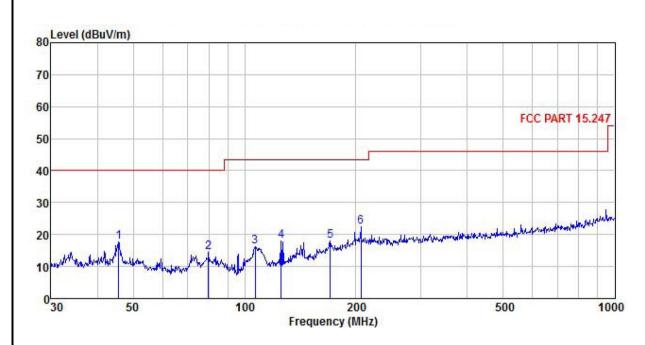


## 6.10.2 Radiated Emission Method

| 6.10.2 Radiated Emission | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |             |       |                     |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|-------|---------------------|--|--|
| Test Requirement:        | FCC Part 15 C S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section 15.209 |             |       |                     |  |  |
| Test Frequency Range:    | 9 kHz to 25 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>       |             |       |                     |  |  |
| Test Distance:           | 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |             |       |                     |  |  |
| Receiver setup:          | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detector       | RBW         | VBW   | ' Remark            |  |  |
|                          | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Quasi-peak     | 120kHz      | 300kH | Iz Quasi-peak Value |  |  |
|                          | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak           | 1MHz        | 3MHz  | z Peak Value        |  |  |
|                          | 715070 10112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RMS            | 1MHz        | 3MHz  |                     |  |  |
| Limit:                   | Frequenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | mit (dBuV/m | @3m)  | Remark              |  |  |
|                          | 30MHz-88N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 40.0        |       | Quasi-peak Value    |  |  |
|                          | 88MHz-216I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 43.5        |       | Quasi-peak Value    |  |  |
|                          | 216MHz-960MHz 46.0 Quasi-pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |             |       |                     |  |  |
|                          | 960MHz-1GHz 54.0 Quasi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |             |       |                     |  |  |
|                          | Above 1GHz 54.0 Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |             |       |                     |  |  |
|                          | 7 100 7 0 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 74.0        |       | Peak Value          |  |  |
| Test setup:              | Below 1GHz  Antenna Tower  Antenna  RF Test Receiver  Ground Plane  Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |             |       |                     |  |  |
| Test Procedure:          | Procedure:  1. The EUT was placed on the top of a rotating table 0.8m(below /1.5m(above 1GHz) above the ground at a 3 meter chamber. Towas rotated 360 degrees to determine the position of the highest radiation.  2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height and the set of t |                |             |       |                     |  |  |






|                   | tower.  3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both                                                                                                                                                                                                      |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                                                                                                                                                                  |
|                   | 4. For each suspected emission, the EUT was arranged to its worst case<br>and then the antenna was tuned to heights from 1 meter to 4 meters and<br>the rota table was turned from 0 degrees to 360 degrees to find the<br>maximum reading.                                                                                                            |
|                   | <ol><li>The test-receiver system was set to Peak Detect Function and Specified<br/>Bandwidth with Maximum Hold Mode.</li></ol>                                                                                                                                                                                                                         |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                       |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                                                                                                                                                       |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                   |
| Remark:           | <ol> <li>Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.</li> <li>9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only shows the data of above 30MHz in this report.</li> </ol>                                                                                                 |

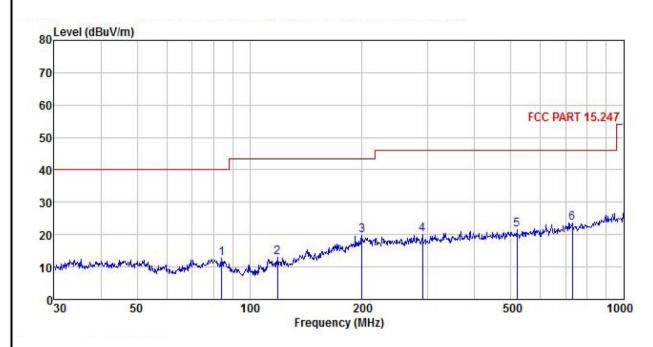


# Measurement Data (worst case):

### **Below 1GHz:**

| Product Name:   | Mobile Phone   | Product Model: | BC1s                |
|-----------------|----------------|----------------|---------------------|
| Test By:        | YT             | Test mode:     | BT Tx mode          |
| Test Frequency: | 30 MHz ~ 1 GHz | Polarization:  | Vertical            |
| Test Voltage:   | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57% |




