

TEST REPORT

Applicant: Fujian Newland Payment Technology Co., Ltd.

Address: No. B602, Building #1, Haixia Jingmao Plaza, Fuzhou Bonded Area 350015, Fuzhou, Fujian, China

FCC ID: 2AM6U-SP880

Product Name: SP880

Standard(s): 47 CFR Part 15, Subpart C(15.247) ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

The above equipment has been tested and found compliance with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: CR21110084-00A

Date Of Issue: 2021-12-09

Reviewed By: Sun Zhong

Sun 2hong

Title: Manager

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

CONTENTS

DECLARATIONS 2 1. GENERAL INFORMATION 5 1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 5 1.2 DESCRIPTION OF TEST CONFIGURATION 7 1.2.1 Support Equipment List and Details 7 1.2.2 Support Cable List and Details 7 1.2.3 Support Cable List and Details 7 1.2.4 Block Diagram of Test Setup 10 2. SUMMARY OF TEST RESULTS 11 3. REQUIREMENTS AND TEST PROCEDURES 12 3.1.1 Applicable Standard 12 3.1.2 Descriptions 12 3.1.3 LIN Sector Setup 13 3.1.4 Test Procedure 14 3.1.5 LINT Setup 13 3.1.4 Test Procedure 14 3.2.1 Applicable Standard 15 3.2.1 Applicable Standard 15 3.2.1 Applicable Standard 15 3.2.2 LINT Setup 16 3.2.3 LANT Tors Septentum Analyzer Setup 16 3.2.4 Everocedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2.4 Everocedure 17 3.3.1 Applicable Standard 17 3.3.1 App	TEST FACILITY	2
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 5 1.2 DESCRIPTION OF TEST CONFIGURATION 7 1.2.2 Support Equipment List and Details 7 1.2.3 Support Cable List and Details 7 1.2.4 Block Diagram of Test Setup 8 1.3 MEASUREMENT UNCERTAINTY 10 2. SUMMARY OF TEST RESULTS 11 3. REQUIREMENTS AND TEST PROCEDURES 12 3.1 A CLINE CONDUCTED EMISSIONS 12 3.1.1 Applicable Standard 12 3.1.2 EUT Setup 13 3.1.3 EUT Test RESULTS 13 3.1.4 Test Procedure 14 3.1.5 Corrected Amplitude & Margin Calculation 14 3.1.6 CUT Setup. 15 3.2.1 Applicable Standard 15 3.2.2 EUT Setup. 15 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup 16 3.2.4 Cest Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2.6 UT Setup. 17 3.3.1 Applicable Standard 17 3.3.2 EUT Setup. 16 3.2.4 Cest Procedure 16 3.2.5 Corected Amplitude & Margin Calculation	DECLARATIONS	2
1.2 DESCRIPTION OF TEST CONFIGURATION	1. GENERAL INFORMATION	5
1.2.2 Support Equipment List and Details 7 1.2.3 Support Cable List and Details 7 1.2.4 Block Diagram of Test Setup 8 1.3 MEASUREMENT UNCERTAINTY 10 2. SUMMARY OF TEST RESULTS 11 3. REQUIREMENTS AND TEST PROCEDURES 12 3.1 AC LINE CONDUCTED EMISSIONS 12 3.1.1 Applicable Standard 12 3.1.2 EUT Setup 13 3.1.3 EMI Test Receiver Setup 13 3.1.4 Test Procedure 14 3.1.5 Corrected Amplitude & Margin Calculation 14 3.2 RADIATION SPURIOUS EMISSIONS 15 3.2.1 Applicable Standard 15 3.2.2 EUT Setup 15 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2.6 UT Setup 17 3.3.1 Applicable Standard 17 3.3.2 UT Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.3 6 DB EMISSION BANDWIDTH: 17 3.3.1 Applicable Standard 17	1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
12.3 Support Cable List and Details 7 1.2 Helock Diagram of Test Setup 8 1.3 MEASUREMENT UNCERTAINTY 10 2. SUMMARY OF TEST RESULTS 11 3. REQUIREMENTS AND TEST PROCEDURES 12 3.1 AC LINE CONDUCTED EMISSIONS 12 3.1 A LINE CONDUCTED EMISSIONS 12 3.1.1 Applicable Standard 12 3.1.2 EUT Setup 13 3.1.4 Test Procedure 13 3.1.4 Test Procedure 14 3.1.5 Corrected Amplitude & Margin Calculation 14 3.2 EUT Setup 15 3.2.1 Applicable Standard 15 3.2.2 EUT Setup 16 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2 EUT Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2 Gorrected Amplitude & Margin Calculation 16 3.2 A test Procedure 17 3.3 Applicable Standard 17 3.3 Applicable Standard 17	1.2 DESCRIPTION OF TEST CONFIGURATION	7
