

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

X2D 100C

MODEL NUMBER: X2D 100C

FCC ID: 2AEFA-X2D100C2106 IC: 20193-X2D100C2106

REPORT NUMBER: 4790183964.4-5

ISSUE DATE: January 25, 2022

Prepared for

VICTOR HASSELBLAD AB Utvecklingsgatan 2 SE-417 56 Gothenburg Sweden

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	01/25/2022	Initial Issue	

Summary of Test Results					
Clause	Test Items	FCC/ISED Rules	Test Results		
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass		
2	Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (d)	Pass		
3	Power Spectral Density	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass		
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass		
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass		
6	Conducted Emission Test for AC Power Port	FCC Part 15.207 RSS-GEN Clause 8.8	Pass		
7	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 6.8	Pass		
Note:					

1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >< ISED RSS-247 > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	ATTES	TATION OF TEST RESULTS	6
2.	TEST N	IETHODOLOGY	7
3.	FACILI	TIES AND ACCREDITATION	7
4.	CALIBI	RATION AND UNCERTAINTY	8
4.	1. ME	ASURING INSTRUMENT CALIBRATION	8
4.	2. ME	ASUREMENT UNCERTAINTY	8
5.	EQUIP	MENT UNDER TEST	9
5.	1. DE	SCRIPTION OF EUT	9
5.	2. CH	IANNEL LIST	9
5.	3. MA	XIMUM OUTPUT POWER1	10
5.	4. TE	ST CHANNEL CONFIGURATION1	10
5.	5. TH	E WORSE CASE POWER SETTING PARAMETER1	10
5.	6. TH	E WORSE CASE CONFIGURATIONS1	11
5.	7. DE	SCRIPTION OF AVAILABLE ANTENNAS1	12
5.	8. DE	SCRIPTION OF TEST SETUP1	13
6.	MEAGI	IRING INSTRUMENT AND SOFTWARE USED1	
0.	WEAS	IRING INSTRUMENT AND SOFTWARE USED1	4
-		NA PORT TEST RESULTS1	
-	ANTEN		6
7.	ANTEN	NA PORT TEST RESULTS1	6 16
7. 7.	ANTEN 1. ON 2. 6 c	NA PORT TEST RESULTS	6 16 17
7. 7. 7.	ANTEN 1. ON 2. 6 d 3. CC	NA PORT TEST RESULTS	6 16 17 19
7. 7. 7. 7.	ANTEN 1. ON 2. 6 d 3. CC 4. PC	NA PORT TEST RESULTS 1 I TIME AND DUTY CYCLE 1 IB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH 1 INDUCTED OUTPUT POWER 1	16 16 17 19 20
7 . 7. 7. 7. 7. 7.	ANTEN 1. ON 2. 6 d 3. CC 4. PC 5. CC	NA PORT TEST RESULTS 1 I TIME AND DUTY CYCLE 1 IB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH 1 INDUCTED OUTPUT POWER 1 IWER SPECTRAL DENSITY 2	16 16 17 19 20 22
7. 7. 7. 7. 7. 7. 8. 8.	ANTEN 1. ON 2. 6 d 3. CC 4. PC 5. CC RADIA [*] 1. RE	NA PORT TEST RESULTS 1 I TIME AND DUTY CYCLE 1 IB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH 1 INDUCTED OUTPUT POWER 1 INWER SPECTRAL DENSITY 2 INDUCTED BANDEDGE AND SPURIOUS EMISSIONS 2 IED TEST RESULTS 2 ISTRICTED BANDEDGE 3	16 17 19 20 22 24 30
7. 7. 7. 7. 7. 7. 8. 8.	ANTEN 1. ON 2. 6 d 3. CC 4. PC 5. CC RADIA ^T 1. RE 8.1.1.	NA PORT TEST RESULTS 1 I TIME AND DUTY CYCLE 1 IB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH 1 INDUCTED OUTPUT POWER 1 INWER SPECTRAL DENSITY 2 INDUCTED BANDEDGE AND SPURIOUS EMISSIONS 2 IED TEST RESULTS 2 ISTRICTED BANDEDGE 3 802.11b SISO MODE 3	16 17 19 20 22 24 30 30
7. 7. 7. 7. 7. 8. 8.	ANTEN 1. ON 2. 6 d 3. CC 4. PC 5. CC RADIA [*] 1. RE	NA PORT TEST RESULTS 1 I TIME AND DUTY CYCLE 1 I'B DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH 1 I'NDUCTED OUTPUT POWER 1 I'WER SPECTRAL DENSITY 2 I'NDUCTED BANDEDGE AND SPURIOUS EMISSIONS 2 I'ED TEST RESULTS 2 I'STRICTED BANDEDGE 3 802.11b SISO MODE 3 802.11n HT20 MIMO MODE 3	16 17 19 20 22 24 30 32 36
7. 7. 7. 7. 7. 7. 8. 8.	ANTEN 1. ON 2. 6 d 3. CC 4. PC 5. CC RADIA ^T 1. RE 8.1.1. 8.1.2. 8.1.3. 8.1.4.	NA PORT TEST RESULTS 1 I TIME AND DUTY CYCLE 1 I'B DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH 1 I'NDUCTED OUTPUT POWER 1 I'WER SPECTRAL DENSITY 2 I'NDUCTED BANDEDGE AND SPURIOUS EMISSIONS 2 I'ED TEST RESULTS 2 STRICTED BANDEDGE 3 802.11b SISO MODE 3 802.11n HT20 MIMO MODE 3 802.11n HT40 MIMO MODE 4	6 16 17 19 20 22 24 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 30 30 30 30 30 30 30 30 30
7. 7. 7. 7. 7. 7. 8. 8.	ANTEN 1. ON 2. 6 d 3. CC 4. PC 5. CC RADIA ^T 1. RE 8.1.1. 8.1.2. 8.1.3.	NA PORT TEST RESULTS 1 I TIME AND DUTY CYCLE 1 I'B DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH 1 I'NDUCTED OUTPUT POWER 1 I'WER SPECTRAL DENSITY 2 I'NDUCTED BANDEDGE AND SPURIOUS EMISSIONS 2 I'ED TEST RESULTS 2 I'STRICTED BANDEDGE 3 802.11b SISO MODE 3 802.11n HT20 MIMO MODE 3	16 17 19 20 22 24 30 32 36 10 4
7. 7. 7. 7. 7. 8. 8.	ANTEN 1. ON 2. 6 d 3. CC 4. PC 5. CC RADIA 1. RE 8.1.1. 8.1.2. 8.1.3. 8.1.4. 8.1.5. 8.1.6.	NA PORT TEST RESULTS1I TIME AND DUTY CYCLE1IB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH1ID NDUCTED OUTPUT POWER1INDUCTED OUTPUT POWER1INDUCTED BANDEDGE AND SPURIOUS EMISSIONS2IFED TEST RESULTS2STRICTED BANDEDGE3802.11b SISO MODE3802.11g SISO MODE3802.11n HT20 MIMO MODE4802.11ax VHT20 MIMO MODE4802.11ax VHT40 MIMO MODE4	16 17 19 20 22 24 30 32 36 10 4 18
7. 7. 7. 7. 7. 8. 8. 8.	ANTEN 1. ON 2. 6 d 3. CC 4. PC 5. CC RADIA ^T 1. RE 8.1.1. 8.1.2. 8.1.3. 8.1.4. 8.1.5. 8.1.6. 2. SF 8.2.1.	NA PORT TEST RESULTS 1 I TIME AND DUTY CYCLE 1 I'B DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH 1 I'B DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH 1 I'NDUCTED OUTPUT POWER 1 I'WER SPECTRAL DENSITY 2 I'DNDUCTED BANDEDGE AND SPURIOUS EMISSIONS 2 I'ED TEST RESULTS 2 STRICTED BANDEDGE 3 802.11b SISO MODE 3 802.11g SISO MODE 3 802.11n HT20 MIMO MODE 4 802.11ax VHT20 MIMO MODE 4 802.11ax VHT40 MIMO MODE 4 802.11b SISO MODE 4 802.11ax VHT40 MIMO MODE 4 802.11ax VHT40 MIMO MODE 4 802.11ax VHT40 MIMO MODE 4 802.11b SISO MODE 5 802.11b SISO MODE 5	6 16 17 19 20 22 24 300 326 14 18 52 52
7. 7. 7. 7. 7. 8. 8. 8. 8.	ANTEN 1. ON 2. 6 c 3. CC 4. PC 5. CC RADIA ^T 1. RE 8.1.1. 8.1.2. 8.1.3. 8.1.4. 8.1.5. 8.1.6. 2. SF 8.2.1. 3. SF	NA PORT TEST RESULTS 1 I TIME AND DUTY CYCLE 1 I'B DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH 1 I'NDUCTED OUTPUT POWER 1 I'WER SPECTRAL DENSITY 2 I'NDUCTED BANDEDGE AND SPURIOUS EMISSIONS 2 I'ED TEST RESULTS 2 STRICTED BANDEDGE 3 802.11b SISO MODE 3 802.11g SISO MODE 3 802.11n HT20 MIMO MODE 4 802.11ax VHT20 MIMO MODE 4 802.11ax VHT40 MIMO MODE 4 802.11b SISO MODE 4 802.11ax VHT40 MIMO MODE 4 802.11b SISO MODE 5 802.11b SISO MODE 5 802.11ax VHT40 MIMO MODE 4 802.11ax VHT40 MIMO MODE 5 802.11b SISO MODE 5	6 16 17 19 22 24 300 326 104 18 52 58
7. 7. 7. 7. 7. 7. 8. 8. 8. 8.	ANTEN 1. ON 2. 6 d 3. CC 4. PC 5. CC RADIA ^T 1. RE 8.1.1. 8.1.2. 8.1.3. 8.1.4. 8.1.5. 8.1.6. 2. SF 8.2.1.	NA PORT TEST RESULTS 1 I TIME AND DUTY CYCLE 1 I'B DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH 1 I'B DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH 1 I'NDUCTED OUTPUT POWER 1 I'WER SPECTRAL DENSITY 2 I'DNDUCTED BANDEDGE AND SPURIOUS EMISSIONS 2 I'ED TEST RESULTS 2 STRICTED BANDEDGE 3 802.11b SISO MODE 3 802.11g SISO MODE 3 802.11n HT20 MIMO MODE 4 802.11ax VHT20 MIMO MODE 4 802.11ax VHT40 MIMO MODE 4 802.11b SISO MODE 4 802.11ax VHT40 MIMO MODE 4 802.11ax VHT40 MIMO MODE 4 802.11ax VHT40 MIMO MODE 4 802.11b SISO MODE 5 802.11b SISO MODE 5	6 17 19 22 4 30 32 36 10 14 18 52 58 58 58 58 58 58 58 58 58 58

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT NO.: 4790183964.4-5

 8.3.3. 802.11n HT20 MIMO MODE 8.3.4. 802.11n HT40 MIMO MODE 8.3.5. 802.11ax VHT20 MIMO MODE 8.3.6. 802.11ax VHT40 MIMO MODE 	70
8.5. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 8.5.1. 802.11b SISO MODE	
8.6. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz) 8.6.1. 802.11b SISO MODE	96 96
8.7. SPURIOUS EMISSIONS BELOW 30 MHz 8.7.1. 802.11b SISO MODE	
9. AC POWER LINE CONDUCTED EMISSIONS	101
9.1.1. 802.11b SISO MODE	102
10. ANTENNA REQUIREMENTS	104
11. Appendix	105
11.1. Appendix A: DTS Bandwidth11.1.1. Test Result11.1.2. Test Graphs	105
11.2.Appendix B: Occupied Channel Bandwidth11.2.1.Test Result11.2.2.Test Graphs	127
11.3. Appendix C: Maximum conducted output power 11.3.1. Test Result	
11.4.Appendix D: Maximum power spectral density11.4.1.Test Result11.4.2.Test Graphs	151
11.5.Appendix E: Band edge measurements11.5.1.Test Result11.5.2.Test Graphs	170
11.6.Appendix F: Conducted Spurious Emission11.6.1.Test Result11.6.2.Test Graphs	
<i>11.7. Appendix G: Duty Cycle</i>11.7.1. Test Result11.7.1. Test Graphs	238

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	VICTOR HASSELBLAD AB
Address:	Utvecklingsgatan 2 SE-417 56 Gothenburg Sweden

Manufacturer Information

Company Name:	VICTOR HASSELBLAD AB
Address:	Utvecklingsgatan 2 SE-417 56 Gothenburg Sweden

EUT Information

X2D 100C
X2D 100C
HASSELBLAD
November 18, 2021
Normal
4401571
November 18, 2021, ~ January 21, 2022

APPLICABLE STANDARDS					
STANDARD TEST RESULTS					
CFR 47 FCC PART 15 SUBPART C	PASS				
ISED RSS-247 Issue 2	PASS				
ISED RSS-GEN Issue 5	PASS				

Prepared By:

Kebo Zhang Project Engineer

Checked By:

enn ley

Shawn Wen Laboratory Leader

Approved By:

ophentrut

Stephen Guo Laboratory Manager

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, KDB 662911 D01 Multiple Transmitter Output v02r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62 dB		
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB		
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB		
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)		
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)		
Duty Cycle	±0.028%		
DTS and 99% Occupied Bandwidth	±0.0196%		
Maximum Conducted Output Power	±0.686 dB		
Maximum Power Spectral Density Level	±0.743 dB		
Conducted Band-edge Compliance	±1.328 dB		
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)		
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	X2D 100C
Model Name	X2D 100C
Radio Technology	IEEE802.11b/g/n HT20/n HT40/ ax HE20/ax HE40
Operation frequency	IEEE 802.11b: 2412 MHz ~ 2462 MHz IEEE 802.11g: 2412 MHz ~ 2462 MHz IEEE 802.11n HT20: 2412 MHz ~ 2462 MHz IEEE 802.11n HT40: 2422 MHz ~ 2452 MHz IEEE 802.11ax HE20: 2412MHz ~ 2462MHz IEEE 802.11ax HE40: 2422MHz ~ 2452MHz
Modulation	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax HE20: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax HE40: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)
Ratings	DC 5V: charging via non-standard adapter or personal computer DC 15V: charging via standard adapter
NoteBoth input voltages are considered, only the worst voltage data (DC 5V) is recorded in this report.	
Battery	Max charge voltage: 8.4V Nominal capacity: 7.27Vdc Rated capacity: 3400mAh, 24.7Wh

5.2. CHANNEL LIST

Channel List for 802.11b/g/n/ax (20 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	/	/

	Channel List for 802.11n/ax (40 MHz)									
Channel	Frequency (MHz)	Channel Frequency (MHz)		Channel	Frequency (MHz)	Channel	Frequency (MHz)			
3	2422	5	2432	7	2442	9	2452			
4	2427	6	2437	8	2447	/	/			

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.3. MAXIMUM OUTPUT POWER

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted AVG Output Power (dBm)
b	2412 ~ 2462	1-11[11]	17.40
g	2412 ~ 2462	1-11[11]	16.72
n HT20	2412 ~ 2462	1-11[11]	16.24
n HT40	2422 ~ 2452	3-9[7]	14.97
ax HE20	2412 ~ 2462	1-11[11]	16.02
ax HE40	2422 ~ 2452	3-9[7]	14.77

5.4. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11	Test Channel	Frequency
b	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
g	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
n HT20	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
n HT40	CH 3, CH 6, CH 9/ Low, Middle, High	2422MHz, 2437MHz, 2452MHz
ax HE20	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
ax HE40	CH 3, CH 6, CH 9/ Low, Middle, High	2422MHz, 2437MHz, 2452MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The V	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band									
Test Softv	vare		WiFi Certify							
	Transmit		Test Channel							
IEEE Std. 802.11	Antenna	1	NCB: 20M⊢	lz	1	NCB: 40MHz				
002.11	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9			
b	1	16	16	16		1				
D	2	16	16	16	1 /					
a	1	16	16	16						
g	2	16	16	16						
n HT20	1	12	12	12						
11 11 20	2	12	12	12						
n HT40	1		/		10	10	10			
111140	2		/		10	10	10			
ax HE20	1	12	12	12		1				
	2	12	12 12 12			1	-			
ax HE40	1		1		10	10	10			
	2		/		10	10	10			

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.6. THE WORSE CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0 802.11ax HE20 mode: MCS0 802.11ax HE40 mode: MCS0

802.11b/g only support SISO mode. 802.11 n HT20/HT40 and 802.11 ax HE20/HE40 support SISO and MIMO mode.

802.11b SISO mode, Antenna 1 and Antenna 2 has the same power setting, so only Antenna 1 worst case test data were recorded in the report.

802.11n/ax SISO mode and MIMO mode have the same power setting, so only the worst case power mode(MIMO) will be record in the report.

The EUT has 2 separate antennas which correspond to 2 separate antenna ports. Core 0 and Core 1 correspond to antenna 1 and antenna 2 respectively.

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

Conducted output power, power spectral density tests separately on each port with all supported SISO & MIMO port combinations.

The EUT support Cyclic Shift Diversity(CDD), Space Time Coding(STBC), Spartial Division Multiplexing(SDM) modes. They use the same conducted power per chain in any given mode, CDD mode have the maximum power setting, so we only chose the worst case mode CDD for final testing.

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)	
1	2412-2462	PIFA	2.5	
2	2412-2462	PIFA	2.5	

The EUT support Cyclic Shift Diversity(CDD) mode.

