

FCC Test Report

Application No.: DNT2503130086R2170-02994

Applicant: SHENZHEN ZEALOT DIGITAL TECHNOLOGY CO.,LTD

Address of Applicant: 401,501,building 3,NO.8,Yong Tai Road,east District,BaiShi xia

Community, Fu Yong street, BaoAn District, ShenZhen China

EUT Description: WIRELESS MICROPHONE

Model No.: W03

FCC ID: 2AFKR-W03

Power Supply: Input:DC 5V;

DC 3.7V From rechargeable lithium-ion battery

Trade Mark: ZEALOT

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2013

Date of Receipt: 2025/03/18

Date of Test: 2025/03/19 to 2025/04/04

Date of Issue: 2025/04/05

Test Result: PASS

Prepared By: Wante Lin (Testing Engineer)

Reviewed By: Project Engineer)

Approved By: (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Date: April 05, 2025

Page: 2/54

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V2.0		Apr.05, 2025	Valid	Original Report

1 Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)	9'- 9'	Clause 3.1	PASS
Duty Cycle		O O	Clause 3.2	PASS
DTS (6 dB) Bandwidth	15.247 (a)(2)	ANSI C63.10: 2013	Clause 3.3	PASS
Conducted Output Power	15.247 (b)(3)	ANSI C63.10: 2013	Clause 3.4	PASS
Power Spectral Density	15.247 (e)	ANSI C63.10: 2013	Clause 3.5	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2013	Clause 3.6	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2013	Clause 3.7	PASS
Radiated Spurious Emissions	15.247(d);15.205/15.209	ANSI C63.10: 2013	Clause 3.8	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d);15.205/15.209	ANSI C63.10: 2013	Clause 3.9	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2013	Clause 3.10	PASS

Note:

^{1. &}quot;N/A" denotes test is not applicable in this test report.

Contents

1 Test Summary	 	 3
2 General Information	 <u>/</u>	 5
2.1 Test Location	 	 5
2.2 General Description of EUT		5
2.3 Channel List	 <u></u>	 6
2.4 Test Environment and Mode	 	 6
2.5 Power Setting of Test Software	 	6
2.6 Description of Support Units	 /	 6
2.7 Test Facility	 	 7
2.8 Measurement Uncertainty (95% confidence levels, k=2)		 7
2.9 Equipment List	 <u></u>	 8
2.10 Assistant equipment used for test	 	 9
3 Test results and Measurement Data		 10
3.1 Antenna Requirement	 /	 10
3.2 Duty Cycle	 	 11
3.3 DTS (6 dB) Bandwidth	 	12
3.4 Conducted Output Power	 /	 13
3.5 Power Spectral Density	 	 14
3.6 Band-edge for RF Conducted Emissions		15
3.7 RF Conducted Spurious Emissions	 /	 16
3.8 Radiated Spurious Emissions	 	 17
3.9 Restricted bands around fundamental frequency		 25
3.10 AC Power Line Conducted Emissions	 /	 29
4 Appendix	 	 33
Appendix A: Duty Cycle		 33
Appendix B: DTS Bandwidth	 	 36
Appendix C: Maximum conducted output power	 	 39
Appendix D: Maximum power spectral density		 42
Appendix E: Band edge measurements	 	 45
Appendix F: Conducted Spurious Emission	 	 48

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

2.2 General Description of EUT

Manufacturer:	SHENZHEN ZEALOT DIGITAL TECHNOLOGY CO.,LTD					
Address of Manufacturer:	401,501,building 3,NO.8,Yong Tai Road,east District,BaiShi xia Community,Fu Yong street,BaoAn District,ShenZhen China					
EUT Description:	WIRELESS MICROPHONE					
Test Model No.:	W03					
Additional Model(s):						
Chip Type:	AC7063M					
Serial Number	PR2503130086R2170					
Power Supply	Input:DC 5V;					
1 Ower Supply	DC 3.7V From rechargeable lithium-ion battery					
Trade Mark:	ZEALOT					
Hardware Version:	V1.0					
Software Version:	V1.0					
Operation Frequency:	2402 MHz to 2480 MHz					
Type of Modulation:	GFSK					
Sample Type:	□ Portable Device, □ Module, □ Mobile Device					
Antenna Type:	☐ External, ⊠ Integrated					
Antenna Ports						
Antonna Caint.	⊠ Provided by applicant					
Antenna Gain*:	-0.58dBi					
	⊠ Provided by applicant					
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);					

Remark:

*All models are just name differences, motherboard, PCB circuit board, chip, electronic components,appearance is all the same.