|   | Eroa    | ReadAntenna |              |      |           |           |                     | Limit  |            |        |
|---|---------|-------------|--------------|------|-----------|-----------|---------------------|--------|------------|--------|
|   | Freq    | Level       | Factor       | Loss | Factor    | Factor    | Level               | Line   | Limit      | Remark |
| _ | MHz     | dBu₹        | <u>dB</u> /m |      | <u>ab</u> | <u>dB</u> | $\overline{dBuV/m}$ | dBuV/m | <u>d</u> B |        |
| 1 | 45.695  | 34.34       | 12.94        | 0.38 | 0.00      | 29.85     | 17.81               | 40.00  | -22.19     | QP     |
| 2 | 79.800  | 30.94       | 12.73        | 0.47 | 0.00      | 29.64     | 14.50               | 40.00  | -25.50     | QP     |
| 2 | 106.759 | 35.49       | 9.71         | 0.54 | 0.00      | 29.48     | 16.26               | 43.50  | -27.24     | QP     |
| 4 | 125.446 | 35.36       | 11.44        | 0.58 | 0.00      | 29.36     | 18.02               | 43.50  | -25.48     | QP     |
| 5 | 170.195 | 30.04       | 16.50        | 0.66 | 0.00      | 29.05     | 18.15               | 43.50  | -25.35     | QP     |
| 6 | 206.398 | 32.25       | 18.33        | 0.73 | 0.00      | 28.79     | 22.52               | 43.50  | -20.98     | QP     |

### Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.



| Product Name:   | Mobile Phone   | Product Model: | BC1s                |
|-----------------|----------------|----------------|---------------------|
| Test By:        | YT             | Test mode:     | BT Tx mode          |
| Test Frequency: | 30 MHz ~ 1 GHz | Polarization:  | Horizontal          |
| Test Voltage:   | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57% |



|        | Freq    |       | Intenna<br>Factor |      |           |           | Level               | Limit<br>Line |           |    |
|--------|---------|-------|-------------------|------|-----------|-----------|---------------------|---------------|-----------|----|
| _      | MHz     | dBu∜  | dB/m              |      | <u>dB</u> | <u>dB</u> | $\overline{dBuV/m}$ | dBuV/m        | <u>dB</u> |    |
| 1      | 84.110  | 30.03 | 11.81             | 0.48 | 0.00      | 29.61     | 12.71               | 40.00         | -27.29    | QP |
| 2      | 118.601 | 31.18 | 10.57             | 0.57 | 0.00      | 29.40     | 12.92               | 43.50         | -30.58    | QP |
| 2      | 199.986 | 29.49 | 18.30             | 0.72 | 0.00      | 28.83     | 19.68               | 43.50         | -23.82    | QP |
| 4<br>5 | 290.017 | 29.15 | 18.66             | 0.85 | 0.00      | 28.47     | 20.19               | 46.00         | -25.81    | QP |
| 5      | 519.065 | 29.97 | 19.48             | 1.12 |           | 29.01     | 21.56               | 46.00         | -24.44    | QP |
| 6      | 729.358 | 30.16 | 20.56             | 1.34 | 0.00      | 28.56     |                     |               | -22.50    |    |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.