MIMO output power port and MIMO PSD port summing was performed in accordance with KDB 662911 D01.For the CDD results the Directional Gain was calculated in accordance with clause F(2)f(i).

For output power measurements: Directional gain= G_{ANT} + Array Gain = 2.5 dBi G_{ANT} : equal to the gain of the antenna having the highest gain Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$

For power spectral density (PSD) measurements:

Directional gain= GANT + Array Gain = 5.5 dBi

Array Gain = 10 log(NANT/Nss) dB.

N_{ANT} : number of transmit antennas

Nss : number of spatial streams, The worst case directional gain will occur when Nss = 1

Test Mode	Transmit and Receive Mode	Description					
IEEE 802.11b	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.					
IEEE 802.11g	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.					
IEEE 802.11n HT20	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.					
IEEE 802.11n HT40	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.					
IEEE 802.11ax HE20	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.					
IEEE 802.11ax HE40							
Note: 1.BLE&WLAN 2.4G, BLE & WLAN 5G, WLAN 2.4G & WLAN 5G can't transmit simultaneously. (Declared by client)							

2.The value of the antenna gain was declared by customer.

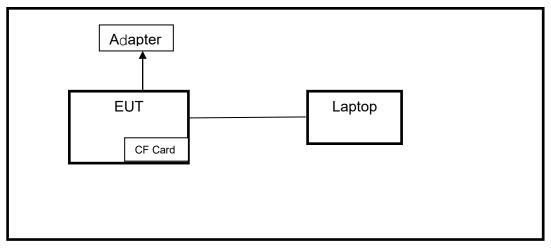
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	Lenovo	XIAOXIN 5000	1
2	CF Card	SanDisk	/	32GB

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
/	/	/	/	/	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	Type-C Cable	HASSELBLAD	N/A	Length: 1.0 m No Ferrite Core shield
2	Battery	HASSELBLAD	VHBI- 3400mAh- 7.27V	Max charge voltage: 8.4V Nominal capacity: 7.27Vdc Rated capacity: 3400mAh, 24.7Wh
3	Adapter	HASSELBLAD	PD-30US	Input: 100-240V~, 50/60Hz 0.8A Max Output: 3.3-11Vdc, 2.27A, 29.92W or 5Vdc 3A, 15W or 9Vdc 3A, 27W or 12Vdc 2.5A, 30W or 15Vdc 2A, 30W

TEST SETUP

The EUT can work in engineering mode with a software through a laptop.

SETUP DIAGRAM FOR TESTS

Note: 1. The Adapter use for Ac power line conducted emission testing. 2. The Laptop use for Radiated emission testing.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6. MEASURING INSTRUMENT AND SOFTWARE USED

		R	S TS	8997 Te	st S	ystem			
Equipment		Manufa	acturer	Model	No.	Serial No.	Last C	Cal.	Due. Date
Power sensor, Power M	leter	R8	ιS	OSP1	20	100921	Mar.23,2	2021	Mar.22,2022
Vector Signal Genera	tor	R8	ιS	SMBV1	00A	261637	Oct.30, 2	2021	Oct.29, 2022
Signal Generator		R8	S	SMB10	00A	178553	Oct.30, 2	2021	Oct.29, 2022
Signal Analyzer		R8	ιS	FSV4	10	101118	Oct.30, 2	2021	Oct.29, 2022
				Softwar	e	·			
Description			Manu	facturer		Nam	ie		Version
For R&S TS 8997 Test	Syste	em R	ohde &	& Schwa	rz	EMC	32		10.60.10
Tonsend RF Test System									
Equipment	Man	ufacture	er Mo	del No.	Serial No.		Last Cal.		Due. Date
Wideband Radio Communication Tester	I	R&S	CM	1W500		155523	Oct.30,	2021	Oct.29, 2022
Wireless Connectivity Tester	ł	R&S	CM	1W270	120	1.0002N75- 102	Sep.29,	2021	Sep.28, 2022
PXA Signal Analyzer	Ke	eysight	NS	9030A	ΜY	/55410512	Oct.30,	2021	Oct.29, 2022
MXG Vector Signal Generator	Ke	eysight	NS	5182B	MΥ	⁄56200284	Oct.30,	2021	Oct.29, 2022
MXG Vector Signal Generator	Ke	eysight	NS	5172B	MΥ	⁄56200301	Oct.30,	2021	Oct.29, 2022
DC power supply	Keysight E3		3642A	Mγ	⁄55159130	Oct.30,	2021	Oct.29, 2022	
Temperature & Humidity Chamber	SANMOOD SG-8		30-CC-2		2088	Nov.20,	2020	Nov.19,2022	
				Softwar	е				
Description		Manufa	cturer	Name				Version	
Tonsend SRD Test Sys	tem	Tons	end	JS1′	120-3	3 RF Test S	ystem	2	.6.77.0518

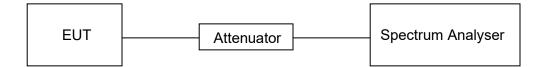
Radiated Emissions								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.30, 2021	Oct.29, 2022			
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024			
Preamplifier	HP	8447D	2944A09099	Oct.30, 2021	Oct.29, 2022			
EMI Measurement Receiver	R&S	ESR26	101377	Oct.30, 2021	Oct.29, 2022			
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024			
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.30, 2021	Oct.29, 2022			
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024			
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.31, 2021	Oct.30, 2022			
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.31, 2021	Oct.30, 2022			
Loop antenna	Schwarzbeck	1519B	80000	Dec.14, 2021	Dec.13, 2024			
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.31, 2021	Oct.30, 2022			
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01201941	Oct.31, 2021	Oct.30, 2022			
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.31, 2021	Oct.30, 2022			
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.31, 2021	Oct.30, 2022			
	Software							
[Description		Manufacturer	Name	Version			
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1			

Last Calibration time

Radiated Emissions								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
Loop antenna	Schwarzbeck	1519B	00008	Jan.17, 2019	Jan.16,2022			

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 °C	Relative Humidity	43.6 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS

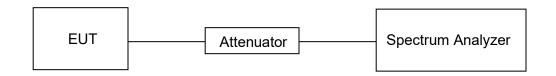
Please refer to appendix G.

7.2. 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	For reporting purposes only.	2400-2483.5

TEST PROCEDURE


Connect the EUT to the spectrum anal	yser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	Between 1.5 times and 5.0 times the OBW
Detector	Peak
IBBW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
IVBW/	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

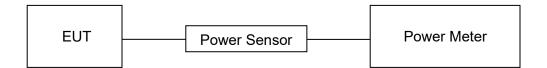
Temperature	23.2 °C	Relative Humidity	43.6 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS

Please refer to appendix A & B.

7.3. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	AVG Output Power	1 watt or 30 dBm	2400-2483.5

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the average output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 °C	Relative Humidity	43.6 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS

Please refer to appendix C.

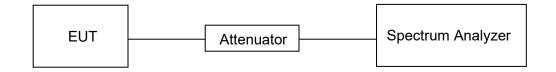
7.4. POWER SPECTRAL DENSITY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit Frequency Range (MHz)			Frequency Range (MHz)
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	PEAK
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 °C	Relative Humidity	43.6 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Please refer to appendix D.

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

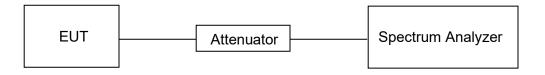
Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:


13040	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST ENVIRONMENT

Temperature	23.2 °C	Relative Humidity	43.6 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS

Please refer to appendix E & F.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz					
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m			
	, ,	Quasi-l	Peak		
30 - 88	100	40			
88 - 216	150	43.5			
216 - 960	200	46			
Above 960	500	54			
Above 1000	500	Peak	Average		
	300	74	54		

FCC Emissions radiated outside of the specified frequency bands below 30 MHz					
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)					
0.009-0.490	2400/F(kHz)	300			
0.490-1.705 24000/F(kHz)		30			
1.705-30.0	30	30			

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz					
Frequency Magnetic field strength (H-Field) (μA/m) Measurement distance (m)					
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300			
490 - 1705 kHz	63.7/F (F in kHz)	30			
1.705 - 30 MHz	0.08	30			

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

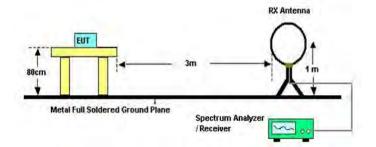
ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

ЛНz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	158.7 - 158.9	10.6 - 12.7
8.020 - 3.028	162.0125 - 167.17	13.25 - 13.4
.125 - 4.128	187.72 - 173.2	14.47 - 14.5
.17725 - 4.17775	240 - 285	15.35 - 16.2
.20725 - 4.20775	322 - 335.4	17.7 - 21.4
6.677 - 5.683	399.9 - 410	22.01 - 23.12
.215 - 6.218	608 - 614	23.6 - 24.0
.28775 - 6.28825	960 - 1427	31.2 - 31.8
3.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
.291 - 8.294	1645.5 - 1646.5	Above 38.6
.362 - 8.366	1660 - 1710	
.37625 - 8.38675	1718.8 - 1722.2	
.41425 - 8.41475	2200 - 2300	
2.29 - 12.293	2310 - 2390	
2.51975 - 12.52025	2483.5 - 2500	
2.57675 - 12.57725	2655 - 2900	
3.36 - 13.41	3260 - 3267	
6.42 - 16.423	3332 - 3339	
6.69475 - 16.69525	3345.8 - 3358	
6.80425 - 16.80475	3500 - 4400	
5.5 - 25.67	4500 - 5150	
7.5 - 38.25	5350 - 5460	
3 - 74.6	7250 - 7750	
4.8 - 75.2	8025 - 8500	
08 - 138		

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(²)	
13.36-13.41				


Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST SETUP AND PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

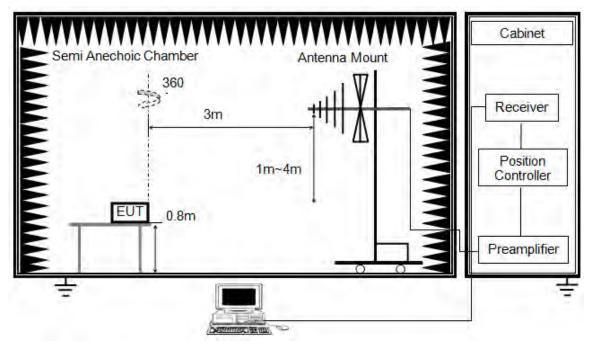
2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.


7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

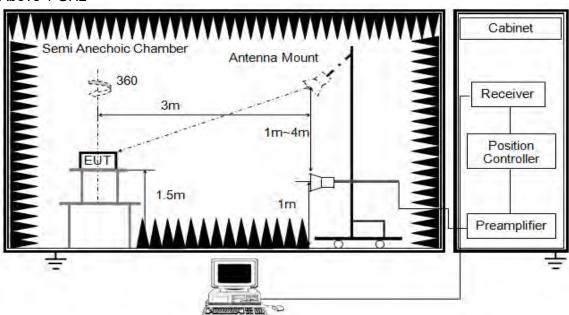
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

The setting of the spectrum analyser

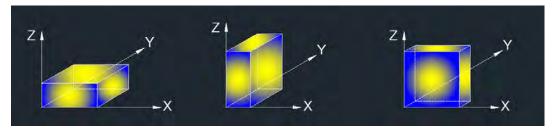
RBW	1Hz			
NBW	PEAK: 3 MHz AVG: see note 6			
Sweep	to			
Detector	eak			
Trace	1ax hold			

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.


5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

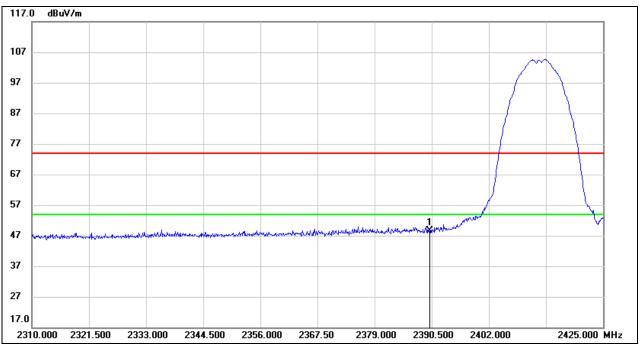
X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT

Temperature	22.5 °C	Relative Humidity	48 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS


8.1. **RESTRICTED BANDEDGE**

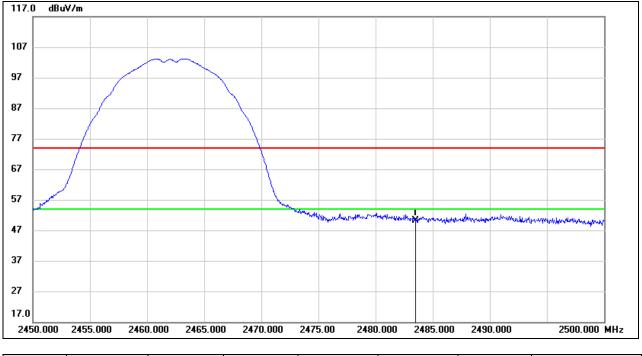
8.1.1. 802.11b SISO MODE

ANTENNA 1 TEST RESULTS (WORST CASE)

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	15.87	32.66	48.53	74.00	-25.47	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

<u>PEAK</u>

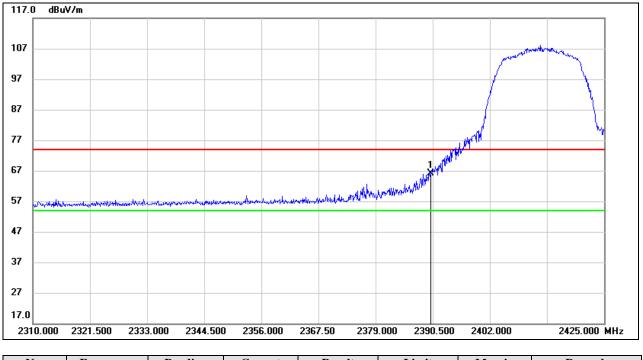
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	17.07	33.10	50.17	74.00	-23.83	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: Both antennas have been tested, only the worst data was recorded in the report.

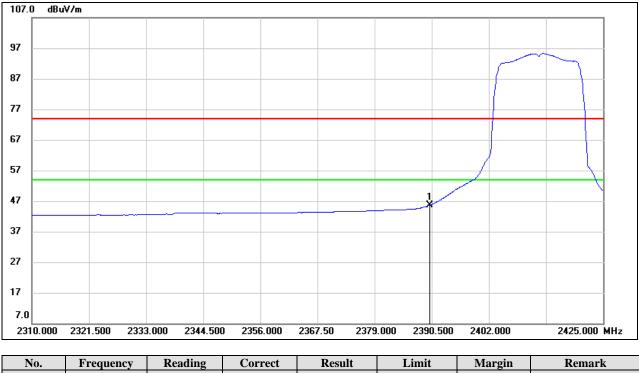


8.1.2. 802.11g SISO MODE

ANTENNA 1 TEST RESULTS (WORST CASE)

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>PEAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	33.38	32.66	66.04	74.00	-7.96	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	13.01	32.66	45.67	54.00	-8.33	AVG

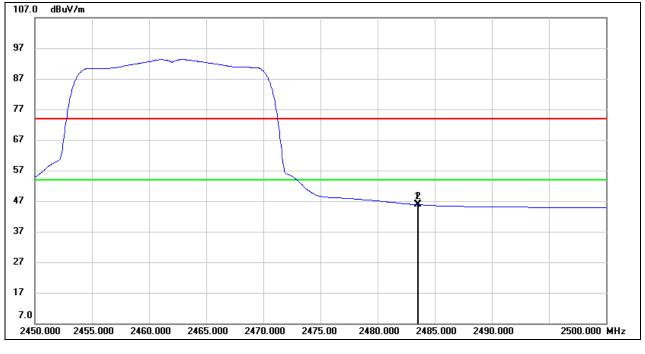
Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

<u>PEAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	30.68	33.10	63.78	74.00	-10.22	peak
2	2483.550	34.07	33.10	67.17	74.00	-6.83	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

AVG

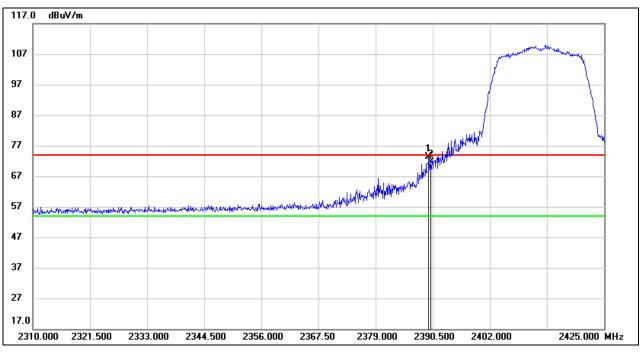
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	12.85	33.10	45.95	54.00	-8.05	AVG
2	2483.550	12.84	33.10	45.94	54.00	-8.06	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

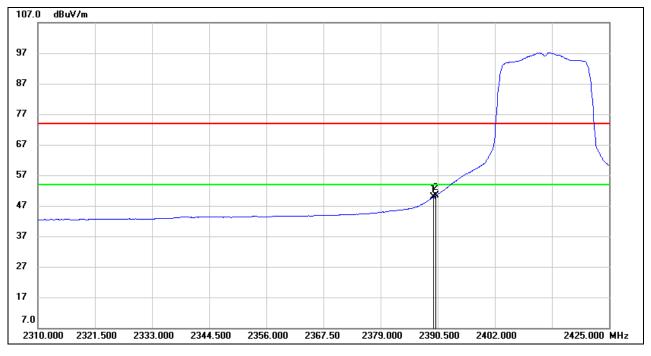
4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: Both antennas have been tested, only the worst data was recorded in the report.