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information, DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

2.3 Channel List

	Operation Frequency of each channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

2.4 Test Environment and Mode

Operating Environment:	
Temperature:	20~25.0 °C
Humidity:	45~56 % RH
Atmospheric Pressure:	101.0~101.30 KPa
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

2.5 Power Setting of Test Software

Software Name	FCC Assist				
Frequency(MHz)	2402	2440	2480		
BLE 1M Setting	4	4	4		
BLE 2M Setting	4	4	4		

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

· FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

• Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory. CAB identifier is CN0149.

IC#: 30755.

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	DTS Bandwidth	±0.0196%
2	Maximum Conducted Output Power	±0.686 dB
3	Maximum Power Spectral Density Level	±0.743 dB
4	Band-edge Compliance	±1.328 dB
5	Unwanted Emissions In Non-restricted Freq Bands	9KHz-1GHz:±0.746dB 1GHz-26GHz: ±1.328dB

No.	Item Measurement Uncertainty			
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)		
	A A A A A	± 4.8dB (Below 1GHz)		
		± 4.8dB (1GHz to 6GHz)		
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)		
		± 5.02dB (Above 18GHz)		

Date: April 05, 2025

Page: 8/54

2.9 Equipment List

For Connect EUT Antenna Terminal Test						
Description	Manufacturer	Model	Serial Number	Cal date	Due date	
Signal Generator	Keysight	N5181A-6G	MY48180415	2024-10-23	2025-10-22	
Signal Generator	Keysight	N5182B	MY57300617	2024-10-23	2025-10-22	
Power supply	Keysight	E3640A	ZB2022656	2024-10-23	2025-10-22	
Radio Communication Tester	R&S	CMW500	105082	2024-10-23	2025-10-22	
Spectrum Analyzer	Aglient	N9010A	MY52221458	2024-10-23	2025-10-22	
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA	
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA	
Power Sensor	Anritsu	ML2495A	2129005	2024-10-23	2025-10-22	
Pulse Power Sensor	Anritsu	MA2411B	1911397	2024-10-23	2025-10-22	
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2024-10-23	2025-10-22	

. 6	Test Equipment for Conducted Emission						
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date		
Receiver	R&S	ESCI3	101152	2024-10-23	2025-10-22		
LISN	R&S	ENV216	102874	2024-10-23	2025-10-22		
ISN	R&S	ENY81-CA6	1309.8590.03	2024-10-23	2025-10-22		

Test Ed	quipment for F	Radiated Emis	sion(30MHz-	-1000MHz	<u>z</u>)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2024-10-23	2025-10-22
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2024-10-23	2025-10-22
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2022-11-28	2025-11-27
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2024-10-23	2025-10-22

Test E	quipment for I	Radiated Emis	ssion(Above	1000MHz)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2024-10-23	2025-10-22
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2024-10-23	2025-10-22
Horn Antenna	ETS-LINDGREN	3117	00252567	2022-11-28	2025-11-27
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2022-11-28	2025-11-27
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2024-10-23	2025-10-22
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2024-10-23	2025-10-22

Page: 9/54

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.	
1	1 Adapter		GFDQ3- 0502000U	NA	
2	Computer	acer	N22C8	EMC notebook01	

3 Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

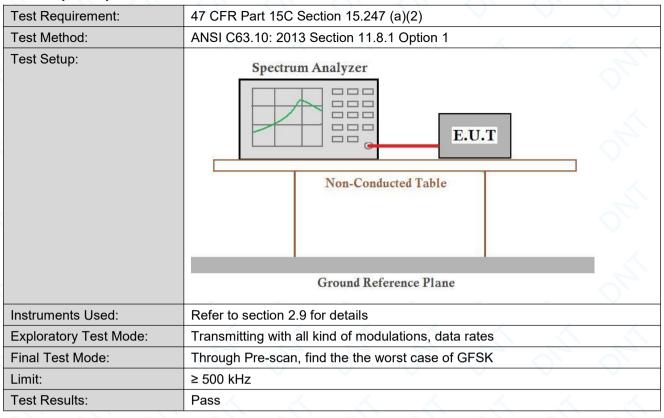
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.58dBi.

