

Note.

1. No spurious emission were detected above 3 GHz.

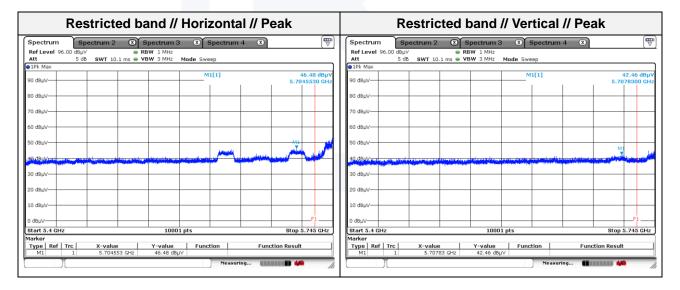
2. Average test would be performed if the peak result were greater than the average limit.

Mode:

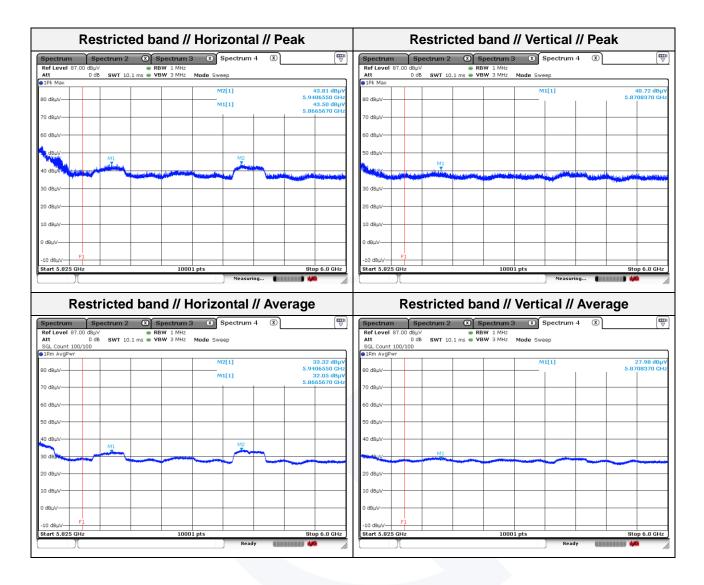
802.11n_HT20 (MCS0)

Distance of measurement: 3

Channel:

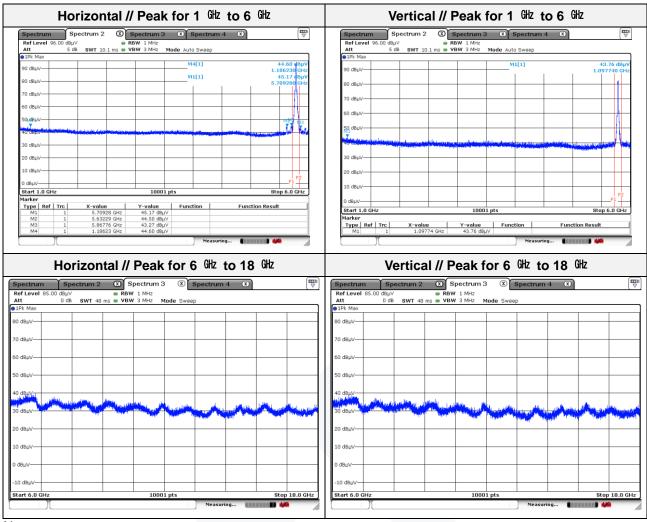

3 meter 157

Spurious


Frequency (酏)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _/ N/m)	Limit (dBµV/m)	Margin (dB)
1 097.74	43.76	Peak	V	-10.09	-	33.67	74.00	40.33
1 186.23	44.60	Peak	Н	-9.53	-	35.07	74.00	38.93

Band edge

Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
5 704.55	46.48	Peak	Н	7.47	-	53.95	106.50	52.55
5 707.83	42.46	Peak	V	7.49	-	49.95	107.42	57.47
5 866.57	43.50	Peak	Н	8.32	-	51.82	107.59	55.77
5 866.57	32.05	Average	Н	8.32	-	40.37	87.59	47.22
5 870.84	40.72	Peak	V	8.34	-	49.06	106.39	57.33
5 940.66	43.81	Peak	Н	8.69	-	52.50	68.23	15.73
5 940.66	33.32	Average	Н	8.69	-	42.01	48.23	6.22



KES-QP16-F01(00-23-01-01)

Note.