8.1.3. 802.11n HT20 MIMO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>PEAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.695	40.61	32.66	73.27	74.00	-0.73	peak
2	2390.000	38.96	32.66	71.62	74.00	-2.38	peak

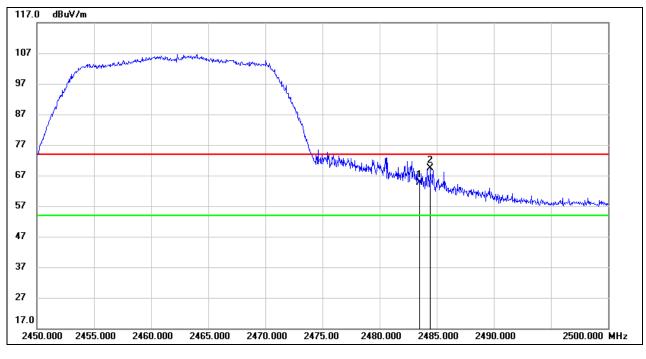
Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.695	17.28	32.66	49.94	54.00	-4.06	AVG
2	2390.000	17.65	32.66	50.31	54.00	-3.69	AVG

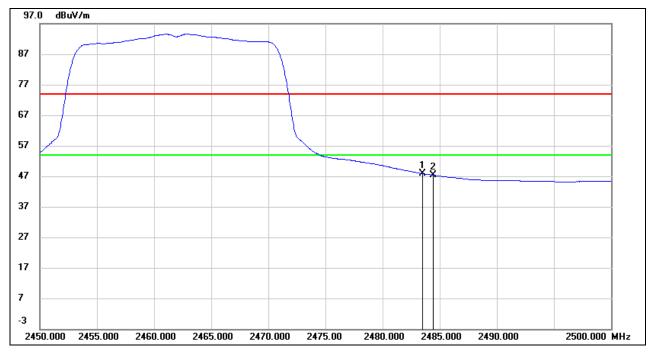
Note: 1. Measurement = Reading Level + Correct Factor.


2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

<u>PEAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	31.62	33.10	64.72	74.00	-9.28	peak
2	2484.450	36.35	33.10	69.45	74.00	-4.55	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

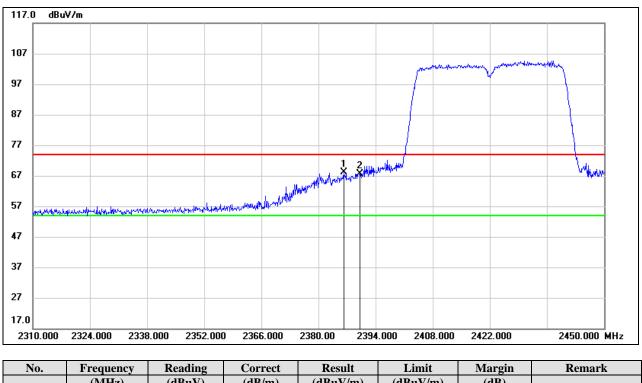
AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	14.79	33.10	47.89	54.00	-6.11	AVG
2	2484.450	14.25	33.10	47.35	54.00	-6.65	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

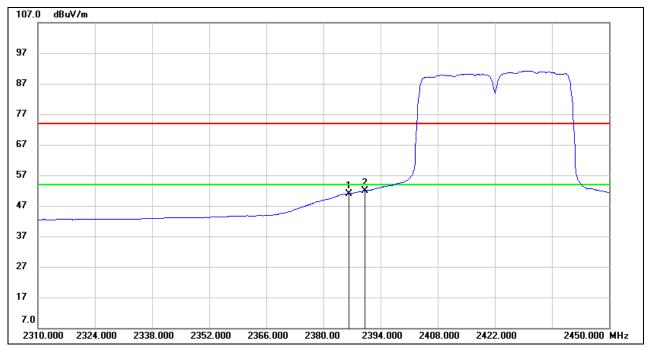

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: All modes have been tested, only the worst data was recorded in the report.

8.1.4. 802.11n HT40 MIMO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>PEAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2386.160	35.59	32.63	68.22	74.00	-5.78	peak
2	2390.000	34.88	32.66	67.54	74.00	-6.46	peak

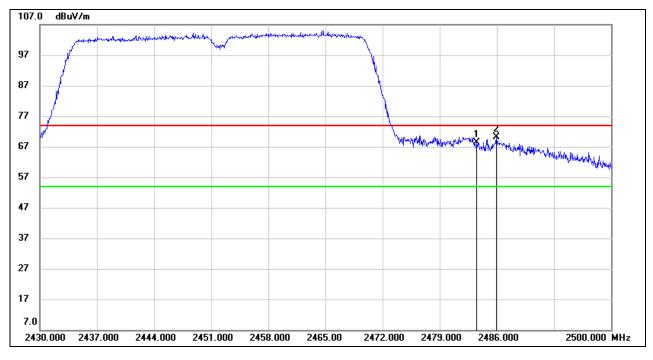
Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2386.160	18.36	32.63	50.99	54.00	-3.01	AVG
2	2390.000	19.25	32.66	51.91	54.00	-2.09	AVG

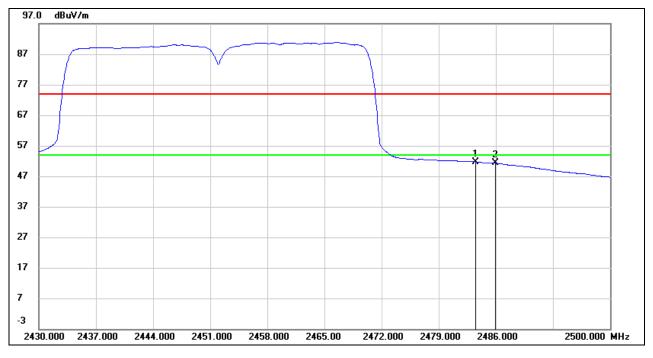
Note: 1. Measurement = Reading Level + Correct Factor.


2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

<u>PEAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	35.33	33.10	68.43	74.00	-5.57	peak
2	2485.930	36.99	33.10	70.09	74.00	-3.91	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

<u>AVG</u>

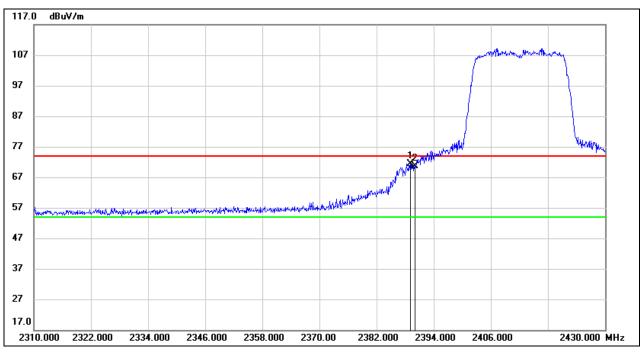
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.61	33.10	51.71	54.00	-2.29	AVG
2	2485.930	18.19	33.10	51.29	54.00	-2.71	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

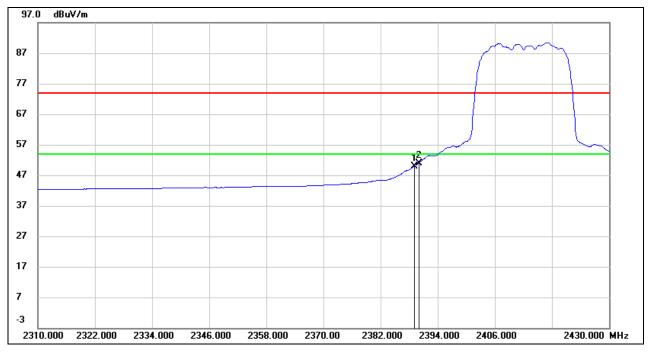
4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: All modes have been tested, only the worst data was recorded in the report.

8.1.5. 802.11ax VHT20 MIMO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>PEAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.080	38.74	32.66	71.40	74.00	-2.60	peak
2	2390.000	37.94	32.66	70.60	74.00	-3.40	peak

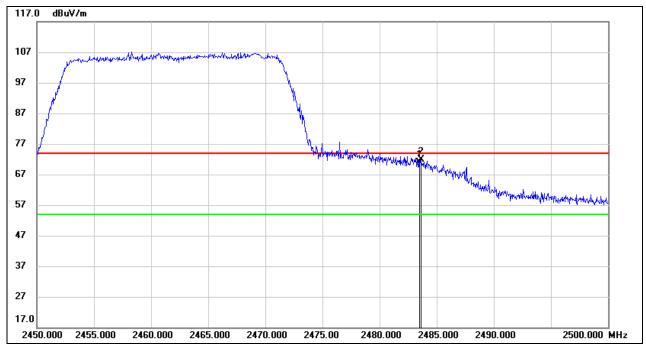
Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.080	17.25	32.66	49.91	54.00	-4.09	AVG
2	2390.000	18.28	32.66	50.94	54.00	-3.06	AVG

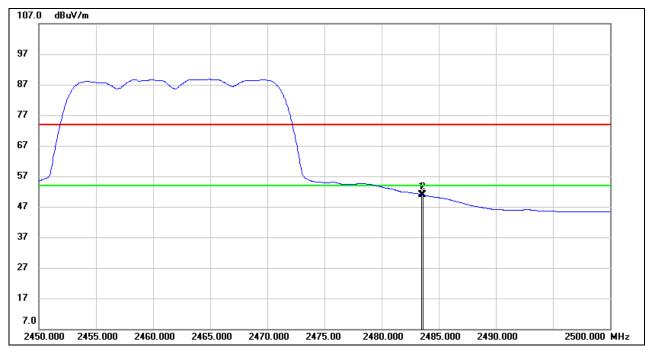
Note: 1. Measurement = Reading Level + Correct Factor.


2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

<u>PEAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	37.90	33.10	71.00	74.00	-3.00	peak
2	2483.600	38.70	33.10	71.80	74.00	-2.20	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

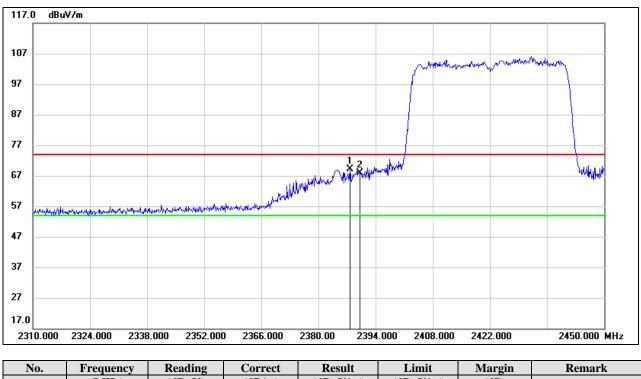
<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	17.90	33.10	51.00	54.00	-3.00	AVG
2	2483.600	17.85	33.10	50.95	54.00	-3.05	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

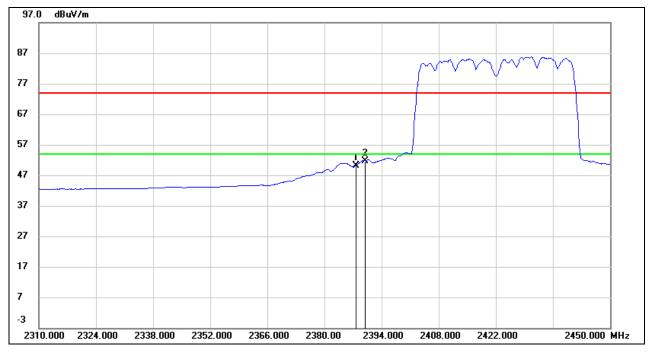

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: All modes have been tested, only the worst data was recorded in the report.

8.1.6. 802.11ax VHT40 MIMO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

PEAK


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2387.700	36.57	32.65	69.22	74.00	-4.78	peak
2	2390.000	35.10	32.66	67.76	74.00	-6.24	peak

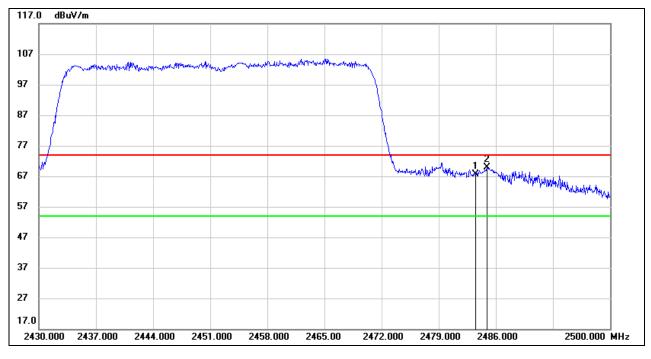
Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2387.700	17.57	32.65	50.22	54.00	-3.78	avg
2	2390.000	19.08	32.66	51.74	54.00	-2.26	avg

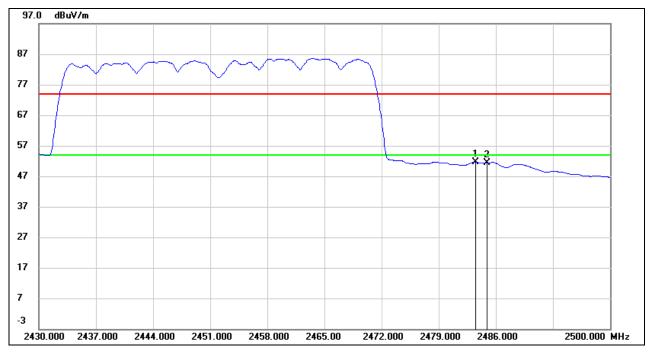
Note: 1. Measurement = Reading Level + Correct Factor.


2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

<u>PEAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	34.46	33.10	67.56	74.00	-6.44	peak
2	2484.880	36.71	33.10	69.81	74.00	-4.19	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.43	33.10	51.53	54.00	-2.47	AVG
2	2484.880	18.39	33.10	51.49	54.00	-2.51	AVG

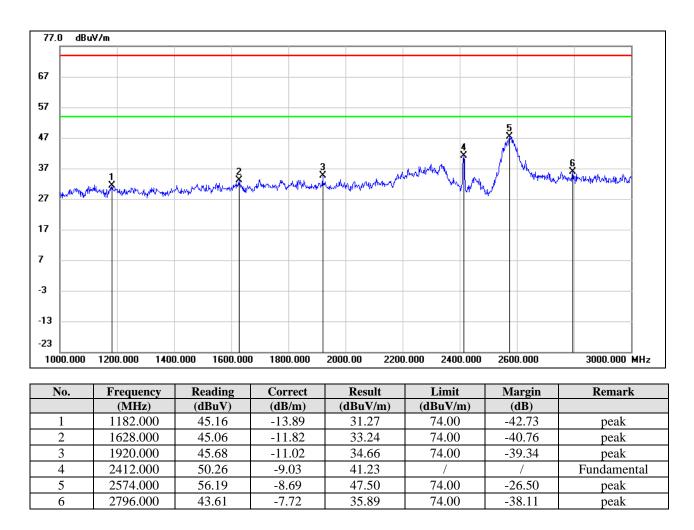
Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: All modes have been tested, only the worst data was recorded in the report.