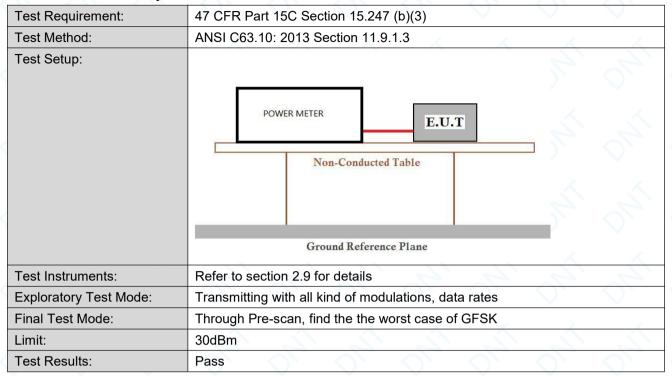
3.2 Duty Cycle


Refer to section : Appendix A

Note:

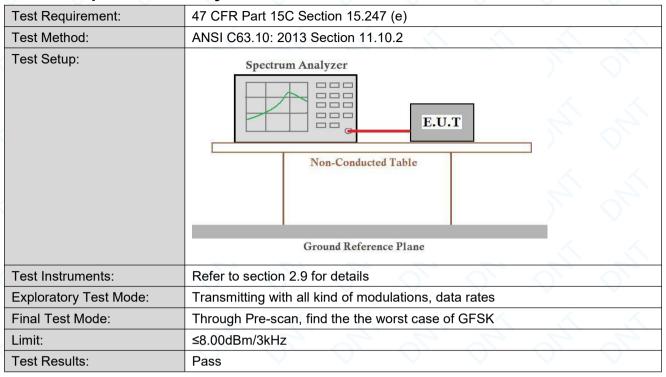
- 1.lf duty cycle <98 %, the conducted average output power and average power spectral density should be add duty factor.
- 2.If duty cycle ≥ 98 %,the EUT is consider to be transmitting continuously,the conducted average output power and average power spectral density no need to add duty factor(consider to be zero).
- 3. The conducted peak output power and peak power spectral density no need to consider duty factor.
- 4. The on-time time is transmission duration(T).

3.3 DTS (6 dB) Bandwidth



The detailed test data see: Appendix B

Report No.: DNT2503130086R2170-02994 Date: April 05, 2025 Page: 13 / 54

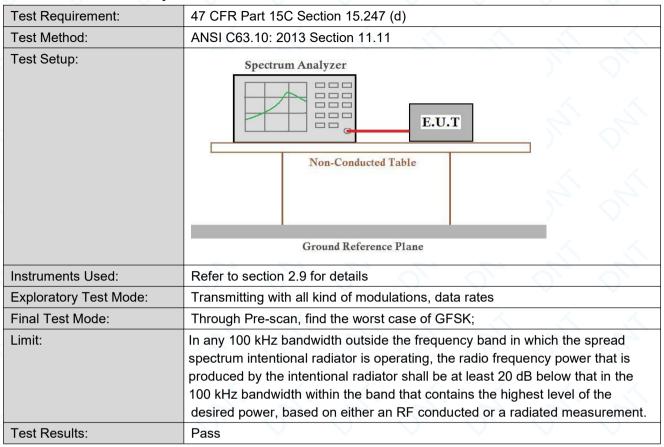

3.4 Conducted Output Power

The detailed test data see: Appendix C

3.5 Power Spectral Density

The detailed test data see: Appendix D

3.6 Band-edge for RF Conducted Emissions

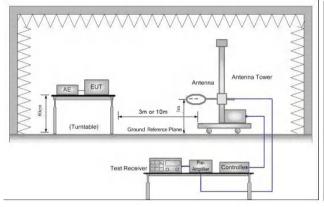

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2013 Section 11.13
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Head	Defer to certion 2.0 for details
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the the worst case of GFSK
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

The detailed test data see: Appendix E

Date: April 05, 2025 Page: 16 / 54

3.7 RF Conducted Spurious Emissions

The detailed test data see: Appendix F


3.8 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Sectio	n 15.209 and 15.20	05									
Test Method:	ANSI C63.10: 2013 Sect	ANSI C63.10: 2013 Section 11.12										
Test Site:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber) Frequency Detector RBW VBW Rema											
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark							
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak							
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average							
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak							
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak							
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average							
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak							
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak							
		Peak	1MHz	3MHz	Peak							
	Above 1GHz	Peak	1MHz	10Hz (DC ≥ 0.98) ≥1/T	Average							
	9, 9, 6			(DC<0.98)								
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)							
	0.009MHz-0.490MHz	2400/F(kHz)	<u> </u>	<u> </u>	300							
	0.490MHz-1.705MHz	24000/F(kHz)	<i>P</i> − /	L - V	30							
	1.705MHz-30MHz	30	V -	· - V	30							
	30MHz-88MHz	100	40.0	Quasi-peak	3							
	88MHz-216MHz	150	43.5	Quasi-peak	3							
	216MHz-960MHz	200	46.0	Quasi-peak	3							
	960MHz-1GHz	500	54.0	Quasi-peak	3							
	Above 1GHz	500	54.0	Average	3							
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated by	e the maximum per ent under test. This	mitted avera	ge emission lin	nit							