1. No spurious emission were detected above 3 GHz.

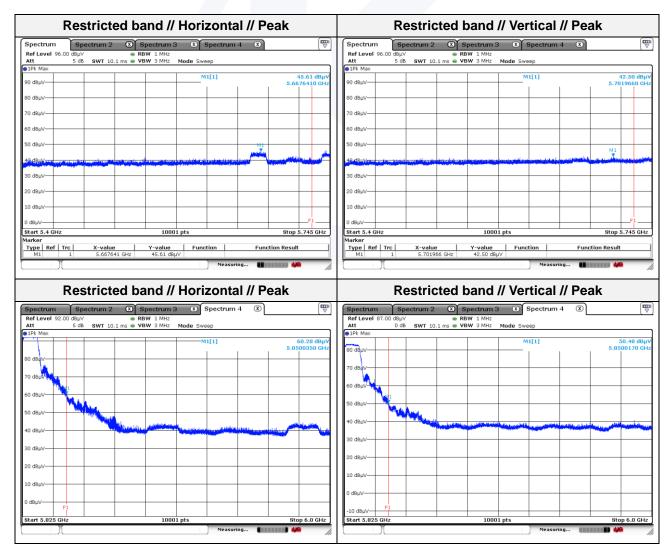
2. Average test would be performed if the peak result were greater than the average limit.

Mode:

802.11n_HT20 (MCS0)

Distance of measurement: 3 r

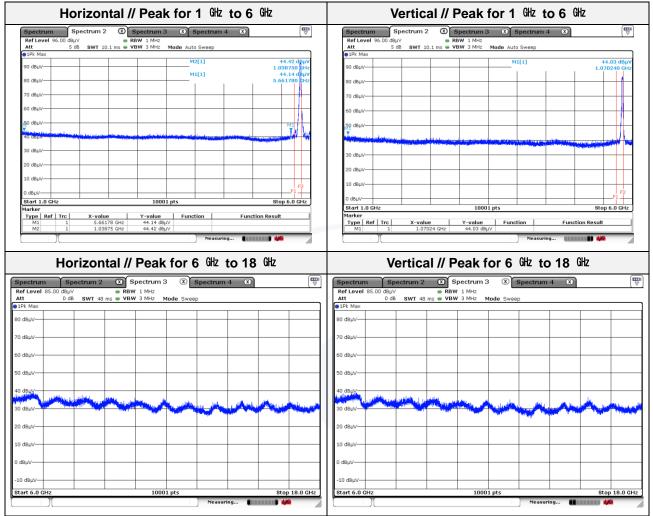
Channel:


3 meter 165

Spurious

Frequency (版)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _/ W/m)	Limit (dBµN/m)	Margin (dB)
1 038.75	44.42	Peak	Н	-10.46	-	33.96	74.00	40.04
1 070.24	44.03	Peak	V	-10.26	-	33.77	74.00	40.23