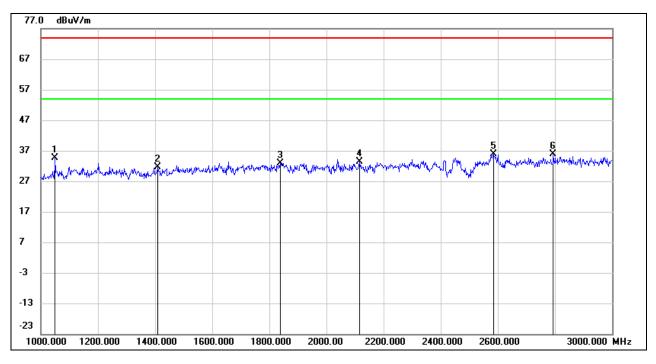
8.2. SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)

8.2.1. 802.11b SISO MODE

ANTENNA 1 TEST RESULTS (WORST CASE)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

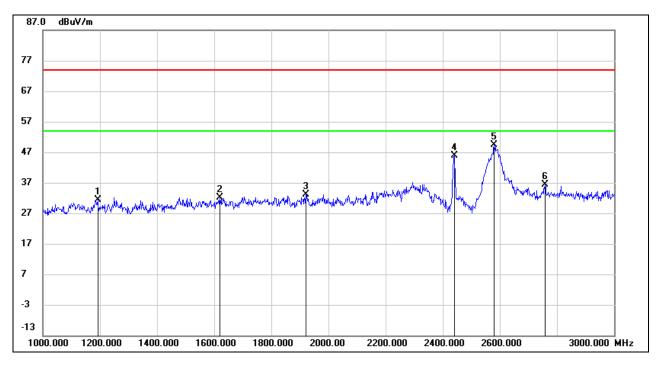
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1050.000	49.42	-14.75	34.67	74.00	-39.33	peak
2	1410.000	44.64	-13.11	31.53	74.00	-42.47	peak
3	1838.000	43.79	-10.85	32.94	74.00	-41.06	peak
4	2116.000	43.74	-10.44	33.30	74.00	-40.70	peak
5	2584.000	44.65	-8.67	35.98	74.00	-38.02	peak
6	2794.000	43.63	-7.72	35.91	74.00	-38.09	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1192.000	45.29	-13.83	31.46	74.00	-42.54	peak
2	1620.000	43.94	-11.87	32.07	74.00	-41.93	peak
3	1920.000	44.24	-11.02	33.22	74.00	-40.78	peak
4	2437.000	54.81	-8.98	45.83	/	/	Fundamental
5	2580.000	58.08	-8.68	49.40	74.00	-24.60	peak
6	2758.000	44.33	-7.89	36.44	74.00	-37.56	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

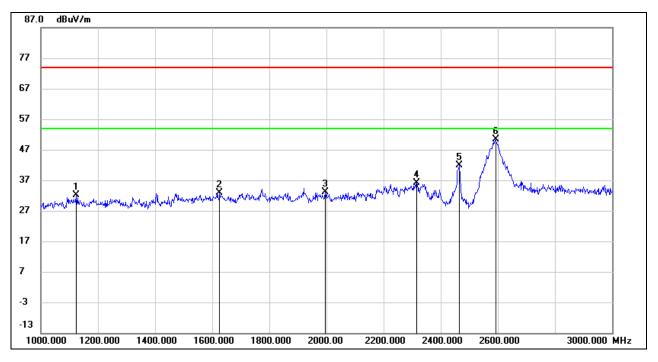
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1048.000	48.13	-14.77	33.36	74.00	-40.64	peak
2	1398.000	44.67	-13.17	31.50	74.00	-42.50	peak
3	1782.000	44.82	-10.87	33.95	74.00	-40.05	peak
4	2240.000	44.23	-9.73	34.50	74.00	-39.50	peak
5	2437.000	44.98	-8.98	36.00	/	/	Fundamental
6	2584.000	45.55	-8.67	36.88	74.00	-37.12	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

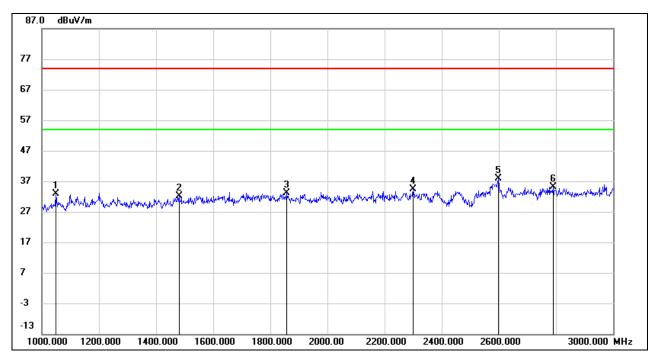
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1124.000	46.31	-14.27	32.04	74.00	-41.96	peak
2	1626.000	44.72	-11.84	32.88	74.00	-41.12	peak
3	1996.000	44.40	-11.18	33.22	74.00	-40.78	peak
4	2316.000	45.58	-9.42	36.16	74.00	-37.84	peak
5	2462.000	50.72	-8.90	41.82	/	/	Fundamental
6	2592.000	58.92	-8.65	50.27	74.00	-23.73	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1048.000	47.66	-14.77	32.89	74.00	-41.11	peak
2	1480.000	44.91	-12.66	32.25	74.00	-41.75	peak
3	1858.000	43.95	-10.89	33.06	74.00	-40.94	peak
4	2300.000	43.92	-9.48	34.44	74.00	-39.56	peak
5	2598.000	46.55	-8.65	37.90	74.00	-36.10	peak
6	2790.000	42.89	-7.74	35.15	74.00	-38.85	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

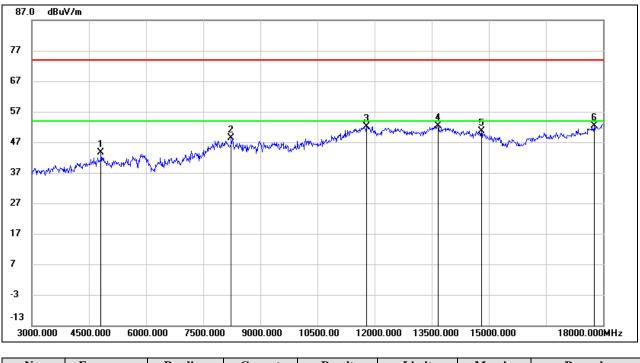
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: Both the two antennas had been tested, but only the worst data was recorded in the report.

Note: All modes, channels and antenna have been tested, only the worst data was recorded in the report.



8.3. SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)

8.3.1. 802.11b SISO MODE

ANTENNA 1 TEST RESULTS (WORST CASE)

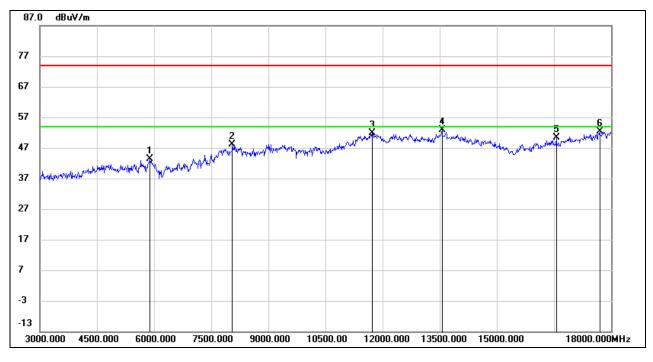
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	43.41	0.13	43.54	74.00	-30.46	peak
2	8235.000	39.34	9.12	48.46	74.00	-25.54	peak
3	11790.000	35.20	17.00	52.20	74.00	-21.80	peak
4	13665.000	33.09	19.33	52.42	74.00	-21.58	peak
5	14805.000	33.05	17.51	50.56	74.00	-23.44	peak
6	17775.000	28.33	23.98	52.31	74.00	-21.69	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

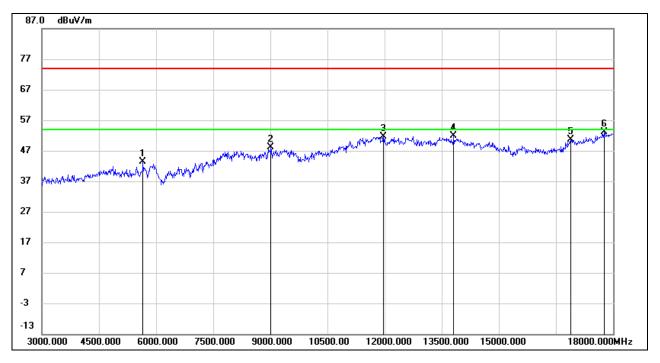
5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5895.000	39.93	3.39	43.32	74.00	-30.68	peak
2	8055.000	39.26	8.87	48.13	74.00	-25.87	peak
3	11730.000	34.73	17.07	51.80	74.00	-22.20	peak
4	13560.000	33.72	19.12	52.84	74.00	-21.16	peak
5	16560.000	32.79	17.57	50.36	74.00	-23.64	peak
6	17700.000	29.13	23.33	52.46	74.00	-21.54	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

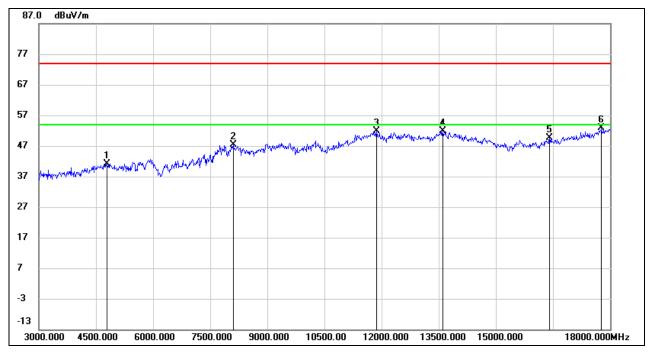
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	41.44	2.01	43.45	74.00	-30.55	peak
2	9015.000	37.62	10.61	48.23	74.00	-25.77	peak
3	11970.000	34.29	17.26	51.55	74.00	-22.45	peak
4	13815.000	32.58	19.40	51.98	74.00	-22.02	peak
5	16890.000	30.90	19.63	50.53	74.00	-23.47	peak
6	17760.000	29.21	23.85	53.06	74.00	-20.94	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

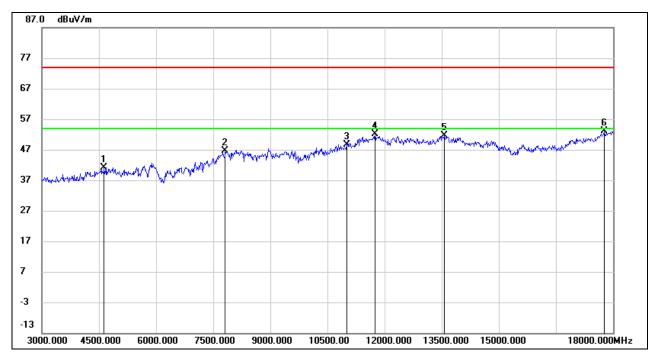
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4785.000	41.12	0.00	41.12	74.00	-32.88	peak
2	8115.000	37.84	9.50	47.34	74.00	-26.66	peak
3	11865.000	34.72	17.14	51.86	74.00	-22.14	peak
4	13605.000	32.84	19.06	51.90	74.00	-22.10	peak
5	16410.000	32.49	17.23	49.72	74.00	-24.28	peak
6	17775.000	28.95	23.98	52.93	74.00	-21.07	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

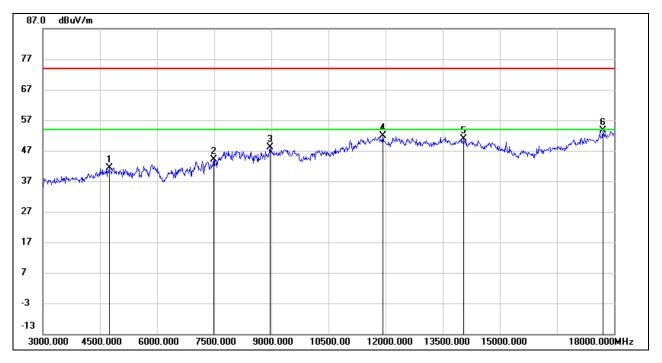
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4635.000	42.07	-0.85	41.22	74.00	-32.78	peak
2	7815.000	38.06	8.64	46.70	74.00	-27.30	peak
3	11010.000	34.37	14.28	48.65	74.00	-25.35	peak
4	11745.000	35.08	17.06	52.14	74.00	-21.86	peak
5	13575.000	32.44	19.08	51.52	74.00	-22.48	peak
6	17775.000	29.26	23.98	53.24	74.00	-20.76	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4740.000	41.89	-0.47	41.42	74.00	-32.58	peak
2	7485.000	36.53	7.61	44.14	74.00	-29.86	peak
3	8970.000	38.07	10.18	48.25	74.00	-25.75	peak
4	11925.000	34.59	17.24	51.83	74.00	-22.17	peak
5	14055.000	31.84	19.10	50.94	74.00	-23.06	peak
6	17700.000	30.38	23.33	53.71	74.00	-20.29	peak

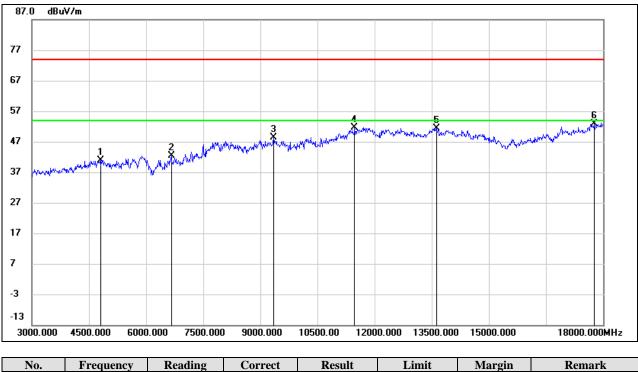
Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


Note: Both antennas have been tested, only the worst data was recorded in the report.

8.3.2. 802.11g SISO MODE

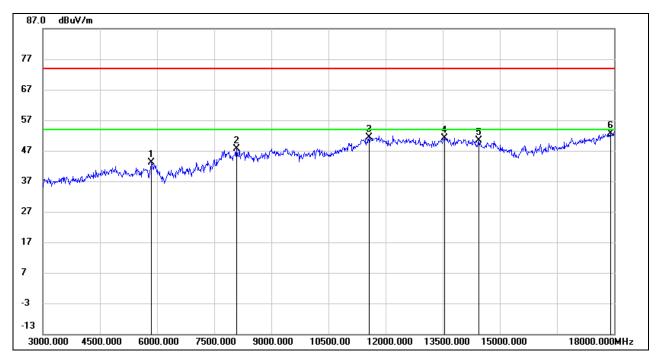
ANTENNA 1 TEST RESULTS (WORST CASE)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	40.82	0.13	40.95	74.00	-33.05	peak
2	6660.000	37.48	4.96	42.44	74.00	-31.56	peak
3	9345.000	37.94	10.43	48.37	74.00	-25.63	peak
4	11475.000	35.19	16.42	51.61	74.00	-22.39	peak
5	13620.000	32.26	19.12	51.38	74.00	-22.62	peak
6	17760.000	29.00	23.85	52.85	74.00	-21.15	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

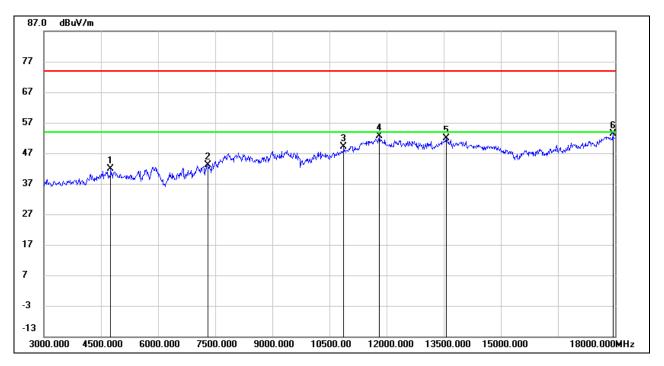
- 4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	40.10	2.93	43.03	74.00	-30.97	peak
2	8085.000	38.25	9.33	47.58	74.00	-26.42	peak
3	11565.000	34.78	16.48	51.26	74.00	-22.74	peak
4	13545.000	32.06	19.13	51.19	74.00	-22.81	peak
5	14445.000	32.59	17.77	50.36	74.00	-23.64	peak
6	17910.000	28.31	24.38	52.69	74.00	-21.31	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

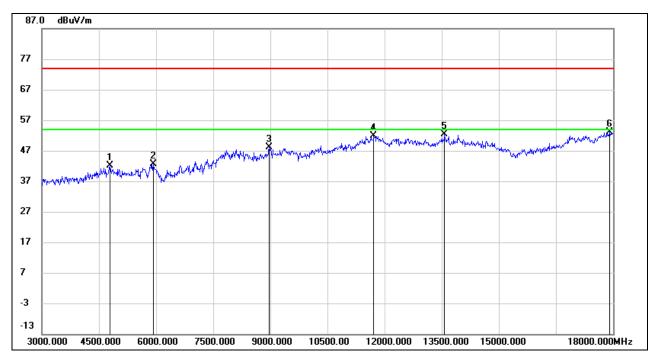
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4755.000	42.22	-0.31	41.91	74.00	-32.09	peak
2	7305.000	36.77	6.33	43.10	74.00	-30.90	peak
3	10875.000	34.99	14.06	49.05	74.00	-24.95	peak
4	11805.000	35.73	17.00	52.73	74.00	-21.27	peak
5	13560.000	32.70	19.12	51.82	74.00	-22.18	peak
6	17940.000	28.83	24.57	53.40	74.00	-20.60	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

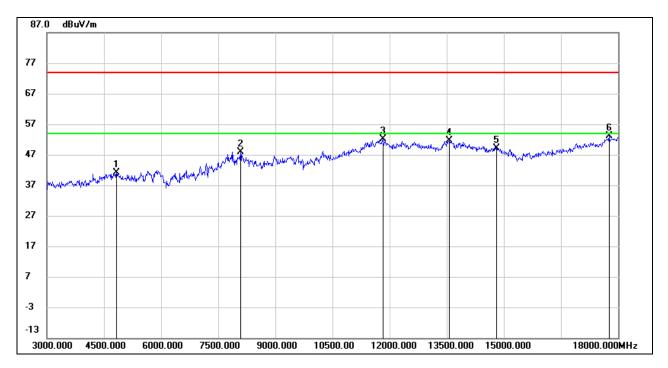
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4785.000	42.15	0.00	42.15	74.00	-31.85	peak
2	5925.000	39.29	3.30	42.59	74.00	-31.41	peak
3	8970.000	37.99	10.18	48.17	74.00	-25.83	peak
4	11715.000	34.70	17.09	51.79	74.00	-22.21	peak
5	13575.000	33.26	19.08	52.34	74.00	-21.66	peak
6	17910.000	28.86	24.38	53.24	74.00	-20.76	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

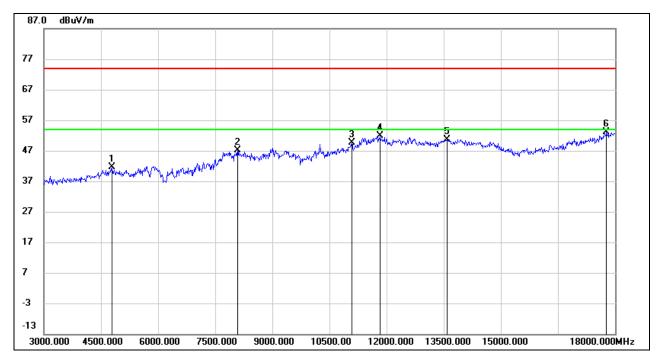
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4830.000	41.11	0.10	41.21	74.00	-32.79	peak
2	8085.000	38.54	9.33	47.87	74.00	-26.13	peak
3	11820.000	34.99	17.03	52.02	74.00	-21.98	peak
4	13575.000	32.63	19.08	51.71	74.00	-22.29	peak
5	14805.000	31.67	17.51	49.18	74.00	-24.82	peak
6	17760.000	29.19	23.85	53.04	74.00	-20.96	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4785.000	41.73	0.00	41.73	74.00	-32.27	peak
2	8085.000	37.75	9.33	47.08	74.00	-26.92	peak
3	11085.000	34.77	14.77	49.54	74.00	-24.46	peak
4	11835.000	34.78	17.07	51.85	74.00	-22.15	peak
5	13590.000	31.69	19.05	50.74	74.00	-23.26	peak
6	17775.000	29.25	23.98	53.23	74.00	-20.77	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

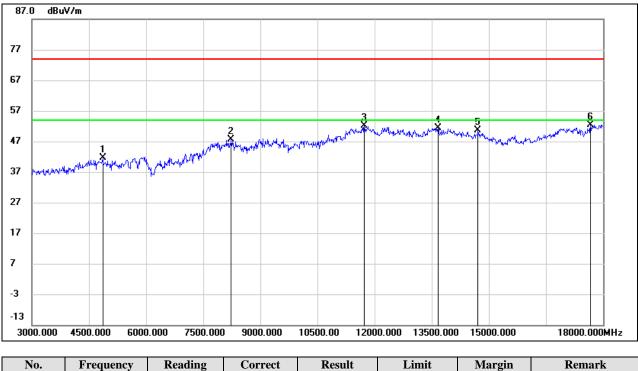
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.