Date: April 05, 2025

Page: 18 / 54

Test Setup:



Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

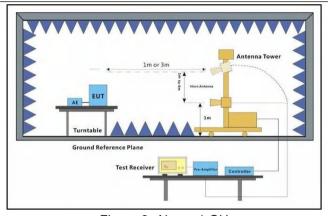


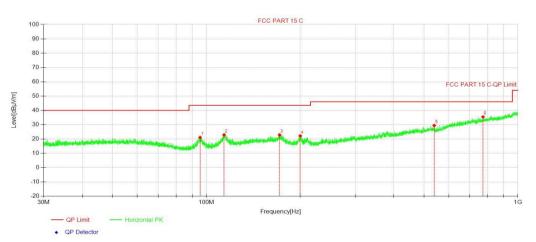
Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Dongguan DN Testing Co., Ltd.

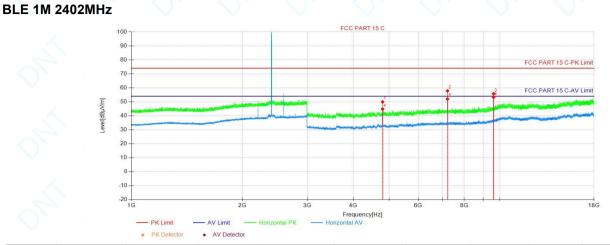

Report No.: DNT	2503130086R2170-02994	Date: April 05, 2025	Page: 19 /	54
Test Configuration:	Measurements Below 1000l • RBW = 120 kHz • VBW = 300 kHz • Detector = Peak • Trace mode = max hold	MHz		
	Peak Measurements Above • RBW = 1 MHz • VBW ≥ 3 MHz	1000 MHz		
	 Detector = Peak Sweep time = auto Trace mode = max hold			
	• VBW \geqslant 1/T, when duty cy transmission duration over w	eycle is no less than 98 percent. cle is less than 98 percent where thich the transmitter is on and is transmitter to operation.	ansmitting at its	
Exploratory Test Mode:	Transmitting with all kind of r Charge + Transmitting mode		<u> </u>	
Final Test Mode:	Pretest the EUT at Charging Through Pre-scan, find the w the report.	+Transmitting mode. orst case of GFSK,Only the worst	t case is recorded i	n
Instruments Used:	Refer to section 2.9 for detail	s /	/ /	
Test Results:	Pass	9, 9, 9,	9, 9,	

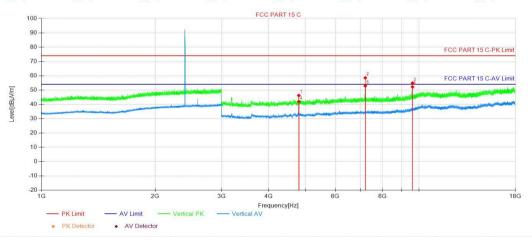

Date: April 05, 2025 Page: 20 / 54

Test data

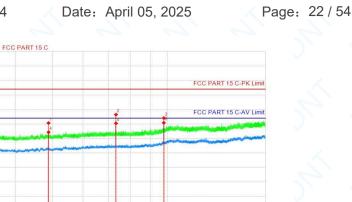
For 30-1000MHz

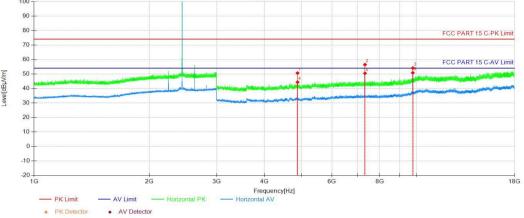
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	33.98	39.67	-9.40	30.27	40.00	9.73	100	353	PK	Vertical
2	57.74	36.56	-8.53	28.03	40.00	11.97	100	202	PK	Vertical
3	110.45	44.71	-11.17	33.54	43.50	9.96	100	180	PK	Vertical
4	172.36	42.24	-8.50	33.74	43.50	9.76	100	101	PK	Vertical
5	199.36	42.80	-11.08	31.72	43.50	11.78	100	129	PK	Vertical
6	838.01	31.56	4.51	36.07	46.00	9.93	100	11	PK	Vertical