1.2 Hock Diagram of Test Setup. 8 1.3 MEASUREMENT UNCERTAINTY 10 2. SUMMARY OF TEST RESULTS 11 3. REQUIREMENTS AND TEST PROCEDURES 12 3.1 AC LINE CONDUCTED EMISSIONS 12 3.1 A C LINE CONDUCTED EMISSIONS 12 3.1.1 Applicable Standard 12 3.1.2 EUT Setup. 13 3.1.3 EMI Test Receiver Setup 13 3.1.4 Test Procedure 14 3.1.5 Corrected Amplitude & Margin Calculation 14 3.2.1 Applicable Standard 15 3.2.1 Applicable Standard 15 3.2.1 Applicable Standard 15 3.2.1 Applicable Standard 15 3.2.2 EUT Setup. 16 3.2.4 Fuel Toecdure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2.4 Evel Toecdure 16 3.2.5 LUT Setup. 17 3.3.1 Applicable Standard 17 3.3.1 Applicable Standard 17 3.3.2 EUT Setup. 17 3.4 OPSICON BANDWIDTH: 17 3.5 MAXINUM PAK CONDUCTED OUTPUT POWER: 17 3.4 1 EUT Setup. <t< td=""><td>1.2.2 Support Equipment List and Details</td><td>7</td></t<>	1.2.2 Support Equipment List and Details	7
1.3 MEASUREMENT UNCERTAINTY 10 2. SUMMARY OF TEST RESULTS 11 3. REQUIREMENTS AND TEST PROCEDURES 12 3.1 AC LINE CONDUCTED EMISSIONS 12 3.1.1 Applicable Standard 12 3.1.2 EUT Setup 13 3.1.4 Test Procedure 13 3.1.4 Test Procedure 14 3.1.5 Corrected Amplitude & Margin Calculation 14 3.1.5 Corrected Amplitude & Margin Calculation 15 3.2.1 Applicable Standard 15 3.2.2 EUT Setup 16 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.3 Corrected Amplitude & Margin Calculation 16 3.3 Corrected Amplitude & Margin Calculation 16 3.4 Test Procedure 17 3.3 Applicable Standard 17 3.4 Test Procedure 17 3.4 Deplicable Standard 17 3.4 Setup 18 3.4.1 EUT Setup		
3. REQUIREMENTS AND TEST PROCEDURES 12 3.1 AC LINE CONDUCTED EMISSIONS 12 3.1.1 Applicable Standard 12 3.1.2 EUT Setup. 13 3.1.3 EMI Test Receiver Setup 13 3.1.4 Test Procedure 14 3.1.5 Corrected Amplitude & Margin Calculation 14 3.2 RADIATION SPURIOUS EMISSIONS 15 3.2.1 Applicable Standard 15 3.2.2 EUT Setup. 15 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2.6 EMISSION BANDWIDTH: 17 3.3.1 Applicable Standard 19 3.4.1 EUT Setup. 18 3.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER: 19		
3.1 AC LINE CONDUCTED EMISSIONS. 12 3.1.1 Applicable Standard 12 3.1.2 EUT Setup. 13 3.1.3 EMI Test Receiver Setup 13 3.1.4 Test Procedure 14 3.1.5 Corrected Amplitude & Margin Calculation 14 3.2 RADIATION SPURIOUS EMISSIONS 15 3.2.1 Applicable Standard. 15 3.2.2 EUT Setup. 15 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2.6 EUT Setup. 16 3.2.7 EUT Setup. 17 3.3 I Applicable Standard. 17 3.3.1 Applicable Standard. 17 3.3.1 Applicable Standard. 17 3.3 Test Procedure 17 3.3.3 Test Procedure 17 3.4 Applicable Standard. 17 3.4.1 EUT Setup. 18 3.4.1 EUT Setup. 18 3.4.2 Test Procedure 18 3.5.1 Applicable Standard. 19 3.5.1 Applicable Standard. 19 3.5.2 EUT Setup. 19 <tr< th=""><th>2. SUMMARY OF TEST RESULTS</th><th>11</th></tr<>	2. SUMMARY OF TEST RESULTS	11
