

TM-2411000055P TMWK2411003831KR FCC ID: 2ATPY-SMC-V3

Page 1 / 28 Rev. 01

FCC RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC Part 15.249
Product name	SMC Series
Brand Name	AXIOMTEK
Model No.	SMC V3.0 - EM317, SMC V3.X - EM317 (X can be 0-9, A-Z, a-z, "-", "_", "/" or blank)
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Hong

Dally Hong Sr. Engineer

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

TM-2411000055P TMWK2411003831KR Page 2 / 28 Rev. 01

Revision History

Rev.	lssue Date	Revisions	Effect Page	Revised By
00	December 9, 2024	Initial Issue	ALL	Peggy Tsai
01	December 24, 2024	See the following Note Rev. (01)	P.5	Peggy Tsai

Note: Rev. (01)

1. Modify antenna information in section 1.3.

Table of contents

1.	GENERAL INFORMATION	. 4
1.1	EUT INFORMATION	. 4
1.2	EUT CHANNEL INFORMATION	. 5
1.3	ANTENNA INFORMATION	. 5
1.4	MEASUREMENT UNCERTAINTY	. 6
1.5	FACILITIES AND TEST LOCATION	. 6
1.6	INSTRUMENT CALIBRATION	. 7
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	. 9
1.8	TEST SET UP DIAGRAM	10
1.9	TEST PROGRAM	10
1.1	0 TEST METHODOLOGY AND APPLIED STANDARDS	10
2.	TEST SUMMARY	11
3.	DESCRIPTION OF TEST MODES	12
3.1	THE WORST MODE OF MEASUREMENT	12
4.	TEST RESULT	13
4.1	AC POWER LINE CONDUCTED EMISSION	13
4.2	20DB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)	16
4.3	FIELD STRENGTH OF FUNDAMENTAL AND SPURIOUS EMISSION	18
AP	PENDIX 1 - PHOTOGRAPHS OF EUT	

1. GENERAL INFORMATION

1.1 EUT INFORMATION

	AXIOMTEK CO., LTD.
Applicant	8F., No.55, Nanxing Road, Xizhi District, New Taipei City 221026,
Manufacturan	AXIOMIEK CO., LID.
Manufacturer	8F., NO.55, Nanxing Road, Xizhi District, New Taiper City 221026,
	Taiwan
Equipment	SMC Series
	(100) (20) (100) (20)
Model Name	"_", "/" or blank)
Model Discrepancy	Difference of the those model number (list on this report) are just for
	marketing purpose only.
Trade name	AXIOMTEK
Received Date	November 4, 2024
Date of Test	November 4 ~ 21_2024
Power Operation	Power by AC Power (AC 110V)

Remark:

1. For more details, please refer to the User's manual of the EUT.

2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.

3. Disclaimer: The variant model numbers are assessed as identical in hardware and software to each other, hence all variants are fully covered by the test results in this test report without further verification test.

Page 5 / 28 Rev. 01

1.2 EUT CHANNEL INFORMATION

Frequency Range	915 MHz
Modulation Type	LoRa
Number of channels	1 Channel

1.3 ANTENNA INFORMATION

Antenna Type	CHIP PCB Dipole
Antenna Brand / Model	Brand: Panorama Antennas Ltd Model: MAR868-2SP
Antenna Gain	Gain: 4 dBi
Antenna Connector	SMA PLUG

Notes:

1. The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203.

Page 6 / 28 Rev. 01

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	± 2.21 dB
Channel Bandwidth	± 2.79 dB
Radiated Emission_9kHz-30MHz	± 3.492 dB
Radiated Emission_30MHz-200MHz	± 3.683 dB
Radiated Emission_200MHz-1GHz	± 3.966 dB
Radiated Emission_1GHz-6GHz	± 5.063 dB
Radiated Emission_6GHz-18GHz	± 5.122 dB
Radiated Emission_18GHz-26GHz	± 3.032 dB
Radiated Emission_26GHz-40GHz	± 3.271 dB

Remark:

1.This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

CAB identifier: TW1309

Test site	Test Engineer	Remark
AC Conduction Room	Ben Yang	
Radiation	Ray Li	
RF Conducted	Jerry Chang	

Remark: The lab has been recognized as the FCC accredited lab. under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309.