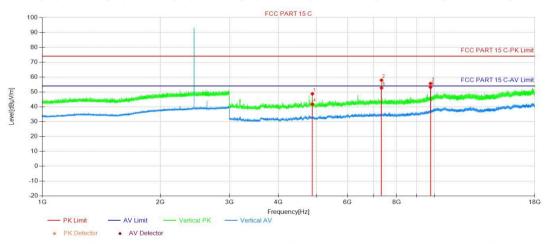

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	95.49	34.34	-13.29	21.05	43.50	22.45	100	360	PK	Horizontal
2	114.03	33.66	-10.79	22.87	43.50	20.63	100	332	PK	Horizontal
3	171.81	31.31	-8.45	22.86	43.50	20.64	100	221	PK	Horizontal
4	200.20	33.27	-11.08	22.19	43.50	21.31	100	269	PK	Horizontal
5	538.72	30.75	-1.27	29.48	46.00	16.52	100	8	PK	Horizontal
6	772.53	31.64	3.81	35.45	46.00	10.55	100	114	PK	Horizontal


For above 1GHz

Page: 21 / 54

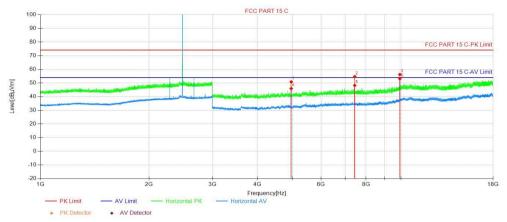



NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4803.84	54.60	-4.61	49.99	74.00	24.01	150	305	Peak	Н
2	7206.21	59.60	-1.76	57.84	74.00	16.16	150	267	Peak	Н
3	9607.83	54.84	0.87	55.71	74.00	18.29	150	357	Peak	Н
4	4804.59	49.44	-4.61	44.83	54.00	9.17	150	305	AV	Н
5	7206.96	53.77	-1.76	52.01	54.00	1.99	150	286	AV	Н
6	9608.58	52.37	0.88	53.25	54.00	0.75	150	357	AV	Н

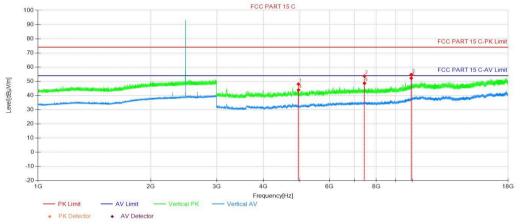

N	Ο.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	1	4804.59	50.81	-4.61	46.20	74.00	27.80	150	91	Peak	V
2	2	7206.21	60.31	-1.76	58.55	74.00	15.45	150	0	Peak	V
3	3	9607.83	53.98	0.87	54.85	74.00	19.15	150	200	Peak	V
2	1	4804.59	46.41	-4.61	41.80	54.00	12.20	150	109	AV	V
5	5	7206.96	54.68	-1.76	52.92	54.00	1.08	150	4	AV	V
6	6	9608.58	51.35	0.88	52.23	54.00	1.77	150	218	AV	V

Report No.: DNT2503130086R2170-02994 **BLE 1M 2440MHz**

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4880.34	55.36	-4.71	50.65	74.00	23.35	150	307	Peak	Н
2	7320.22	57.95	-1.49	56.46	74.00	17.54	150	219	Peak	Н
3	9760.09	52.49	1.62	54.11	74.00	19.89	150	219	Peak	Н
4	4880.34	49.05	-4.71	44.34	54.00	9.66	150	307	AV	Н
5	7320.97	51.93	-1.49	50.44	54.00	3.56	150	307	AV	Н
6	9760.84	49.18	1.63	50.81	54.00	3.19	150	219	AV	Н



NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4880.34	53.43	-4.71	48.72	74.00	25.28	150	87	Peak	V
2	7320.22	59.41	-1.49	57.92	74.00	16.08	150	356	Peak	V
3	9760.09	54.01	1.62	55.63	74.00	18.37	150	87	Peak	V
4	4881.09	46.50	-4.71	41.79	54.00	12.21	150	107	AV	V
5	7320.97	54.18	-1.49	52.69	54.00	1.31	150	2	AV	V
6	9760.84	51.45	1.63	53.08	54.00	0.92	150	87	AV	V