7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: Both antennas have been tested, only the worst data was recorded in the report.

8.3.3. 802.11n HT20 MIMO MODE

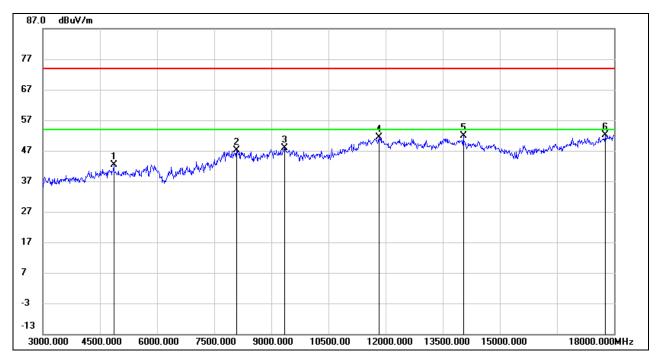
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	41.51	0.04	41.55	74.00	-32.45	peak
2	8235.000	38.52	9.12	47.64	74.00	-26.36	peak
3	11730.000	35.12	17.07	52.19	74.00	-21.81	peak
4	13665.000	32.05	19.33	51.38	74.00	-22.62	peak
5	14715.000	33.04	17.49	50.53	74.00	-23.47	peak
6	17670.000	29.37	23.02	52.39	74.00	-21.61	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

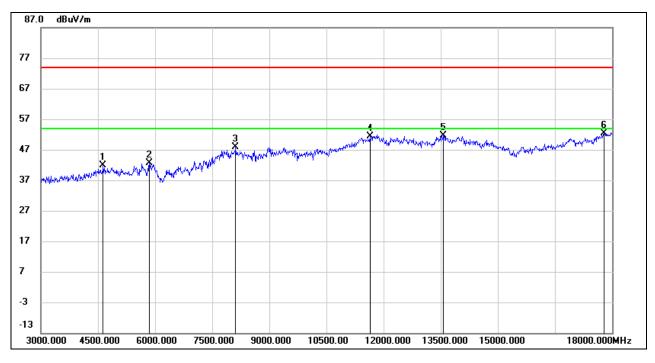
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	42.35	0.04	42.39	74.00	-31.61	peak
2	8085.000	37.91	9.33	47.24	74.00	-26.76	peak
3	9345.000	37.37	10.43	47.80	74.00	-26.20	peak
4	11820.000	34.26	17.03	51.29	74.00	-22.71	peak
5	14040.000	32.64	19.17	51.81	74.00	-22.19	peak
6	17775.000	28.25	23.98	52.23	74.00	-21.77	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

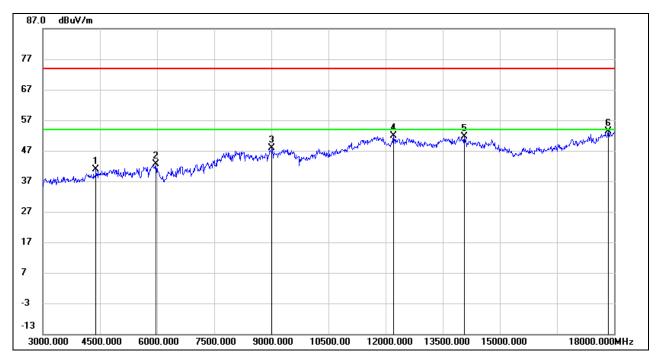
5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4635.000	42.66	-0.85	41.81	74.00	-32.19	peak
2	5850.000	39.68	2.93	42.61	74.00	-31.39	peak
3	8115.000	38.48	9.50	47.98	74.00	-26.02	peak
4	11640.000	34.64	16.74	51.38	74.00	-22.62	peak
5	13560.000	32.55	19.12	51.67	74.00	-22.33	peak
6	17790.000	28.40	24.10	52.50	74.00	-21.50	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

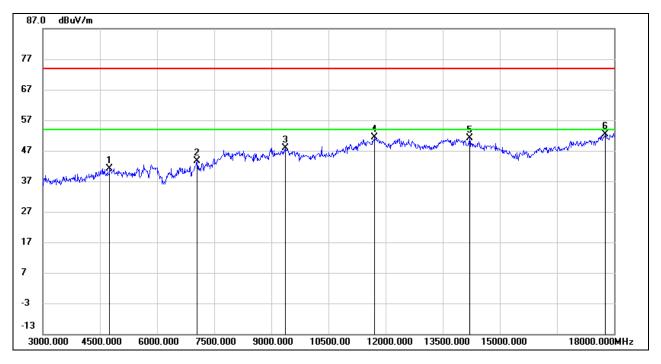
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4395.000	42.86	-1.93	40.93	74.00	-33.07	peak
2	5970.000	39.49	3.06	42.55	74.00	-31.45	peak
3	9015.000	37.19	10.61	47.80	74.00	-26.20	peak
4	12210.000	34.31	17.50	51.81	74.00	-22.19	peak
5	14070.000	32.56	19.02	51.58	74.00	-22.42	peak
6	17850.000	29.10	24.25	53.35	74.00	-20.65	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

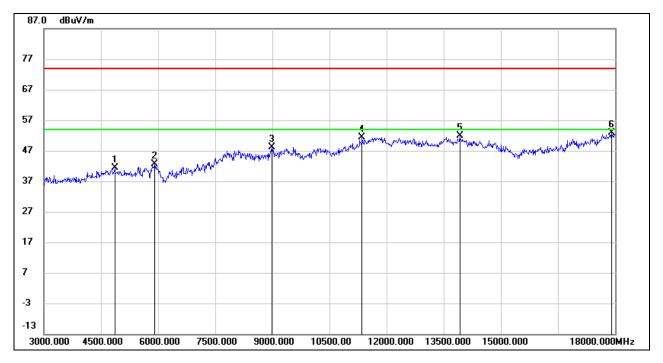
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4755.000	41.55	-0.31	41.24	74.00	-32.76	peak
2	7050.000	36.87	6.66	43.53	74.00	-30.47	peak
3	9360.000	37.37	10.54	47.91	74.00	-26.09	peak
4	11715.000	34.34	17.09	51.43	74.00	-22.57	peak
5	14205.000	32.22	18.93	51.15	74.00	-22.85	peak
6	17760.000	28.47	23.85	52.32	74.00	-21.68	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

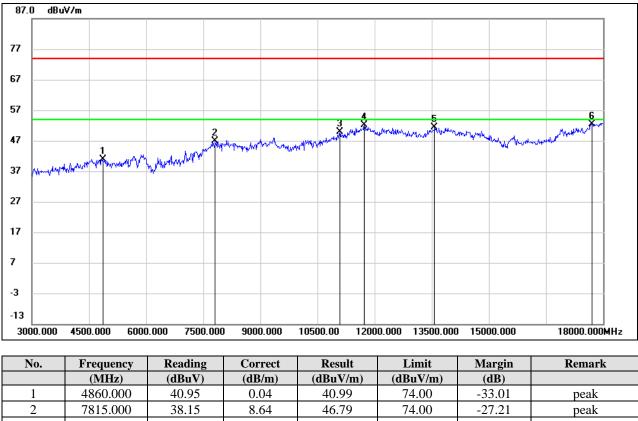
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	41.40	0.04	41.44	74.00	-32.56	peak
2	5910.000	39.24	3.37	42.61	74.00	-31.39	peak
3	8985.000	37.60	10.48	48.08	74.00	-25.92	peak
4	11355.000	35.49	15.88	51.37	74.00	-22.63	peak
5	13920.000	32.57	19.30	51.87	74.00	-22.13	peak
6	17910.000	28.46	24.38	52.84	74.00	-21.16	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


5. For the transmitting duration, please refer to clause 7.1.

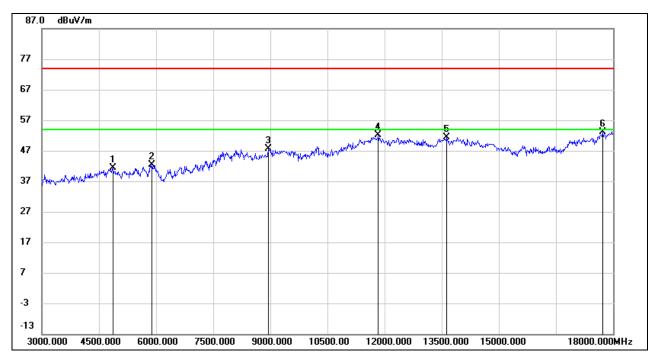
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.3.4. 802.11n HT40 MIMO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

2	7815.000	38.15	8.64	46.79	74.00	-27.21	peak
3	11085.000	35.10	14.77	49.87	74.00	-24.13	peak
4	11730.000	35.08	17.07	52.15	74.00	-21.85	peak
5	13575.000	32.28	19.08	51.36	74.00	-22.64	peak
6	17700.000	29.17	23.33	52.50	74.00	-21.50	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

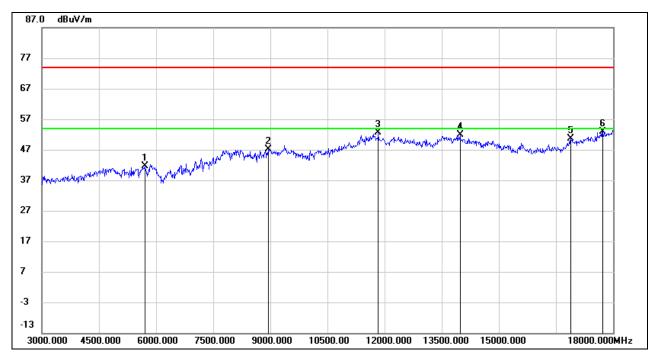
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	41.39	0.04	41.43	74.00	-32.57	peak
2	5895.000	39.08	3.39	42.47	74.00	-31.53	peak
3	8940.000	38.01	9.61	47.62	74.00	-26.38	peak
4	11835.000	35.17	17.07	52.24	74.00	-21.76	peak
5	13635.000	32.20	19.20	51.40	74.00	-22.60	peak
6	17730.000	29.50	23.58	53.08	74.00	-20.92	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

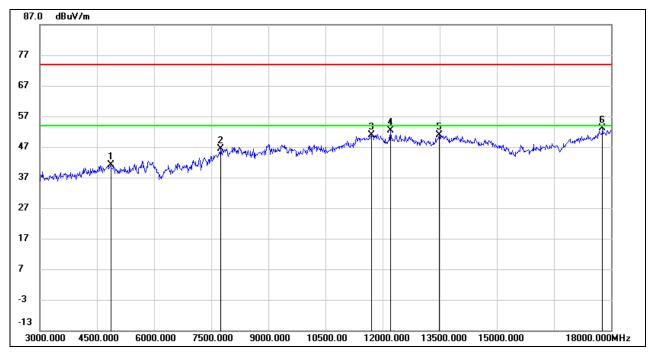
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5700.000	39.54	2.05	41.59	74.00	-32.41	peak
2	8940.000	37.54	9.61	47.15	74.00	-26.85	peak
3	11835.000	35.53	17.07	52.60	74.00	-21.40	peak
4	13980.000	32.45	19.35	51.80	74.00	-22.20	peak
5	16890.000	31.08	19.63	50.71	74.00	-23.29	peak
6	17730.000	29.27	23.58	52.85	74.00	-21.15	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

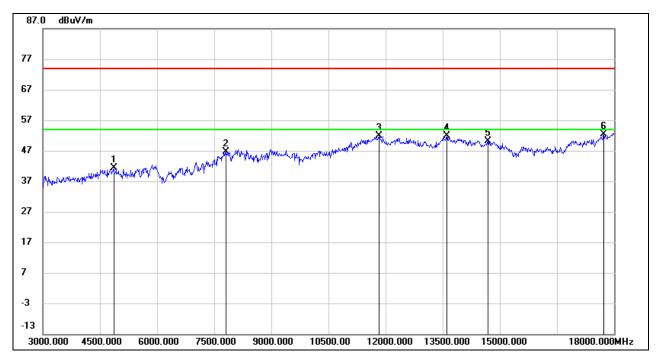
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	41.13	0.04	41.17	74.00	-32.83	peak
2	7755.000	37.97	8.29	46.26	74.00	-27.74	peak
3	11715.000	33.81	17.09	50.90	74.00	-23.10	peak
4	12210.000	34.76	17.50	52.26	74.00	-21.74	peak
5	13485.000	31.60	19.18	50.78	74.00	-23.22	peak
6	17775.000	29.07	23.98	53.05	74.00	-20.95	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

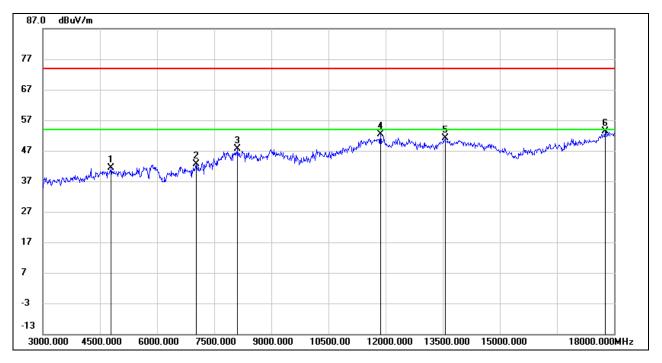
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	41.37	0.04	41.41	74.00	-32.59	peak
2	7815.000	37.95	8.64	46.59	74.00	-27.41	peak
3	11820.000	34.73	17.03	51.76	74.00	-22.24	peak
4	13605.000	32.71	19.06	51.77	74.00	-22.23	peak
5	14685.000	32.76	17.46	50.22	74.00	-23.78	peak
6	17730.000	28.80	23.58	52.38	74.00	-21.62	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

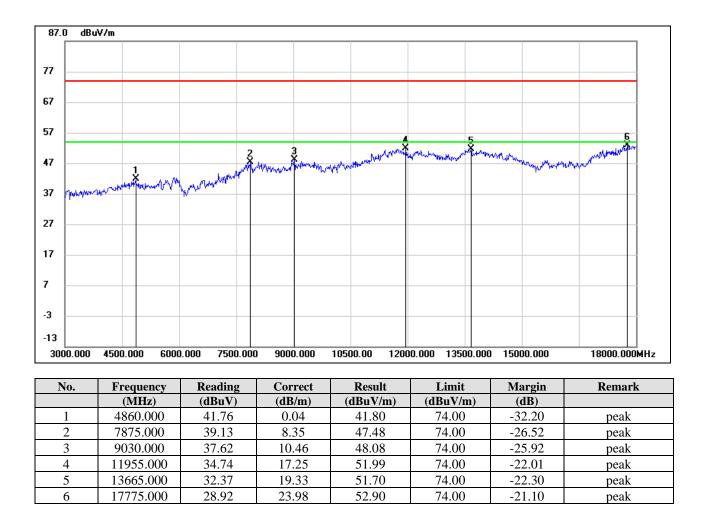
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4785.000	41.45	0.00	41.45	74.00	-32.55	peak
2	7035.000	36.08	6.64	42.72	74.00	-31.28	peak
3	8115.000	38.05	9.50	47.55	74.00	-26.45	peak
4	11865.000	35.17	17.14	52.31	74.00	-21.69	peak
5	13560.000	32.07	19.12	51.19	74.00	-22.81	peak
6	17760.000	29.46	23.85	53.31	74.00	-20.69	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