1.6 INSTRUMENT CALIBRATION

Conducted_FCC/IC/NCC (All)						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Cable	Woken	WC12	SS02	2024-06-26	2025-06-25	
PXA Signal Analyzer	Keysight	N9030B	MY62291089	2024-10-04	2025-10-03	
DC Blocks	Marvelous Microwave	MVE6411	MVE-002	2024-08-08	2025-08-07	
Attenuator	Marvelous Microwave Ine	MVE2213-10	08	2023-11-07	2024-11-06	
Software			N/A			

966A_Radiated						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Signal Analyzer	KEYSIGHT	N9010A	MY52220817	2024-03-15	2025-03-14	
Thermo-Hygro Meter	WISEWIND	1206	D07	2023-12-08	2024-12-07	
Active Loop Antenna	SCHWARZBEC K	FMZB 1513-60	1513-60-028	2023-12-13	2024-12-12	
Bi-Log Antenna	Sunol Sciences	JB3	A030105	2024-07-12	2025-07-11	
Preamplifier	EMEC	EM330	060609	2024-02-21	2025-02-20	
Cable	Huber+Suhner	104PEA	20995+21000+ 182330	2024-08-07	2025-08-06	
Horn Antenna	ETC	MCTD 1209	DRH13M02003	2023-12-28	2024-12-27	
Preamplifier	HP	8449B	3008A00965	2023-12-22	2024-12-21	
Cable	Cable EMCI EMC101G		221011+221012 +221213	2024-10-11	2025-10-10	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Site Validation	CCS	966A	N/A	2024-08-03	2025-08-02	
Software	e3 V9-210616c					
D a second						

Remark:

1. Each piece of equipment is scheduled for calibration once a year.

2. N.C.R. = No Calibration Required.

TM-2411000055P TMWK2411003831KR

Page 8 / 28 Rev. 01

AC Mains Conduction					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
EMI Test Receiver	R&S	ESCI	100064	2024-06-14	2025-06-13
LISN	TESEQ	LN2-16N	22012	2024-02-29	2025-02-27
Cable	Woken	SFL402	185A	2024-07-08	2025-07-07
Software	e3 V6-110812				

Remark:

1. Each piece of equipment is scheduled for calibration once a year.

2. N.C.R. = No Calibration Required.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment							
No.	No. Equipment Brand Model Series No. FCC ID						
	N/A						

	Support Equipment (Conducted)						
No.	Equipment	Brand	Model	Series No.	FCC ID		
1	Monitor	ViewSonic	VS16263	N/A	N/A		
2	HDMI Cable	High Speed	E342987	N/A	N/A		

Support Equipment (Conduction)							
No.	o. Equipment Brand Model Series No. FCC ID						
1	Power Cable	N/A	N/A	N/A	N/A		
А	Antenna	N/A	N/A	N/A	N/A		

Support Equipment (Radiated)						
No.	Equipment	Brand	Model	Series No.	FCC ID	
1	Ethernet Cable	Jia-Yi	CAT5e	68174	N/A	
А	Antenna	N/A	N/A	N/A	N/A	

Page 10 / 28 Rev. 01

1.8 TEST SET UP DIAGRAM

1.9TEST PROGRAM

The EUT connection corresponds to the surrounding fixture control board. This EUT uses "Command Prompt" and setup command to set the frequency, modulation, and power to allow the sample to continuously transmit.

1.10 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 15.249.

2. TEST SUMMARY

FCC Standard Section	Report Section	Test Item	Result
15.203	1.3	Antenna Requirement	Pass
15.207(a)	4.1	AC Conducted Emission	Pass
15.215	4.2	20dB Bandwidth and Occupied Bandwidth (99%)	Pass
15.249(a)	4.3	Filed strength of fundamental	Pass
15.249(a)	4.3	Radiation Spurious Emission	Pass

Page 11 / 28 Rev. 01

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF MEASUREMENT

AC Power Line Conduction Emission				
Test Condition AC Power line conduction emission for line and neutral				
Power supply Mode Mode 1: EUT Power by AC 120V				
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4				

Radiated Emission Measurement Above 1G				
Test Condition Radiated Emission Above 1G				
Power supply Mode Mode 1: EUT power by AC(120V)				
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4				

Radiated Emission Measurement Below 1G				
Test Condition	Radiated Emission Below 1G			
Power supply Mode	Mode 1: EUT power by AC(120V)			
Worst Mode	🛛 🖾 Mode 1 🔲 Mode 2 🛄 Mode 3 🗌 Mode 4			
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 			

Remark:

1. The worst mode was record in this test report.

2. AC power line conducted emission were performed the EUT transmit at the highest output power channel as worse case.

3. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(Z-Plane) were recorded in this report.