Date: April 05, 2025

Page: 23 / 54

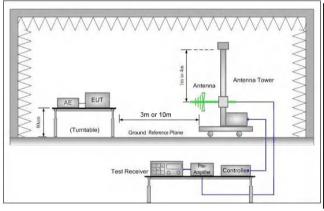
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4960.60	55.65	-4.86	50.79	74.00	23.21	150	306	Peak	Н
2	7439.47	55.96	-1.34	54.62	74.00	19.38	150	270	Peak	Н
3	9919.85	53.93	2.26	56.19	74.00	17.81	150	143	Peak	Н
4	4960.60	50.77	-4.86	45.91	54.00	8.09	150	143	AV	Н
5	7440.97	49.57	-1.34	48.23	54.00	5.77	150	287	AV	Н
6	9920.60	50.82	2.27	53.09	54.00	0.91	150	162	AV	Н

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4959.85	52.87	-4.86	48.01	74.00	25.99	150	105	Peak	V
2	7440.22	55.04	-1.34	53.70	74.00	20.30	150	357	Peak	V
3	9919.85	52.48	2.26	54.74	74.00	19.26	150	105	Peak	V
4	4960.60	48.76	-4.86	43.90	54.00	10.10	150	123	AV	V
5	7440.97	49.97	-1.34	48.63	54.00	5.37	150	357	AV	V
6	9920.60	49.96	2.27	52.23	54.00	1.77	150	88	AV	V

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)


- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, only the worst case was reported.

Page: 25 / 54

3.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205	
Test Method:	ANSI C63.10: 2013 Section	11.12	, , , , , , , , , , , , , , , , , , ,
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic C	hamber)
Limit:	Frequency	Limit (dBuV/m)	Remark
	30MHz-88MHz	40.0	Quasi-peak
	88MHz-216MHz	43.5	Quasi-peak
	216MHz-960MHz	46.0	Quasi-peak
	960MHz-1GHz	54.0	Quasi-peak
	Al 4011=	54.0	Average Value
	Above 1GHz	74.0	Peak Value
Test Setup:			A. A. A.

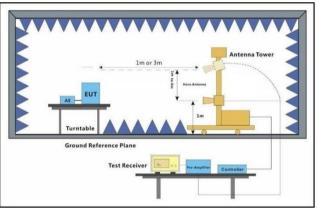


Figure 1. 30MHz to 1GHz

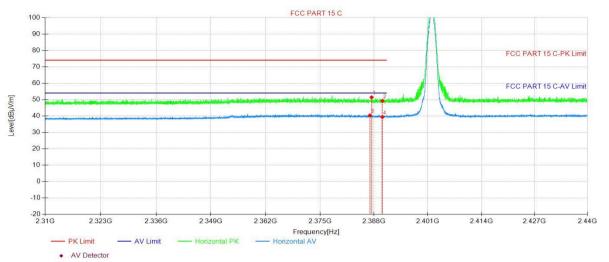
Figure 2. Above 1 GHz

Test Procedure:

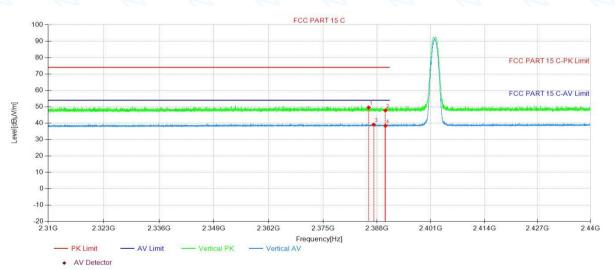
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Test Configuration:

Measurements Below 1000MHz

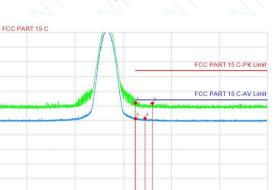

Dongguan DN Testing Co., Ltd.

Report No.:	DNT2503130086R2170-02994
	 RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above 1000 MHz RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Above 1000MHz RBW = 1 MHz VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Transmitting mode.
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode. Through Pre-scan, find the worst case of GFSK Only the worst case is recorded in the report.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass



Date: April 05, 2025 Page: 27 / 54

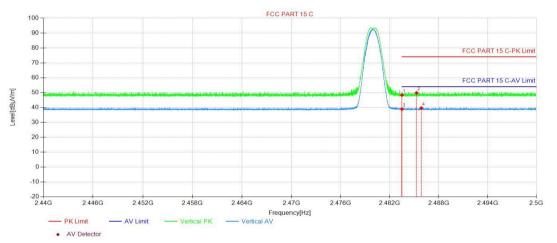
Test Date BLE 1M 2402MHz



NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	2387.40	52.18	-0.80	51.38	74.00	22.62	150	282	Peak	Н
2	2390.01	50.03	-0.80	49.23	74.00	24.77	150	41	Peak	Н
3	2386.98	41.15	-0.81	40.34	54.00	13.66	150	293	AV	Н
4	2390.01	40.18	-0.80	39.38	54.00	14.62	150	52	AV	Н