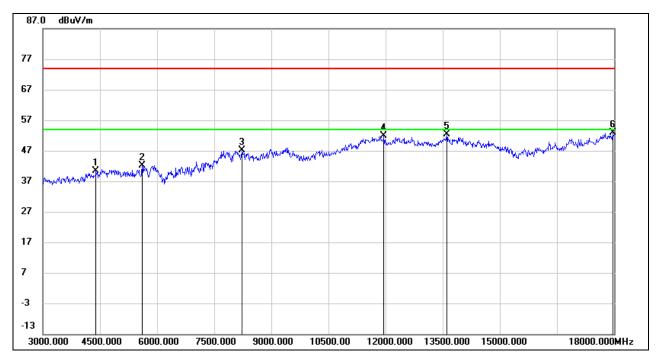
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.3.5. 802.11ax VHT20 MIMO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

- 4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

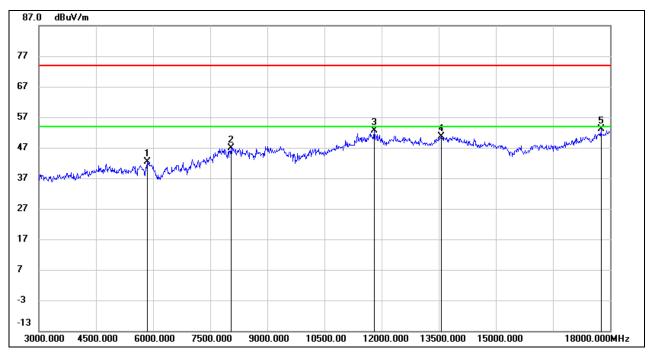
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4395.000	42.19	-1.93	40.26	74.00	-33.74	peak
2	5610.000	40.17	1.98	42.15	74.00	-31.85	peak
3	8235.000	37.99	9.12	47.11	74.00	-26.89	peak
4	11955.000	34.71	17.25	51.96	74.00	-22.04	peak
5	13605.000	33.34	19.06	52.40	74.00	-21.60	peak
6	17970.000	28.05	24.77	52.82	74.00	-21.18	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

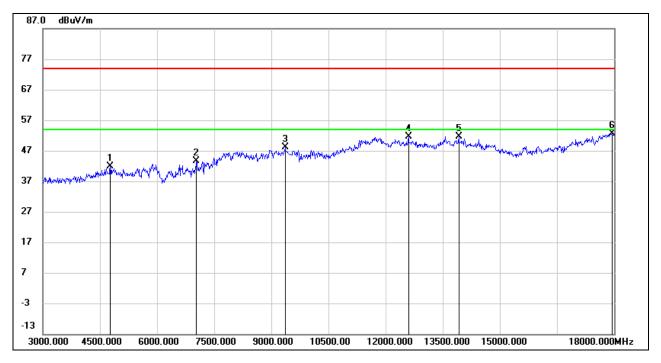
5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	39.45	2.93	42.38	74.00	-31.62	peak
2	8040.000	38.34	8.64	46.98	74.00	-27.02	peak
3	11805.000	35.57	17.00	52.57	74.00	-21.43	peak
4	13560.000	31.49	19.12	50.61	74.00	-23.39	peak
5	17760.000	29.25	23.85	53.10	74.00	-20.90	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

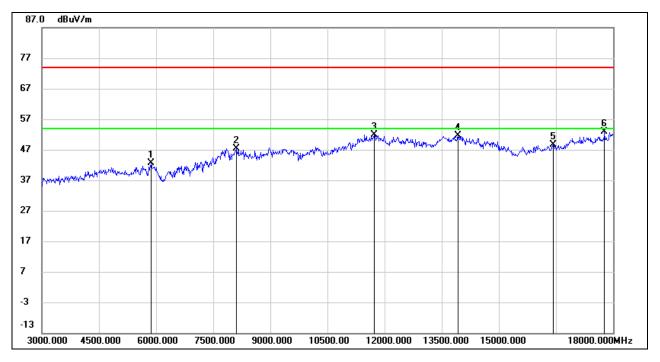
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4770.000	41.91	-0.15	41.76	74.00	-32.24	peak
2	7035.000	36.88	6.64	43.52	74.00	-30.48	peak
3	9360.000	37.65	10.54	48.19	74.00	-25.81	peak
4	12600.000	34.41	17.12	51.53	74.00	-22.47	peak
5	13920.000	32.35	19.30	51.65	74.00	-22.35	peak
6	17955.000	27.96	24.67	52.63	74.00	-21.37	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

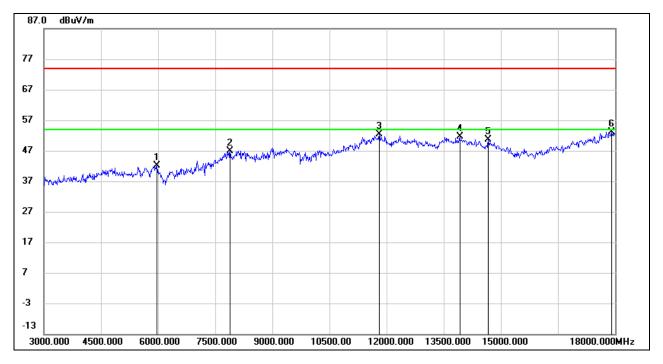
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5865.000	39.57	3.09	42.66	74.00	-31.34	peak
2	8115.000	38.00	9.50	47.50	74.00	-26.50	peak
3	11730.000	34.86	17.07	51.93	74.00	-22.07	peak
4	13920.000	32.38	19.30	51.68	74.00	-22.32	peak
5	16425.000	31.35	17.24	48.59	74.00	-25.41	peak
6	17775.000	28.95	23.98	52.93	74.00	-21.07	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

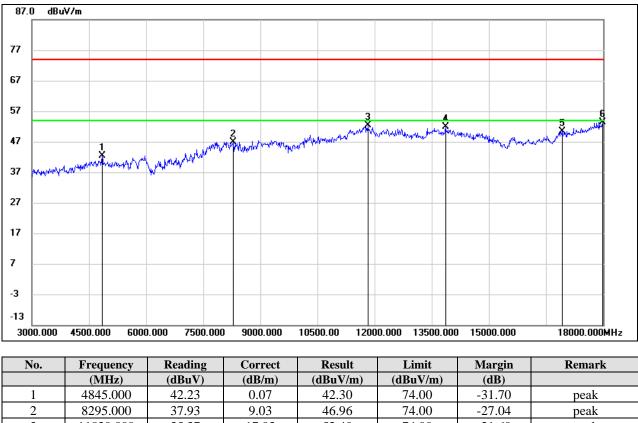
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5970.000	38.95	3.06	42.01	74.00	-31.99	peak
2	7890.000	38.71	8.28	46.99	74.00	-27.01	peak
3	11805.000	35.28	17.00	52.28	74.00	-21.72	peak
4	13920.000	32.24	19.30	51.54	74.00	-22.46	peak
5	14670.000	33.29	17.45	50.74	74.00	-23.26	peak
6	17910.000	28.80	24.38	53.18	74.00	-20.82	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


5. For the transmitting duration, please refer to clause 7.1.

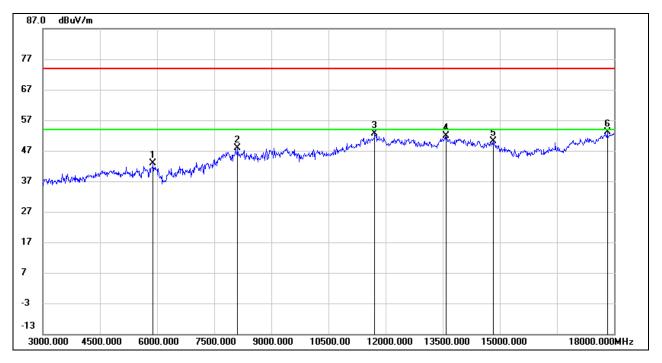
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.3.6. 802.11ax VHT40 MIMO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

3	11820.000	35.37	17.03	52.40	74.00	-21.60	peak
4	13860.000	32.48	19.34	51.82	74.00	-22.18	peak
5	16920.000	30.74	19.70	50.44	74.00	-23.56	peak
6	17985.000	28.58	24.87	53.45	74.00	-20.55	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

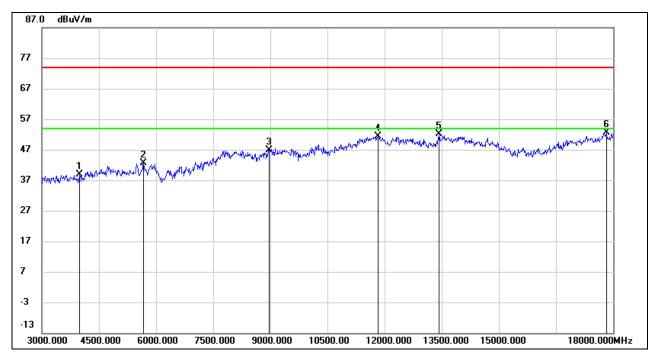
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5895.000	39.42	3.39	42.81	74.00	-31.19	peak
2	8115.000	38.26	9.50	47.76	74.00	-26.24	peak
3	11715.000	35.65	17.09	52.74	74.00	-21.26	peak
4	13590.000	32.85	19.05	51.90	74.00	-22.10	peak
5	14820.000	32.82	17.38	50.20	74.00	-23.80	peak
6	17820.000	28.85	24.21	53.06	74.00	-20.94	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

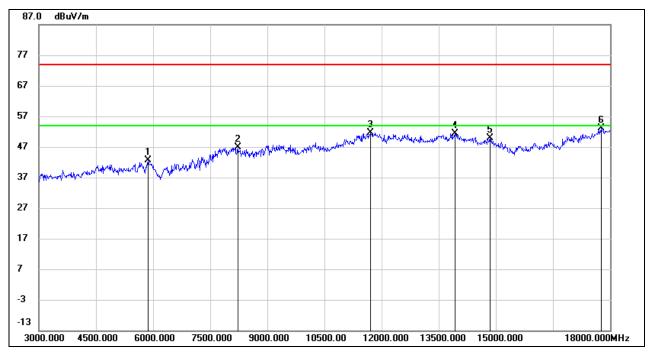
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	42.60	-3.61	38.99	74.00	-35.01	peak
2	5670.000	40.68	2.03	42.71	74.00	-31.29	peak
3	8970.000	36.69	10.18	46.87	74.00	-27.13	peak
4	11820.000	34.29	17.03	51.32	74.00	-22.68	peak
5	13425.000	33.19	19.00	52.19	74.00	-21.81	peak
6	17820.000	28.34	24.21	52.55	74.00	-21.45	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

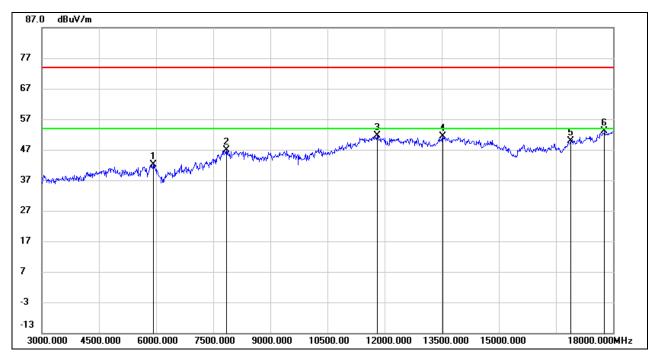
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5865.000	39.55	3.09	42.64	74.00	-31.36	peak
2	8220.000	37.85	9.14	46.99	74.00	-27.01	peak
3	11715.000	34.65	17.09	51.74	74.00	-22.26	peak
4	13920.000	32.14	19.30	51.44	74.00	-22.56	peak
5	14850.000	32.86	17.10	49.96	74.00	-24.04	peak
6	17760.000	29.26	23.85	53.11	74.00	-20.89	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

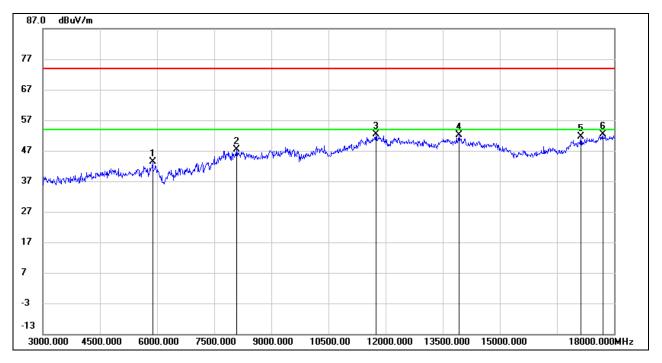
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5925.000	38.89	3.30	42.19	74.00	-31.81	peak
2	7845.000	38.32	8.51	46.83	74.00	-27.17	peak
3	11805.000	34.65	17.00	51.65	74.00	-22.35	peak
4	13530.000	32.29	19.17	51.46	74.00	-22.54	peak
5	16890.000	30.24	19.63	49.87	74.00	-24.13	peak
6	17775.000	29.26	23.98	53.24	74.00	-20.76	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

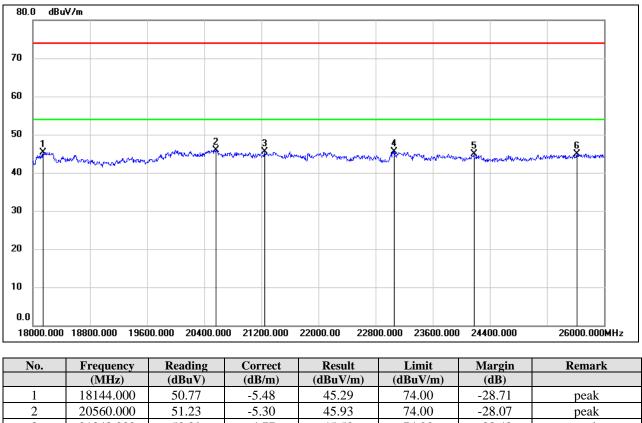
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5880.000	40.26	3.23	43.49	74.00	-30.51	peak
2	8085.000	37.98	9.33	47.31	74.00	-26.69	peak
3	11745.000	35.42	17.06	52.48	74.00	-21.52	peak
4	13935.000	32.78	19.32	52.10	74.00	-21.90	peak
5	17130.000	31.10	20.48	51.58	74.00	-22.42	peak
6	17700.000	29.03	23.33	52.36	74.00	-21.64	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

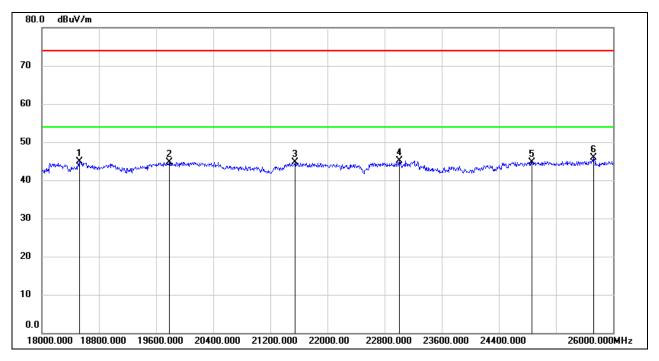

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.5. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)

8.5.1. 802.11b SISO MODE

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

1	18144.000	30.77	-3.48	43.29	74.00	-20./1	peak
2	20560.000	51.23	-5.30	45.93	74.00	-28.07	peak
3	21248.000	50.29	-4.77	45.52	74.00	-28.48	peak
4	23064.000	48.99	-3.42	45.57	74.00	-28.43	peak
5	24176.000	47.69	-2.80	44.89	74.00	-29.11	peak
6	25616.000	46.18	-1.24	44.94	74.00	-29.06	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

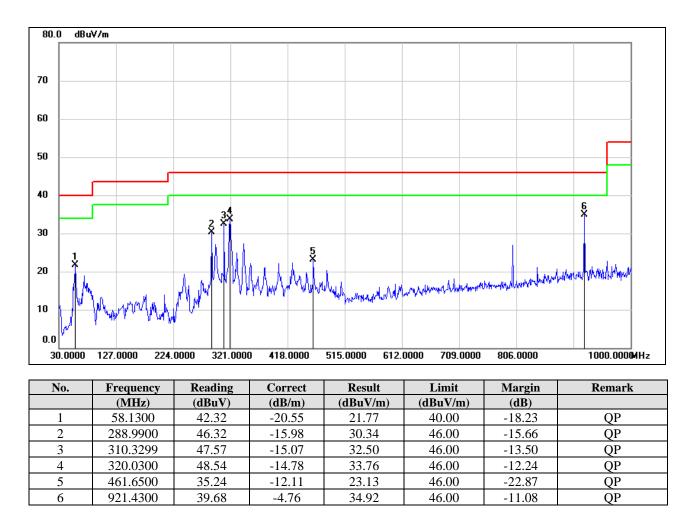
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18528.000	50.11	-5.26	44.85	74.00	-29.15	peak
2	19784.000	50.07	-5.28	44.79	74.00	-29.21	peak
3	21544.000	49.26	-4.63	44.63	74.00	-29.37	peak
4	23008.000	48.60	-3.44	45.16	74.00	-28.84	peak
5	24864.000	47.03	-2.23	44.80	74.00	-29.20	peak
6	25728.000	46.61	-0.72	45.89	74.00	-28.11	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

Note: All modes, channels and antenna have been tested, only the worst data was recorded in the report.