Page 13 / 28 Rev. 01

4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a),

Limits(dBµV)		
Quasi-peak	Average	
66 to 56*	56 to 46*	
56	46	
60	50	
	Limits(dB Quasi-peak 66 to 56* 56 60	

* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.

2. EUT connected to the line impedance stabilization network (LISN)

3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

Page 14 / 28 Rev. 01

4.1.4 Test Result

Project No Operation Mode Test Chamber Probe Note	: TM-2411 e : 915MHz : Conducti : LINE :	000055P ion	Test D Temp. Engin Test V	0ate /Humi. eer ⁄oltage	: 2024 : 23.4° : Ben ` : AC 1	-11-21 °C / 54% Yang 20V/60Hz
80 Level (dBuV)						;]
70						
60						
50						
40					 	
30	ater to the A					
	MMVMMMM.				1 Martin	MWN .
20	°'''''''''''''''''''''''''''''''''''''	v Martin Muhammatai	n Alle a Male Male	LIN ROUGHNAND	Man 1	M.M.
10		un na herken effin frænslik finsk madel	-la-tr- Aster utter Ma	hind at the second s		
0.15 0.2	0.5	1 2	<u>i i</u> !	5	10	20 30
		Freque	ncy (MHz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
MHz	PK/QP/AV		dB	r5 dBuV	dBuV	dB
0.196	QP	41.93	0.37	42.30	63.80	-21.50
0.196	Average	37.01	0.37	37.38	53.80	-16.42
0.261	QP	34.00	0.39	34.39	61.39	-27.00
0.261	Average	28.84	0.39	29.23	51.39	-22.16
0.462	QP	31.57	0.38	31.95	56.66	-24.71
0.462	Average	24.21	0.38	24.59	46.66	-22.07
0.605	QP	34.21	0.38	34.59	56.00	-21.41
0.605	Average	30.45	0.38	30.83	46.00	-15.17
1.823	QP	29.80	0.18	29.98	56.00	-26.02
1.823	Average	26.07	0.18	26.25	46.00	-19.75
12.145	QP	26.50	0.39	26.89	60.00	-33.11
12.145	Average	20.37	0.39	20.76	50.00	-29.24

Note: 1. Actual FS= Spectrum Read Level + Factor Note: 2. Margin= Actual FS - Limit

Project No: Report No.:	TM-24110000 TMWK24110)55P 03831KR				Page Rev.	15 /28 01
Project No Operation Mo Test Chambe Probe Note	: TM-2411 de : 915MHz r : Conducti : NEUTRA :	000055P on \L	Test I Temp Engin Test \	Date ./Humi. leer /oltage	: 2024 : 23.4° : Ben \ : AC 12	-11-21 C / 54% Yang 20V/60ł	6 Hz
80 Level (dBuV)							
70 60 50 40 30 20		Mummun			12 12		
0.15 0.2	0.5	1 Eroeur	2 2	5	10	20 3	0
	Dotootor	Spectrum	ency (winz)	Actual			
Freq.	Mode	Read Level	Factor	FS	Limit	Marg	gin
MHz	PK/QP/AV	dBuV	dB	dBuV	dBuV	dB	5
0.196	QP	41.91	0.34	42.25	63.80	-21.5	55
0.196	Average	35.90	0.34	36.24	53.80	-17.5	56
0.458	QP	31.67	0.35	32.02	56.73	-24.7	71
0.458	Average	30.60	0.35	30.95	46.73	-15.7	78
0.605	QP	35.01	0.35	35.36	56.00	-20.6	64
0.605	Average	30.07	0.35	30.42	46.00	-15.8	58
1.813	QP	27.01	0.16	27.17	56.00	-28.8	33
1.813	Average	23.59	0.16	23.75	46.00	-22.2	25
12.131	QP	26.24	0.36	26.60	60.00	-33.4	4U 20
12.131	Average	22.66	0.36	23.02	50.00	-26.9	90 20
17.807 17.007		10.// 16.10	0.43	19.20	50.00	-4U.č	5U 45
17.007	Average	10.12	0.43	10.00	50.00	-აა.4	+0