# Above 1GHz (GFSK is Worst case):

|                                     | •                            |                             | Te                    | est channe            | el: Lowest ch            | nannel            |                           |                       |              |  |
|-------------------------------------|------------------------------|-----------------------------|-----------------------|-----------------------|--------------------------|-------------------|---------------------------|-----------------------|--------------|--|
|                                     |                              |                             |                       | Detecto               | r: Peak Valu             | ne                |                           |                       |              |  |
| Frequency<br>(MHz)                  | Read<br>Level<br>(dBuV)      | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Aux<br>Factor<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 4804.00                             | 47.01                        | 30.78                       | 6.80                  | 2.44                  | 41.81                    | 45.22             | 74.00                     | -28.78                | Vertical     |  |
| 4804.00                             | 47.32                        | 30.78                       | 6.80                  | 2.44                  | 41.81                    | 45.53             | 74.00                     | -28.47                | Horizontal   |  |
|                                     |                              |                             |                       | Detector:             | Average Va               | alue              |                           |                       |              |  |
| Frequency<br>(MHz)                  | Read<br>Level<br>(dBuV)      | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Aux<br>Factor<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 4804.00                             | 37.78                        | 30.78                       | 6.80                  | 2.44                  | 41.81                    | 35.99             | 54.00                     | -18.01                | Vertical     |  |
| 4804.00                             | 38.81                        | 30.78                       | 6.80                  | 2.44                  | 41.81                    | 37.02             | 54.00                     | -16.98                | Horizontal   |  |
| To stock awards NC 1 Use of a const |                              |                             |                       |                       |                          |                   |                           |                       |              |  |
|                                     | Test channel: Middle channel |                             |                       |                       |                          |                   |                           |                       |              |  |
|                                     | Detector: Peak Value         |                             |                       |                       |                          |                   |                           |                       |              |  |
| Frequency<br>(MHz)                  | Read<br>Level<br>(dBuV)      | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Aux<br>Factor<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 4882.00                             | 47.08                        | 30.96                       | 6.86                  | 2.47                  | 41.84                    | 45.53             | 74.00                     | -28.47                | Vertical     |  |
| 4882.00                             | 47.29                        | 30.96                       | 6.86                  | 2.47                  | 41.84                    | 45.74             | 74.00                     | -28.26                | Horizontal   |  |
|                                     |                              |                             |                       | Detector:             | Average Va               | alue              |                           |                       |              |  |
| Frequency<br>(MHz)                  | Read<br>Level<br>(dBuV)      | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Aux<br>Factor<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 4882.00                             | 37.57                        | 30.96                       | 6.86                  | 2.47                  | 41.84                    | 36.02             | 54.00                     | -17.98                | Vertical     |  |
| 4882.00                             | 38.98                        | 30.96                       | 6.86                  | 2.47                  | 41.84                    | 37.43             | 54.00                     | -16.57                | Horizontal   |  |
|                                     |                              |                             |                       |                       |                          |                   |                           |                       |              |  |
|                                     |                              |                             | Τe                    | est channe            | el: Highest c            | hannel            |                           |                       |              |  |
|                                     |                              |                             |                       | Detecto               | r: Peak Valu             | ue                |                           |                       |              |  |
| Frequency<br>(MHz)                  | Read<br>Level<br>(dBuV)      | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Aux<br>Factor<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 4960.00                             | 47.12                        | 31.11                       | 6.91                  | 2.49                  | 41.87                    | 45.76             | 74.00                     | -28.24                | Vertical     |  |
|                                     |                              |                             |                       |                       |                          | 1                 |                           |                       |              |  |

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Aux<br>Factor<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |  |  |
|--------------------|-------------------------|-----------------------------|-----------------------|-----------------------|--------------------------|-------------------|---------------------------|-----------------------|--------------|--|--|--|
| 4960.00            | 47.12                   | 31.11                       | 6.91                  | 2.49                  | 41.87                    | 45.76             | 74.00                     | -28.24                | Vertical     |  |  |  |
| 4960.00            | 47.13                   | 31.11                       | 6.91                  | 2.49                  | 41.87                    | 45.77             | 74.00                     | -28.23                | Horizontal   |  |  |  |
|                    | Detector: Average Value |                             |                       |                       |                          |                   |                           |                       |              |  |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Aux<br>Factor<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |  |  |
| 4960.00            | 37.80                   | 31.11                       | 6.91                  | 2.49                  | 41.87                    | 36.44             | 54.00                     | -17.56                | Vertical     |  |  |  |
| 4960.00            | 39.39                   | 31.11                       | 6.91                  | 2.49                  | 41.87                    | 38.03             | 54.00                     | -15.97                | Horizontal   |  |  |  |
| 5 ,                |                         |                             |                       |                       |                          |                   |                           |                       |              |  |  |  |

### Remark:

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

<sup>2.</sup> The emission levels of other frequencies are lower than the limit 20dB and not show in test report.