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dΒμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	2385.97	50.31	-0.81	49.50	74.00	24.50	150	211	Peak	V
2	2390.01	48.61	-0.80	47.81	74.00	26.19	150	1	Peak	V
3	2387.19	39.97	-0.80	39.17	54.00	14.83	150	97	AV	V
4	2390.01	39.20	-0.80	38.40	54.00	15.60	150	211	AV	V

Report No.: DNT2503130086R2170-02994 BLE 2480MHz



Date: April 05, 2025

Page: 28 / 54

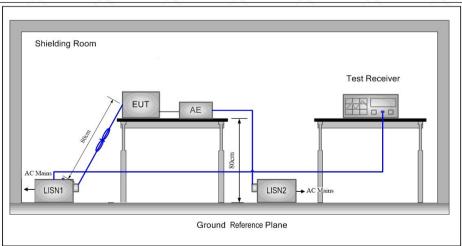
	80 - 70 - -							<u> </u>		CC PART 15 C-PK	CLimit
F	50	ul and					L. John Stranger	1	2	FCC PART 15 C-AV	/ Limit
Level[dBµV/m]	40	paran-dagananang dagananang		-				3			diseases from
Leve	30 —										
	10 —										
	0										
	-10-										
	-20 2.44G	2.446G	2.452G	2.458G	2.464G	2.47G Frequency[Hz]	2.476G	2.482G	2.488G	2.494G	2.5G
		PK Limit AV Detector	— AV Limit	Horizontal Pi							
	Rea	ading	Correct	Res	ult	A) (!			11.1.1.4	A I .	

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
	1	2483.50	52.15	-0.29	51.86	74.00	22.14	150	307	Peak	Н
	2	2485.62	51.92	-0.27	51.65	74.00	22.35	150	62	Peak	Н
$\left[\right]$	3	2483.50	41.48	-0.29	41.19	54.00	12.81	150	84	AV	Н
	4	2484.70	41.67	-0.27	41.40	54.00	12.60	150	285	AV	Н

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	2483.50	48.64	-0.29	48.35	74.00	25.65	150	0	Peak	V
2	2485.29	50.09	-0.27	49.82	74.00	24.18	150	356	Peak	V
3	2483.50	39.15	-0.29	38.86	54.00	15.14	150	85	AV	V
4	2485.87	39.92	-0.27	39.65	54.00	14.35	150	5	AV	V

Note:

- 1. The BLE 1M is the worse case.
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant. Factor and the Cable Factor etc.), The basic equation is as follows:

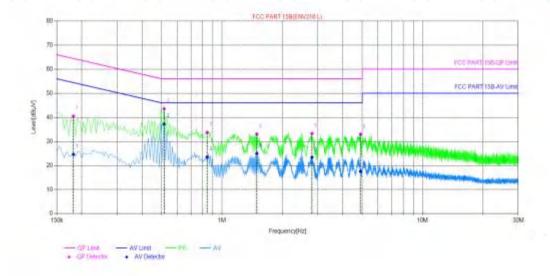

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

3.10AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15	7 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz	<u></u>					
Limit:	Francisco (MIII)	Limit (c	lBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30 60 50						
	* Decreases with the logarithm of the frequency.						
Test Procedure:	1) The mains terminal disturoom. 2) The EUT was connected Impedance Stabilization Net impedance. The power cable a second LISN 2, which was plane in the same way as the multiple socket outlet strip was single LISN provided the rate 3) The tabletop EUT was placed on the horizontal ground reference plane. And placed on the horizontal ground of the EUT shall be 0.4 m frow vertical ground reference plane. The LISN 1 unit under test and bonded to mounted on top of the ground between the closest points of the EUT and associated equal norder to find the maximum equipment and all of the integral and control of the integral and all of the integral and control of the integral	to AC power source thro twork) which provides a 5 tes of all other units of the shonded to the ground re te LISN 1 for the unit bein tras used to connect multip ting of the LISN was not e aced upon a non-metallic the for floor-standing arrang und reference plane, with a vertical ground reference was bonded to the hole that was placed 0.8 m from the tro a ground reference plane and reference plane. This could reference plane. This could reference plane the LISN 1 and the EUT tripment was at least 0.8 m the emission, the relative poerface cables must be char	ugh a LISN 1 (Line 0Ω/50μH + 5Ω linear EUT were connected to a ference g measured. A ple power cables to a exceeded. A stable 0.8m above the gement, the EUT was become plane. The rear ference plane. The prizontal ground the boundary of the ne for LISNs distance was T. All other units of the positions of				