Note: 1. Actual FS= Spectrum Read Level + Factor Note: 2. Margin= Actual FS - Limit

Page 16 / 28 Rev. 01

4.220dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

<u>LIMIT</u>

<u>20 dB Bandwidth</u> : For reporting purposes only. Occupied Bandwidth(99%) : For reporting purposes only.

Test Configuration

TEST PROCEDURE

Test method Refer as ANSI C63.10: 2013 clause 6.9.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 20 dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

TEST RESULTS

Compliance.

Temperature:	21.4 ℃	Test date:	November 4, 2024
Humidity:	57% RH	Tested by:	Jerry Chang

Frequency	Occupied Bandwidth 99%	20 dB Bandwidth
(MHz)	(MHz)	(MHz)
915	0.127	0.08

Test Plot

20dB Bandwidth & BANDWIDTH (99%)

Page 18 / 28 Rev. 01

4.3 FIELD STRENGTH OF FUNDAMENTAL AND SPURIOUS EMISSION

4.3.1 Test Limit

According to §15.249(a)

(1) The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

* Field strength limits are specified at a distance of 3 meters

Fundamental Limit Conversion			
Average	Average	Peak	
(mV/m)	(dBuV/m)	(dBuV/m)	
at 3M	at 3M	at 3M	
50	93.98	113.98	

Harmonic Limit Conversion			
Average	Average	Peak	
(uV/m)	(dBuV/m)	(dBuV/m)	
at 3M	at 3M	at 1M	
500	53.97	73.97	

*(Limit=20LOG(500)=53.79 dBuV/m)

Page 19 / 28 Rev. 01

(2) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209(follow the table), whichever is the lesser attenuation

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	30
1.705-30 MHz	30	30

Above 30 MHz

Frequency	Field Strength (microvolts/m)	Measurement Distance (metres)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Page 20 / 28 Rev. 01

4.3.2 Test Procedure

- 1. The EUT is placed on a turntable, Above 1 GHz is 1.5m high and below 1 GHz is 0.8m high above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

```
RBW=100kHz / VBW=300kHz / Sweep=AUTO
```

Above 1GHz:

(a)PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO (b)AVERAGE: RBW=1MHz,

if duty cycle≧98%, VBW=10Hz.

- if duty cycle<98% VBW=1/T.
- 7. Repeat above procedures until the measurements for all frequencies are complete.
- 8. Result = Spectrum Reading + cable loss(spectrum to Amp) Amp Gain + Cable loss(Amp to receive Ant)+ Receive Ant

Note: We checked every harmonics frequencies from Fundamental frequencies with reduced VBW, and we mark a point to prove pass or not if we find any emission. For this case, there are no emissions hidden in the noise floor.

Page 21 / 28 Rev. 01

4.3.3 Test Setup

<u>9kHz ~ 30MHz</u>

<u>30MHz ~ 1GHz</u>

Page 22 / 28 Rev. 01

Above 1 GHz

4.3.4 Test Result

Band Edge Test Data

Project No	:TM-2411000055P	Test Date	:2024-11-14
Operation Band	:Lora	Temp./Humi.	:24.7/57
Frequency	:915 MHz	Antenna Pol.	:VERTICAL
Operation Mode	:Bandedge	Engineer	:Ray Li
EUT Pol	:H	Test Chamber	: 966A
Setting	:3		

Freq.	Detector Mode	Spectrum Read Level	Factor	Actual FS	Limit	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
895.92	Peak	36.09	1.55	37.64	46.00	-8.36
915.00	Peak	92.97	1.64	94.61	114.00	-19.39
915.00	Average	88.79	1.64	90.43	94.00	-3.57
933.58	Peak	36.13	2.35	38.48	46.00	-7.52