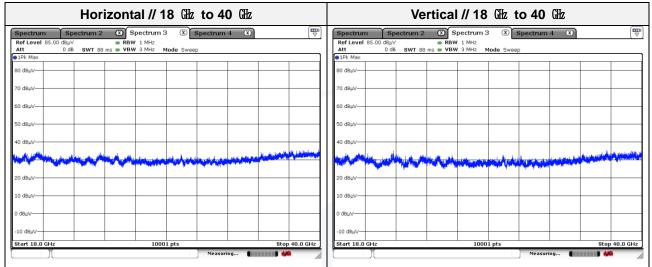
Band edge


Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _/ N/m)	Limit (dBµN/m)	Margin (dB)
5 667.64	45.61	Peak	Н	7.27	-	52.88	81.28	28.40
5 701.97	42.50	Peak	V	7.46	-	49.96	105.78	55.82
5 850.02	50.48	Peak	V	8.24	-	58.72	122.18	63.46
5 850.04	60.28	Peak	Н	8.24	-	68.52	122.14	53.62

KES-QP16-F01(00-23-01-01)

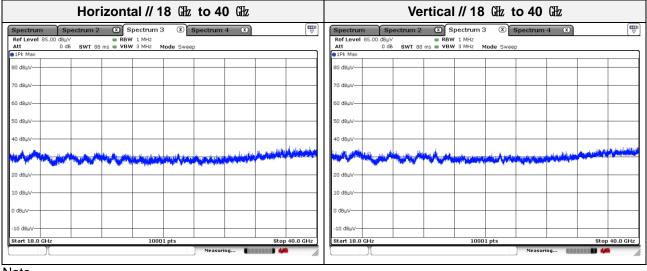
KES Co., Ltd.

Note.


1. No spurious emission were detected above 3 GHz.

2. Average test would be performed if the peak result were greater than the average limit.

Test results (18 GHz to 40 GHz)


Band	UNII-1
Mode	802.11a (6 Mbps)
Distance of measurement:	3 meter
Channel	36 (Worst Case)

Note.

1. No spurious emission were detected above 18 $\,\mathrm{GHz}$.

Band	UNII-3
Mode	802.11n_HT20 (MCS0)
Distance of measurement:	3 meter
Channel	149 (Worst Case)

Note.

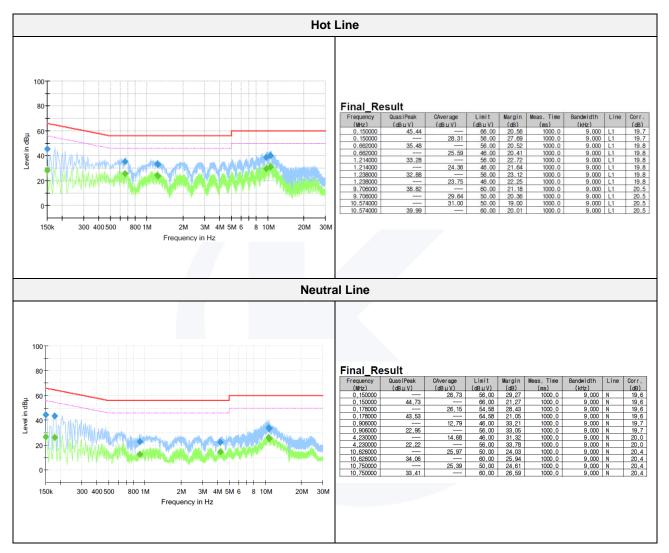
1. No spurious emission were detected above 18 $\, \mathrm{GHz}$.