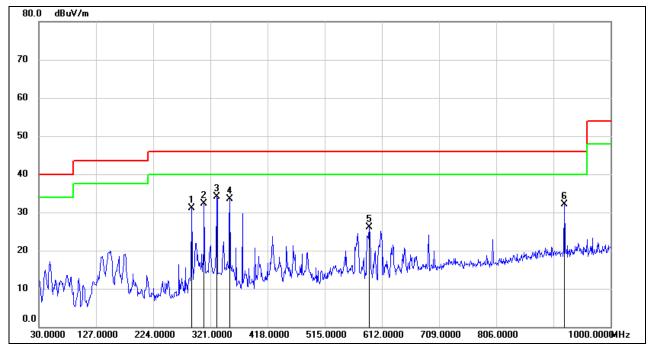


8.6. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)

8.6.1. 802.11b SISO MODE

ANTENNA 1 TEST RESULTS (WORST CASE)

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

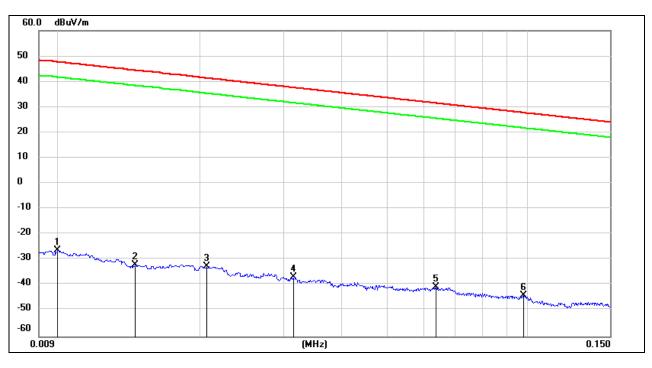
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	288.9900	47.17	-15.98	31.19	46.00	-14.81	QP
2	310.3299	47.29	-15.07	32.22	46.00	-13.78	QP
3	331.6700	48.67	-14.64	34.03	46.00	-11.97	QP
4	353.9800	47.64	-14.23	33.41	46.00	-12.59	QP
5	590.6599	35.86	-9.80	26.06	46.00	-19.94	QP
6	921.4300	36.87	-4.76	32.11	46.00	-13.89	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All modes, channels and antenna have been tested, only the worst data was recorded in the report.


8.7. SPURIOUS EMISSIONS BELOW 30 MHz

8.7.1. 802.11b SISO MODE

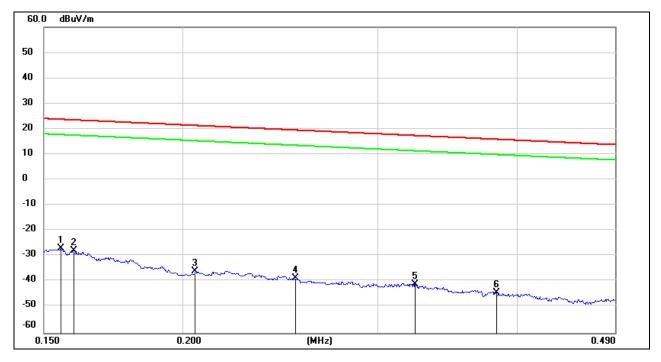
ANTENNA 1 TEST RESULTS (WORST CASE)

SPURIOUS EMISSIONS (MID CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>9 kHz~ 150 kHz</u>

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	75.22	-101.40	-26.18	47.6	-77.68	-3.90	-73.78	peak
2	0.0145	69.55	-101.38	-31.83	44.37	-83.33	-7.13	-76.20	peak
3	0.0206	68.92	-101.35	-32.43	41.32	-83.93	-10.18	-73.75	peak
4	0.0316	64.74	-101.40	-36.66	37.61	-88.16	-13.89	-74.27	peak
5	0.0636	60.81	-101.54	-40.73	31.53	-92.23	-19.97	-72.26	peak
6	0.0981	57.77	-101.78	-44.01	27.77	-95.51	-23.73	-71.78	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

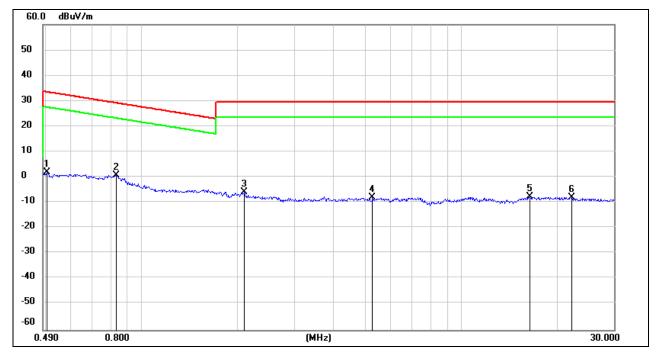

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

<u>150 kHz ~ 490 kHz</u>

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1554	74.77	-101.65	-26.88	23.77	-78.38	-27.73	-50.65	peak
2	0.1595	73.86	-101.65	-27.79	23.55	-79.29	-27.95	-51.34	peak
3	0.2053	65.79	-101.73	-35.94	21.35	-87.44	-30.15	-57.29	peak
4	0.2530	63.14	-101.80	-38.66	19.54	-90.16	-31.96	-58.20	peak
5	0.3240	60.87	-101.88	-41.01	17.39	-92.51	-34.11	-58.40	peak
6	0.3830	57.70	-101.94	-44.24	15.94	-95.74	-35.56	-60.18	peak


Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490 kHz ~ 30 MHz</u>

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5039	63.94	-62.07	1.87	33.56	-49.63	-17.94	-31.69	peak
2	0.8296	62.94	-62.17	0.77	29.23	-50.73	-22.27	-28.46	peak
3	2.0939	55.89	-61.79	-5.9	29.54	-57.40	-21.96	-35.44	peak
4	5.2705	53.54	-61.45	-7.91	29.54	-59.41	-21.96	-37.45	peak
5	16.3959	53.17	-60.96	-7.79	29.54	-59.29	-21.96	-37.33	peak
6	22.1503	52.70	-60.67	-7.97	29.54	-59.47	-21.96	-37.51	peak

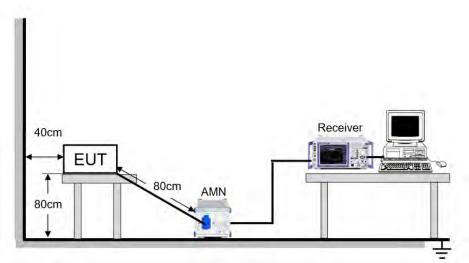
Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All modes, channels and antenna have been tested, only the worst data was recorded in the report.

9. AC POWER LINE CONDUCTED EMISSIONS


<u>LIMITS</u>

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST SETUP AND PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST ENVIRONMENT

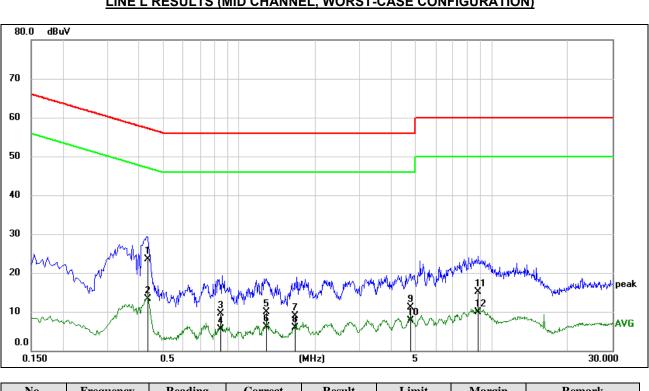
Temperature	27.6 °C	Relative Humidity	64.8 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

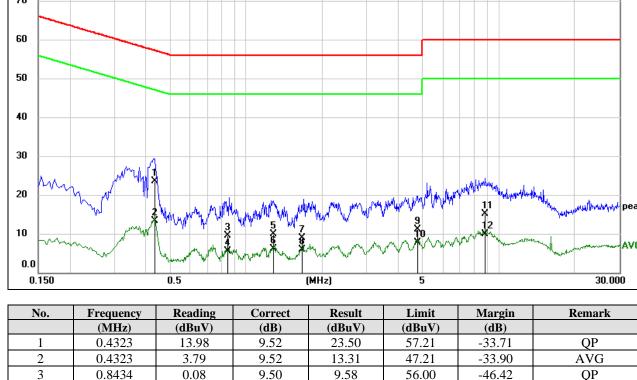
4

5

6


7

8


9

10

11 12

9.1.1. 802.11b SISO MODE

LINE L RESULTS (MID CHANNEL, WORST-CASE CONFIGURATION)

Note: 1. Result = Reading +Correct Factor.

0.8434

1.2872

1.2872

1.6682

1.6682

4.7660

4.7660

8.8157

8.8157

-4.07

0.32

-3.52

-0.65

-3.71

1.62

-1.73

5.77

0.55

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

5.43

9.86

6.02

8.94

5.88

11.08

7.73

15.14

9.92

46.00

56.00

46.00

56.00

46.00

56.00

46.00

60.00

50.00

-40.57

-46.14

-39.98

-47.06

-40.12

-44.92

-38.27

-44.86

-40.08

AVG

QP

AVG

QP

AVG

QP

AVG

QP

AVG

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

9.50

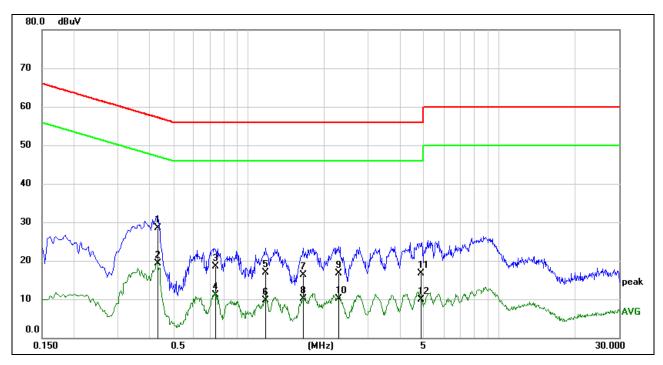
9.54

9.54

9.59

9.59

9.46


9.46

9.37

9.37

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

LINE N RESULTS (MID CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.4315	19.00	9.52	28.52	57.22	-28.70	QP
2	0.4315	9.84	9.52	19.36	47.22	-27.86	AVG
3	0.7399	9.01	9.50	18.51	56.00	-37.49	QP
4	0.7399	1.54	9.50	11.04	46.00	-34.96	AVG
5	1.1671	7.35	9.53	16.88	56.00	-39.12	QP
6	1.1671	0.19	9.53	9.72	46.00	-36.28	AVG
7	1.6589	6.79	9.59	16.38	56.00	-39.62	QP
8	1.6589	0.60	9.59	10.19	46.00	-35.81	AVG
9	2.2950	7.09	9.63	16.72	56.00	-39.28	QP
10	2.2950	0.50	9.63	10.13	46.00	-35.87	AVG
11	4.8469	7.34	9.44	16.78	56.00	-39.22	QP
12	4.8469	0.39	9.44	9.83	46.00	-36.17	AVG

Note: 1. Result = Reading +Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All modes, channels and antenna have been tested, only the worst data was recorded in the report.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

10. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

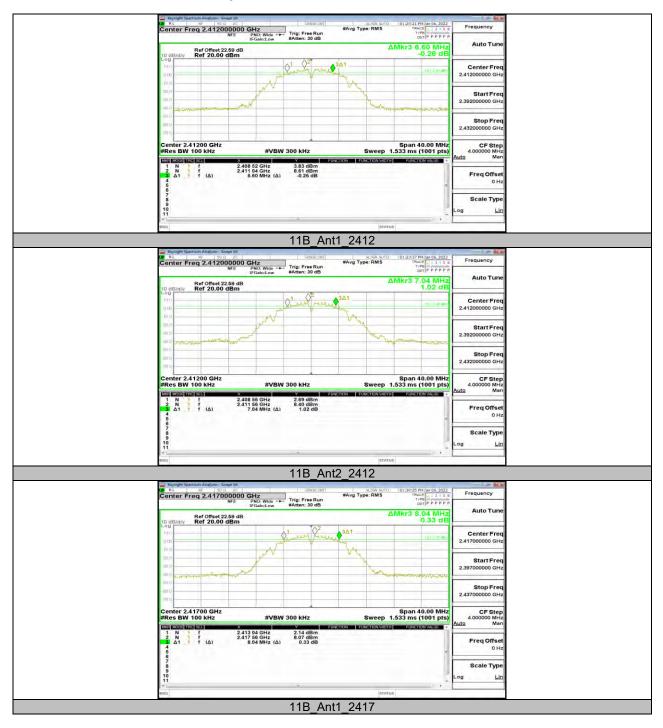
Complies

11. Appendix

11.1. Appendix A: DTS Bandwidth 11.1.1. Test Result

DTS BW [MHz] Test Mode Antenna Channel FL[MHz] Limit[MHz] Verdict FH[MHz] 2412 6.600 2408.520 2415.120 PASS Ant1 0.5 Ant2 2412 7.040 2408.560 2415.600 0.5 PASS Ant1 2417 8.040 2413.040 2421.080 0.5 PASS 2417 0.5 PASS Ant2 7.520 2413.560 2421.080 PASS 2437 2440.600 0.5 Ant1 7.040 2433.560 11B Ant2 2437 7.560 2433.480 2441.040 0.5 PASS Ant1 2457 7.080 2454.000 2461.080 0.5 PASS Ant2 2457 8.040 2453.000 2461.040 0.5 PASS Ant1 2462 7.560 2458.520 2466.080 0.5 PASS Ant2 2462 7.560 2458.000 2465.560 0.5 PASS Ant1 2412 16.360 2403.840 2420.200 0.5 PASS Ant2 2412 16.320 2403.880 2420.200 0.5 PASS Ant1 2417 16.320 2408.880 2425.200 0.5 PASS Ant2 2417 2425.240 PASS 16.360 2408.880 0.5 2428.880 2445.200 Ant1 2437 0.5 PASS 16.320 11G Ant2 2437 2445.240 0.5 16.360 2428.880 PASS Ant1 2457 16.320 2448.880 2465.200 0.5 PASS Ant2 2457 2448.880 2465.240 0.5 PASS 16.360 PASS Ant1 2462 16.360 2453.840 2470.200 0.5 2470.240 Ant2 2462 16.360 2453.880 0.5 PASS 2412 Ant1 17.560 2403.280 2420.840 0.5 PASS 2412 PASS Ant2 17.560 2403.280 2420.840 0.5 17.560 2408.280 2425.840 PASS Ant1 2417 0.5 2417 0.5 Ant2 16.920 2408.920 2425.840 PASS 2437 17.560 2428.280 0.5 PASS Ant1 2445.840 11N20MIMO Ant2 2437 17.560 2428.280 2445.840 0.5 PASS Ant1 2457 17.160 2448.680 2465.840 0.5 PASS 2448.280 Ant2 2457 17.560 2465.840 0.5 PASS 2462 2453.680 0.5 PASS Ant1 17.160 2470.840 Ant2 2462 17.600 2453.280 2470.880 0.5 PASS Ant1 2422 36.320 2403.920 2440.240 0.5 PASS Ant2 2422 0.5 36.320 2403.920 2440.240 PASS 2445.240 2427 0.5 Ant1 36.320 2408.920 PASS 2409.240 2445.240 Ant2 2427 36.000 0.5 PASS Ant1 2437 36.320 2418.920 2455.240 0.5 PASS 11N40MIMO Ant2 2437 36.320 2418.920 2455.240 0.5 PASS Ant1 2447 36.320 2428.920 2465.240 0.5 PASS 2447 Ant2 36.320 2428.920 2465.240 0.5 PASS 2452 2470.240 0.5 PASS Ant1 36.320 2433.920 Ant2 2452 2433.920 2470.240 0.5 PASS 36.320 Ant1 2412 2403.760 2421.120 0.5 PASS 17.360 PASS Ant2 2412 2403.240 2421.360 0.5 18.120 Ant1 2417 18.280 2407.640 2425.920 0.5 PASS Ant2 2417 18.160 2408.280 2426.440 0.5 PASS Ant1 2437 17.600 2428.240 2445.840 0.5 PASS 11AX20MIMO 2437 17.560 2428.240 2445.800 0.5 PASS Ant2 Ant1 2457 17.560 2448.280 2465.840 0.5 PASS Ant2 2457 17.560 2448.280 2465.840 0.5 PASS Ant1 2462 17.560 2453.280 PASS 2470.840 0.5 Ant2 2462 17.560 2453.280 PASS 2470.840 0.5 Ant1 2422 36.320 2440.240 2403.920 0.5 PASS 11AX40MIMO Ant2 2422 2440.240 36.320 2403.920 0.5 PASS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