Test Setup:

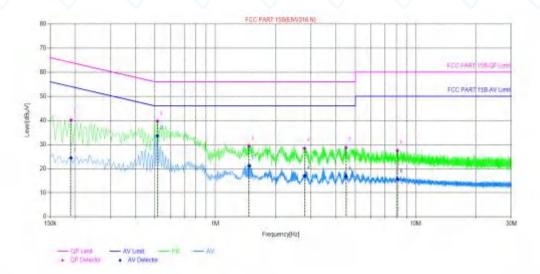
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel. Charge + Transmitting mode.
Final Test Mode:	Through Pre-scan, find the the worst case of GFSK
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass


Page: 30 / 54

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:



Final	Final Data List										
NO.	Freq. [MHz]	Factor [dB]	QP Value (dBuV)	QP Limit [dBuV]	QP Margin [dB]	AV Value [dBuV]	AV Limit MBµVI	AV Margin [d8]	Verdict		
.1	0.1815	9.92	40.47	64.42	23.95	24.60	54.42	29.82	PASS		
2	0.5145	9.87	43.58	56.00	12.42	37.18	46.00	8.82	PASS		
3	0.843	9.74	33.72	56.00	22.28	23.47	46.00	22.53	PASS		
4	1.491	9.73	33.00	56.00	23.00	25.01	46.00	20.99	PASS		
5	2.8095	9.74	33.34	56.00	22.66	23.38	46.00	22.62	PASS		
6	4.9065	9.79	32.95	56.00	23.05	17.55	46.00	28.45	PASS		

Date: April 05, 2025

Neutral Line:

Final Data List										
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBuV]	QP Limit [dBuV]	QP Margin [dB]	AV Value [dBuV]	AV Limit [dBuV]	AV Margin [dB]	Verdict	
1	0.1905	9.85	40.14	64.01	23.87	24.40	54.01	29.61	PASS	
2	0.5145	9.72	39.72	56.00	16.28	33.53	46.00	12.47	PASS	
3	1.473	9.73	29.32	56.00	26.68	21.19	46.00	24.81	PASS	
4	2.7915	9.85	28.46	56.00	27.54	17.02	46.00	28.98	PASS	
5	4.4925	9.97	28.68	56.00	27.32	16.74	48.00	29.26	PASS	
6	8.1105	9.92	27.49	60.00	32.51	15.56	50.00	34.44	PASS	

Remark:

Page: 32 / 54

- 1. The BLE 1M is the worse case.
- 2. The following Quasi-Peak and Average measurements were performed on the EUT:
- 3. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc.)

4 Appendix

Appendix A: Duty Cycle

Test Result

1 COL I COUIT									
TestMode	Antenna	Freq(MHz)	ON Time	Period	X	DC [%]	xFactor	Limit Ve	Verdict
	7		[ms]	[ms]					
	Ant1	2402	2.13	2.50	0.8520	85.20	0.70		
BLE_1M		2440	2.13	2.49	0.8554	85.54	0.68		
		2480	2.13	2.50	0.8520	85.20	0.70		
		2402	1.08	2.50	0.4320	43.20	3.65		-
BLE_2M	Ant1	2440	1.08	2.50	0.4320	43.20	3.65		
		2480	1.08	2.50	0.4320	43.20	3.65		

Report No.: DNT2503130086R2170-02994 Date: April 05, 2025 Page: 35 / 54 ΔMkr3 2.500 ms 0.00 dB Ref Offset 11.52 dB Ref 21.52 dBm Center Fre 2∆1 Stop Free 2.402000000 GH Center 2.402000000 GHz Res BW 8 MHz Span 0 Hz Sweep 6.000 ms (1001 pts) CF Step 8.000000 MH Freq Offse BLE 2M Ant1 2440 Ref Offset 11.53 dB Ref 21.53 dBm Center Free 2.440000000 GH Start Fre 2/1 Center 2.440000000 GH Res BW 8 MHz CF Step 8.000000 MH Span 0 Hz Sweep 6.000 ms (1001 pts #VBW 8.0 MHz Freq Offse BLE_2M_Ant1_2480 Auto Tun ΔMkr3 2.500 ms 0.00 dB Ref Offset 11.6 dB Ref 21.60 dBm Center Fre 2.480000000 GH Stop Fre 2.480000000 GH Center 2.480000000 GHz Span 0 Hz Sweep 6.000 ms (1001 pts **#VBW 8.0 MHz** Freq Offse