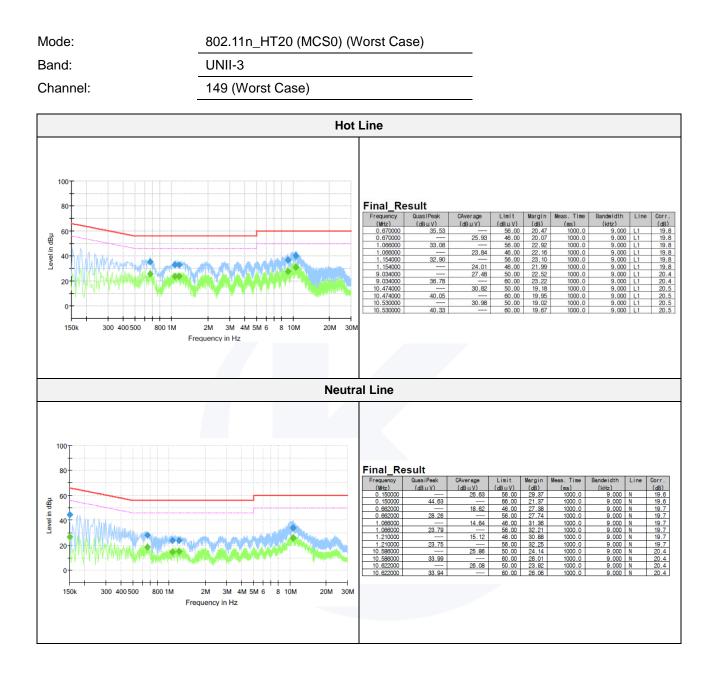
KES-QP16-F01(00-23-01-01)

3.7. AC conducted emissions

Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.


Fraguency of Emission (Mb)	Conducted limit (dBµV)				
Frequency of Emission (船)	Quasi-peak	Average			
0.15 – 0.50	66 - 56*	56 - 46*			
0.50 - 5.00	56	46			
5.00 - 30.0	60	50			



Test results

Mode:	802.11a (6 Mbps) (Worst Case)
Band:	UNII-1
Channel:	36 (Worst Case)

KES-QP16-F01(00-23-01-01)

3.8. Antenna Requirement

According to 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

Result

Details	Verdict
 The transmitter has a FPCB Antenna that is built into the product, so it can't be replaced by the user. The maximum antenna gain does not exceed 6 dBi 3.94 dBi for 2.4	Pass

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum analyzer	R&S	FSV40	101725	1 year	2025.06.12
SIGNAL GENERATOR	KEYSIGHT	N5182B	MY59100115	1 year	2025.04.15
SIGNAL GENERATOR	Anritsu	68369B	002118	1 year	2025.04.15
Power Meter	Anritsu	ML2495A	2010001	1 year	2025.04.15
Pulse Power Sensor	Anritsu	MA2411B	1911111	1 year	2025.04.15
ATTENUATOR	Mini-Circuits	BW-S20-2W263A+	Y2	1 year	2025.02.09
ACTIVE LOOP ANTENNA	SCHWARZBECK	FMZB 1513	1513-257	2 years	2025.11.16
TRILOG-BROADBAND ANTENNA	Schwarzbeck	VULB 9163	714	2 years	2026.04.19
Attenuator	HUBER+SHHNER	6806.17.A	NONE	1 year	2025.02.13
Horn Antenna	A.H.	SAS-571	414	1 year	2026.01.13
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA 9170550	1 year	2026.01.13
Amplifier	SONOMA INSTRUMENT	310N	401123	1 year	2025.02.13
PREAMPLIFIER	HP	8449B	3008A00538	1 year	2025.04.30
BROADBAND AMPLIFIER	SCHWARZBECK	BBV9721	PS9721-003	1 year	2026.01.09
DC POWER SUPPLY	AGILENT	6632B	MY43004090	1 year	2025.06.17
AC POWER SOURCE/ ANALYZER	HP	6813A	3729A00754	1 year	2026.01.08
EMI Test Receiver	R&S	ESU26	100552	1 year	2025.02.13
EMI Test Receiver	R&S	ESR3	101783	1 year	2025.11.06
PULSE LIMITER	R&S	ESH2-Z2	101915	1 year	2025.11.06
LISN	R&S	ENV216	101786	1 year	2026.01.09

Appendix A. Measurement equipment

* Statement of Traceability: KES Co., Ltd. attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Peripheral devices

Device	Device Manufacturer Model No.		Serial No.
Notebook computer	LG Electronics Inc.,	LGS53	306QCZP560949
Test Jig Board	N/A	N/A	N/A

The End.