Page 23 / 28 Rev. 01

Project No: T	M-2411000055P		Page 2
Report No.: T	MWK2411003831KR		Rev. (
Project No Operation Band Frequency Operation Mode EUT Pol Setting	:TM-2411000055P :Lora :915 MHz :Bandedge :H :3	Test Date Temp./Humi. Antenna Pol. Engineer Test Chamber	:2024-11-14 :24.7/57 :HORIZONTAL :Ray Li : 966A

Freq.	Detector Mode	Spectrum Read Level	Factor	Actual FS	Limit	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
891.12	Peak	36.42	1.54	37.96	46.00	-8.04
915.00	Peak	88.26	1.64	89.90	114.00	-24.10
915.00	Average	84.92	1.64	86.56	94.00	-7.44
984.70	Peak	35.86	2.78	38.64	54.00	-15.36

Page 24 / 28 Rev. 01

Page 25 / 28 Rev. 01

TX Test Data

Project No	:TM-2411000055P	Test Date	:2024-11-14
Operation Band	:Lora	Temp./Humi.	:24.7/57
Frequency	:915 MHz	Antenna Pol.	:Vertical
Operation Mode	:TX	Engineer	:Ray Li
EUT Pol	:H	Test Chamber	: 966A
Setting	:3		

Freq.	Detector Mode	Spectrum Read Level	Factor	Actual FS	Limit	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
162.10	Peak	35.00	-11.26	23.74	43.50	-19.76
277.00	Peak	37.66	-9.56	28.10	46.00	-17.90
301.10	Peak	40.75	-9.31	31.44	46.00	-14.56
445.50	Peak	35.95	-5.39	30.56	46.00	-15.44
563.60	Peak	32.61	-3.45	29.16	46.00	-16.84
836.70	Peak	32.29	1.13	33.42	46.00	-12.58

Project No:	TM-2411000055P
Report No.:	TMWK2411003831KR

Page 26 / 28 Rev. 01

Project No	:TM-2411000055P	Test Date	:2024-11-14
Operation Band	:Lora	Temp./Humi.	:24.7/57
Frequency	:915 MHz	Antenna Pol.	:Horizontal
Operation Mode	:TX	Engineer	:Ray Li
EUT Pol	:H	Test Chamber	: 966A
Setting	:3		

Freq.	Detector Mode	Spectrum Read Level	Factor	Actual FS	Limit	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
159.80	Peak	39.13	-11.04	28.09	43.50	-15.41
277.60	Peak	45.59	-9.57	36.02	46.00	-9.98
306.20	Peak	46.27	-9.21	37.06	46.00	-8.94
351.90	Peak	39.70	-8.19	31.52	46.00	-14.48
562.50	Peak	33.07	-3.48	29.59	46.00	-16.41
870.50	Peak	31.45	1.50	32.95	46.00	-13.05

И-2411000055Р //WK2411003831KR		Page 2 Rev. 0
:TM-2411000055P :Lora :915 MHz :TX :H :3	Test Date Temp./Humi. Antenna Pol. Engineer Test Chamber	:2024-11-14 :24.7/57 :Vertical :Ray Li : 966A
3uV/m)		
	M-2411000055P MWK2411003831KR :TM-2411000055P :Lora :915 MHz :TX :H :3	A-2411000055P AWK2411003831KR :TM-2411000055P :Lora Temp./Humi. :915 MHz Antenna Pol. :TX Engineer :H Test Chamber :3

Freq.	Detector Mode	Spectrum Read Level	Factor	Actual FS	Limit	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
1830.00	Peak	40.85	-5.87	34.98	74.00	-39.02
1830.00	Average	34.79	-5.87	28.92	54.00	-25.08
2745.00	Peak	40.42	-2.43	37.99	74.00	-36.01
2745.00	Average	33.40	-2.43	30.98	54.00	-23.02

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

27 / 28)1

75.0

60.0

45.0

Project No: TM Report No.: TM	I-2411000055P IWK2411003831KR		Page 28 Rev. 01
Project No Operation Band Frequency Operation Mode EUT Pol Setting	:TM-2411000055P :Lora :915 MHz :TX :H :3	Test Date Temp./Humi. Antenna Pol. Engineer Test Chamber	:2024-11-14 :24.7/57 :Horizontal :Ray Li : 966A
120 Level (dB	uV/m)		
90.0			

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

- End of Test Report -

/ 28