REPORT NO.: 4790183964.4-5

Page	1	06	of	210
Faue	- 1	υu	UI.	240

					i ago io	
Ant1	2427	36.320	2408.920	2445.240	0.5	PASS
Ant2	2427	36.320	2408.920	2445.240	0.5	PASS
Ant1	2437	36.320	2418.920	2455.240	0.5	PASS
Ant2	2437	36.320	2418.920	2455.240	0.5	PASS
Ant1	2447	36.320	2428.920	2465.240	0.5	PASS
Ant2	2447	36.320	2428.920	2465.240	0.5	PASS
Ant1	2452	36.320	2433.920	2470.240	0.5	PASS
Ant2	2452	36.080	2434.160	2470.240	0.5	PASS
	Ant2 Ant1 Ant2 Ant1 Ant2 Ant2 Ant1	Ant2 2427 Ant1 2437 Ant2 2437 Ant2 2437 Ant1 2447 Ant2 2447 Ant2 2447 Ant1 2452	Ant2 2427 36.320 Ant1 2437 36.320 Ant2 2437 36.320 Ant2 2437 36.320 Ant1 2447 36.320 Ant2 2447 36.320 Ant2 2447 36.320 Ant2 2447 36.320 Ant1 2452 36.320	Ant2242736.3202408.920Ant1243736.3202418.920Ant2243736.3202418.920Ant1244736.3202428.920Ant2244736.3202428.920Ant2244736.3202428.920Ant1245236.3202433.920	Ant2242736.3202408.9202445.240Ant1243736.3202418.9202455.240Ant2243736.3202418.9202455.240Ant1244736.3202428.9202465.240Ant2244736.3202428.9202465.240Ant2244736.3202428.9202465.240Ant1245236.3202433.9202470.240	Ant1242736.3202408.9202445.2400.5Ant2242736.3202408.9202445.2400.5Ant1243736.3202418.9202455.2400.5Ant2243736.3202418.9202455.2400.5Ant2243736.3202428.9202465.2400.5Ant1244736.3202428.9202465.2400.5Ant2244736.3202428.9202465.2400.5Ant2244736.3202433.9202470.2400.5

11.1.2. Test Graphs

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT NO.: 4790183964.4-5 Page 108 of 240

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT NO.: 4790183964.4-5 Page 109 of 240

REPORT NO.: 4790183964.4-5 Page 110 of 240

REPORT NO.: 4790183964.4-5 Page 111 of 240

REPORT NO.: 4790183964.4-5 Page 112 of 240

REPORT NO.: 4790183964.4-5 Page 113 of 240

REPORT NO.: 4790183964.4-5 Page 114 of 240

REPORT NO.: 4790183964.4-5 Page 115 of 240

REPORT NO.: 4790183964.4-5 Page 116 of 240

REPORT NO.: 4790183964.4-5 Page 117 of 240

REPORT NO.: 4790183964.4-5 Page 118 of 240

REPORT NO.: 4790183964.4-5 Page 119 of 240

REPORT NO.: 4790183964.4-5 Page 120 of 240

REPORT NO.: 4790183964.4-5 Page 121 of 240

REPORT NO.: 4790183964.4-5 Page 122 of 240

REPORT NO.: 4790183964.4-5 Page 123 of 240

REPORT NO.: 4790183964.4-5 Page 124 of 240

REPORT NO.: 4790183964.4-5 Page 125 of 240

REPORT NO.: 4790183964.4-5 Page 126 of 240

11.2. Appendix B: Occupied Channel Bandwidth 11.2.1. Test Result

Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	2412	11.412	2406.449	2417.861		
	Ant2	2412	11.758	2406.259	2418.017		
	Ant1	2417	11.543	2411.373	2422.916		
	Ant2	2417	11.743	2411.278	2423.021		
110	Ant1	2437	11.596	2431.311	2442.907		
11B	Ant2	2437	11.870	2431.134	2443.004		
	Ant1	2457	11.672	2451.279	2462.951		
	Ant2	2457	11.917	2451.108	2463.025		
	Ant1	2462	11.710	2456.254	2467.964		
	Ant2	2462	11.945	2456.090	2468.035		
	Ant1	2412	17.262	2403.419	2420.681		
	Ant2	2412	17.226	2403.442	2420.668		
	Ant1	2417	17.149	2408.489	2425.638		
	Ant2	2417	17.277	2408.504	2425.781		
110	Ant1	2437	17.226	2428.447	2445.673		
11G	Ant2	2437	17.275	2428.487	2445.762		
	Ant1	2457	17.231	2448.476	2465.707		
	Ant2	2457	17.299	2448.457	2465.756		
	Ant1	2462	17.217	2453.491	2470.708		
	Ant2	2462	17.269	2453.512	2470.781		
	Ant1	2412	18.150	2403.072	2421.222		
	Ant2	2412	18.060	2403.087	2421.147		
	Ant1	2417	18.284	2407.958	2426.242		
	Ant2	2417	18.020	2408.108	2426.128		
44100141140	Ant1	2437	18.204	2428.003	2446.207		
11N20MIMO	Ant2	2437	18.009	2428.107	2446.116		
	Ant1	2457	18.099	2448.039	2466.138		
	Ant2	2457	17.921	2448.131	2466.052		
	Ant1	2462	18.204	2452.987	2471.191		
	Ant2	2462	18.000	2453.104	2471.104		
	Ant1	2422	36.516	2403.888	2440.404		
	Ant2	2422	36.425	2403.965	2440.390		
	Ant1	2427	36.529	2408.971	2445.500		
	Ant2	2427	36.598	2408.890	2445.488		
1111004000	Ant1	2437	36.522	2418.937	2455.459		
11N40MIMO	Ant2	2437	36.579	2418.924	2455.503		
	Ant1	2447	36.664	2428.779	2465.443		
	Ant2	2447	36.471	2428.956	2465.427		
	Ant1	2452	36.566	2433.921	2470.487		
	Ant2	2452	36.582	2433.982	2470.564		
	Ant1	2412	19.052	2402.532	2421.584		
11AX20MIMO	Ant2	2412	19.085	2402.534	2421.619		
	Ant1	2417	19.012	2407.584	2426.596		
	Ant2	2417	19.015	2407.588	2426.603		
	Ant1	2437	18.213	2427.982	2446.195		
	Ant2	2437	17.979	2428.053	2446.032		
	Ant1	2457	18.118	2448.024	2466.142		
	Ant2	2457	18.041	2448.125	2466.166		
	Ant1	2462	18.195	2453.009	2471.204		
	Ant2	2462	18.003	2453.096	2471.099		
11AX40MIMO	Ant1	2422	36.453	2403.973	2440.426		
	Ant2	2422	36.571	2403.874	2440.445		
11AX40MIMO	Antz	2722	00.011				

REPORT NO.: 4790183964.4-5 Page 128 of 240

					T uge 12	0 01 240
Ant2	2427	36.518	2408.897	2445.415		
Ant1	2437	36.560	2418.917	2455.477		
Ant2	2437	36.496	2418.928	2455.424		
Ant1	2447	36.589	2428.901	2465.490		
Ant2	2447	36.488	2428.940	2465.428		
Ant1	2452	36.531	2433.970	2470.501		
Ant2	2452	36.450	2433.967	2470.417		

11.2.2. Test Graphs

REPORT NO.: 4790183964.4-5 Page 130 of 240

REPORT NO.: 4790183964.4-5 Page 131 of 240

REPORT NO.: 4790183964.4-5 Page 132 of 240

REPORT NO.: 4790183964.4-5 Page 133 of 240

REPORT NO.: 4790183964.4-5 Page 134 of 240

REPORT NO.: 4790183964.4-5 Page 135 of 240

REPORT NO.: 4790183964.4-5 Page 136 of 240

REPORT NO.: 4790183964.4-5 Page 137 of 240

REPORT NO.: 4790183964.4-5 Page 138 of 240

REPORT NO.: 4790183964.4-5 Page 139 of 240

REPORT NO.: 4790183964.4-5 Page 140 of 240

REPORT NO.: 4790183964.4-5 Page 141 of 240

REPORT NO.: 4790183964.4-5 Page 142 of 240

REPORT NO.: 4790183964.4-5 Page 143 of 240

REPORT NO.: 4790183964.4-5 Page 144 of 240

REPORT NO.: 4790183964.4-5 Page 145 of 240

REPORT NO.: 4790183964.4-5 Page 146 of 240

REPORT NO.: 4790183964.4-5 Page 147 of 240

REPORT NO.: 4790183964.4-5 Page 148 of 240

≤30.00

PASS

Test Mode Antenna Channel Limit[dBm] Verdict Result[dBm] Ant1 2412 16.87 ≤30.00 PASS Ant2 2412 16.61 ≤30.00 PASS Ant1 2417 16.86 ≤30.00 PASS 2417 16.30 ≤30.00 PASS Ant2 Ant1 2437 17.40 ≤30.00 PASS 11B PASS Ant2 2437 16.95 ≤30.00 Ant1 2457 ≤30.00 PASS 16.76 PASS Ant2 2457 16.28 ≤30.00 2462 17.07 ≤30.00 PASS Ant1 Ant2 2462 16.84 ≤30.00 PASS Ant1 2412 16.54 ≤30.00 PASS 2412 16.11 ≤30.00 PASS Ant2 2417 16.22 ≤30.00 PASS Ant1 2417 ≤30.00 PASS Ant2 15.91 Ant1 2437 16.72 ≤30.00 PASS 11G Ant2 2437 16.44 ≤30.00 PASS 2457 Ant1 16.20 ≤30.00 PASS Ant2 2457 15.89 ≤30.00 PASS 2462 Ant1 16.36 ≤30.00 PASS Ant2 2462 16.20 ≤30.00 PASS Ant1 2412 13.04 ≤30.00 PASS 12.46 ≤30.00 Ant2 2412 PASS 2412 15.77 ≤30.00 PASS total Ant1 2417 12.68 ≤30.00 PASS PASS Ant2 2417 12.28 ≤30.00 2417 15.49 PASS total ≤30.00 Ant1 2437 13.40 ≤30.00 PASS 11N20MIMO Ant2 2437 13.05 ≤30.00 PASS total 2437 16.24 ≤30.00 PASS Ant1 2457 12.73 ≤30.00 PASS Ant2 2457 12.36 ≤30.00 PASS 15.56 ≤30.00 PASS total 2457 Ant1 2462 12.97 ≤30.00 PASS Ant2 2462 12.82 ≤30.00 PASS 2462 15.91 ≤30.00 PASS total 2422 12.24 ≤30.00 PASS Ant1 Ant2 2422 11.65 ≤30.00 PASS total 2422 14.97 ≤30.00 PASS Ant1 2427 12.14 ≤30.00 PASS Ant2 2427 11.34 ≤30.00 PASS total 2427 14.77 ≤30.00 PASS PASS 2437 11.97 ≤30.00 Ant1 11N40MIMO Ant2 2437 11.44 ≤30.00 PASS 2437 14.72 ≤30.00 PASS total 2447 12.04 ≤30.00 PASS Ant1 2447 Ant2 11.31 ≤30.00 PASS total 2447 14.70 ≤30.00 PASS Ant1 2452 12.10 ≤30.00 PASS 2452 11.38 ≤30.00 PASS Ant2 14.77 ≤30.00 total 2452 PASS Ant1 2412 13.17 ≤30.00 PASS 11AX20MIMO Ant2 2412 12.85 ≤30.00 PASS

11.3. Appendix C: Maximum conducted output power 11.3.1. Test Result

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

16.02

2412

total

REPORT NO.: 4790183964.4-5 Page 150 of 240

				Page	150 of 240
	Ant1	2417	13.06	≤30.00	PASS
	Ant2	2417	12.40	≤30.00	PASS
	total	2417	15.75	≤30.00	PASS
	Ant1	2437	12.79	≤30.00	PASS
	Ant2	2437	12.65	≤30.00	PASS
	total	2437	15.74	≤30.00	PASS
	Ant1	2457	12.09	≤30.00	PASS
	Ant2	2457	12.20	≤30.00	PASS
	total	2457	15.16	≤30.00	PASS
	Ant1	2462	12.44	≤30.00	PASS
	Ant2	2462	12.72	≤30.00	PASS
	total	2462	15.59	≤30.00	PASS
	Ant1	2422	11.85	≤30.00	PASS
	Ant2	2422	11.39	≤30.00	PASS
	total	2422	14.64	≤30.00	PASS
	Ant1	2427	12.08	≤30.00	PASS
	Ant2	2427	11.41	≤30.00	PASS
	total	2427	14.77	≤30.00	PASS
	Ant1	2437	12.00	≤30.00	PASS
11AX40MIMO	Ant2	2437	11.44	≤30.00	PASS
	total	2437	14.74	≤30.00	PASS
	Ant1	2447	11.99	≤30.00	PASS
	Ant2	2447	11.38	≤30.00	PASS
	total	2447	14.71	≤30.00	PASS
	Ant1	2452	12.07	≤30.00	PASS
	Ant2	2452	11.24	≤30.00	PASS
	total	2452	14.69	≤30.00	PASS

Note: 1. Conducted Power=Meas. Level+ Correction Factor

2. The Duty Cycle Factor (refer to section 7.1) had already compensated to the test data.

11.4. Appendix D: Maximum power spectral density 11.4.1. Test Result

Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2412	-4.82	≤8.00	PASS
		2417	-3.44	≤8.00	PASS
11B	Ant2	2437	-4.51	≤8.00	PASS
		2457	-4.87	≤8.00	PASS
		2462	-4.35	≤8.00	PASS
		2412	-7.66	≤8.00	PASS
		2417	-7.82	≤8.00	PASS
11G	Ant2	2437	-7.68	≤8.00	PASS
		2457	-7.41	≤8.00	PASS
		2462	-7.44	≤8.00	PASS
	Ant1	2412	-8.76	≤8.00	PASS
	Ant2	2412	-11.9	≤8.00	PASS
	total	2412	-7.05	≤8.00	PASS
	Ant1	2417	-10.4	≤8.00	PASS
	Ant2	2417	-11.73	≤8.00	PASS
F	total	2417	-8.00	≤8.00	PASS
F	Ant1	2437	-10.86	≤8.00	PASS
11N20MIMO	Ant2	2437	-11.09	≤8.00	PASS
	total	2437	-7.96	≤8.00	PASS
F	Ant1	2457	-11.14	≤8.00	PASS
F	Ant2	2457	-11.36	≤8.00	PASS
F	total	2457	-8.24	≤8.00	PASS
	Ant1	2462	-11.21	≤8.00	PASS
	Ant2	2462	-10.83	≤8.00	PASS
	total	2462	-8.01	≤8.00	PASS
	Ant1	2422	-15.09	≤8.00	PASS
	Ant2	2422	-16.13	≤8.00	PASS
	total	2422	-12.57	≤8.00	PASS
	Ant1	2427	-15.56	≤8.00	PASS
	Ant2	2427	-16.45	≤8.00	PASS
	total	2427	-12.97	≤8.00	PASS
	Ant1	2437	-15.69	≤8.00	PASS
11N40MIMO	Ant2	2437	-15.8	≤8.00	PASS
	total	2437	-12.73	≤8.00	PASS
	Ant1	2447	-14.79	≤8.00	PASS
	Ant2	2447	-15.99	≤8.00	PASS
	total	2447	-12.34	≤8.00	PASS
	Ant1	2452	-15.21	≤8.00	PASS
	Ant2	2452	-15.12	≤8.00	PASS
F	total	2452	-12.15	≤8.00	PASS
	Ant1	2412	-10.36	≤8.00	PASS
F	Ant2	2412	-12	≤8.00	PASS
	total	2412	-8.09	≤8.00	PASS
	Ant1	2417	-11.99	≤8.00	PASS
	Ant2	2417	-12.44	≤8.00	PASS
F	total	2417	-9.20	≤8.00	PASS
11AX20MIMO	Ant1	2437	-11.19	≤8.00	PASS
	Ant2	2437	-11.6	≤8.00	PASS
F	total	2437	-8.38	≤8.00	PASS
F	Ant1	2457	-11.46	≤8.00	PASS
F	Ant2	2457	-11.8	≤8.00 ≤8.00	PASS
F		2457	-11.8 -8.62	<u>≤8.00</u> ≤8.00	PASS
	total				
	Ant1	2462	-11.73	≤8.00	PASS

REPORT NO.: 4790183964.4-5 Page 152 of 240

				гауе	152 01 240
	Ant2	2462	-11.22	≤8.00	PASS
	total	2462	-8.46	≤8.00	PASS
	Ant1	2422	-16.05	≤8.00	PASS
	Ant2	2422	-16.04	≤8.00	PASS
	total	2422	-13.03	≤8.00	PASS
	Ant1	2427	-15.59	≤8.00	PASS
	Ant2	2427	-15.8	≤8.00	PASS
	total	2427	-12.68	≤8.00	PASS
	Ant1	2437	-14.72	≤8.00	PASS
11AX40MIMO	Ant2	2437	-16.61	≤8.00	PASS
	total	2437	-12.55	≤8.00	PASS
	Ant1	2447	-15.57	≤8.00	PASS
	Ant2	2447	-16.1	≤8.00	PASS
	total	2447	-12.82	≤8.00	PASS
	Ant1	2452	-16.07	≤8.00	PASS
	Ant2	2452	-16.29	≤8.00	PASS
	total	2452	-13.17	≤8.00	PASS

Note: Note: All modes, channels and antenna have been tested, only the worst data was recorded in the report.