3.1 AC LINE CONDUCTED EMISSIONS. 12 3.1.1 Applicable Standard 12 3.1.2 EUT Setup. 13 3.1.3 EMI Test Receiver Setup 13 3.1.4 Test Procedure 14 3.1.5 Corrected Amplitude & Margin Calculation 14 3.2 RADIATION SPURIOUS EMISSIONS 15 3.2.1 Applicable Standard. 15 3.2.2 EUT Setup. 15 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2.6 EUT Setup. 16 3.2.7 EUT Setup. 17 3.3 I Applicable Standard. 17 3.3.1 Applicable Standard. 17 3.3.1 Applicable Standard. 17 3.3 Test Procedure 17 3.3.3 Test Procedure 17 3.4 Applicable Standard. 17 3.4.1 EUT Setup. 18 3.4.1 EUT Setup. 18 3.4.2 Test Procedure 18 3.5.1 Applicable Standard. 19 3.5.1 Applicable Standard. 19 3.5.2 EUT Setup. 19 <tr< th=""><th>3. REQUIREMENTS AND TEST PROCEDURES</th><th></th></tr<>	3. REQUIREMENTS AND TEST PROCEDURES	
3.1.2 EUT Setup. 13 3.1.3 EMI Test Receiver Setup 13 3.1.4 Test Procedure 14 3.1.4 Test Procedure 14 3.2 RADIATION SPURIOUS EMISSIONS 15 3.2.1 Applicable Standard 15 3.2.2 EUT Setup. 15 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2.6 DB EMISSION BANDWIDTH: 17 3.3.1 Applicable Standard 17 3.3.2 EUT Setup. 17 3.3.1 Applicable Standard 17 3.3.2 EUT Setup. 17 3.3.3 Test Procedure 17 3.4 1 EUT Setup. 18 3.4.1 EUT Setup. 18 3.4.1 EUT Setup. 18 3.5.1 Applicable Standard 19 3.5.2 EUT Setup. 19 3.5.1 Applicable Standard 19 3.5.2 EUT Setup. 19 3.5.3 Test Procedure 19 3.5.4 Applicable Standard 20 3.6.1 Applicable Standard 20 3.6.1 Applicable Standard		
3.1.3 EMI Test Receiver Setup 13 3.1.4 Test Procedure 14 3.1.5 Corrected Amplitude & Margin Calculation 14 3.2 RADIATION SPURIOUS EMISSIONS 15 3.2.1 Applicable Standard 15 3.2.2 EUT Setup 15 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2.6 UT Setup 16 3.2.7 Development 16 3.2.8 EMI Test Receiver & Spectrum Analyzer Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.3.2 EUT Setup. 17 3.3.1 Applicable Standard 17 3.3.2 EUT Setup. 17 3.3.3 Test Procedure 18 3.4.1 EUT Setup. 18 3.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER: 19 3.5.1 Applicable Standard 19 3.5.2 EUT Setup. 19 3.5.3 Test Procedure 19 3.6.1 Applicable Standard 20 <		
3.1.4 Test Procedure 14 3.1.5 Corrected Amplitude & Margin Calculation 14 3.2 RADIATION SPURIOUS EMISSIONS 15 3.2.1 Applicable Standard 15 3.2.2 EUT Setup. 15 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.3 6 DB EMISSION BANDWIDTH: 17 3.3.1 Applicable Standard 17 3.3.3 Test Procedure 17 3.4 P99% OCCUPIED BANDWIDTH: 18 3.4.1 EUT Setup. 18 3.4.2 Test Procedure 18 3.4.2 Test Procedure 18 3.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER: 19 3.5.1 Applicable Standard 19 3.5.2 EUT Setup. 19 3.5.3 Test Procedure 19 3.5.1 Applicable Standard 19 3.5.2 EUT Setup. 19 3.5.3 Test Procedure 19 3.6.1 Applicable Standard 20 3.6.1 Applicable Standard 20 3.6.1 Applicable Standard 20 3.6.1 Applicable Standard 2	3.1.2 EUT Setup	
3.1.5 Corrected Amplitude & Margin Calculation 14 3.2 RADIATION SPURIOUS EMISSIONS 15 3.2.1 Applicable Standard 15 3.2.2 EUT Setup 15 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2.6 LOT Setup. 17 3.3.6 DB EMISSION BANDWIDTH: 17 3.3.1 Applicable Standard 17 3.3.2 EUT Setup. 17 3.3.3 Test Procedure 17 3.3.4 Setup. 17 3.3.3 Test Procedure 17 3.4 1 EUT Setup. 18 3.4.1 EUT Setup. 18 3.4.2 Test Procedure 18 3.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER: 19 3.5.1 Applicable Standard. 19 3.5.2 EUT Setup. 19 3.6.1 Applicable Standard. 20 3.6.1 Applicable Standard. 20 </td <td></td> <td></td>		
3.2.1 Applicable Standard. 15 3.2.2 EUT Setup. 15 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.2.6 DB EMISSION BANDWIDTH: 17 3.3 6 DB EMISSION BANDWIDTH: 17 3.3.1 Applicable Standard. 17 3.3.2 EUT Setup. 17 3.3.3 Test Procedure 17 3.4 99% OCCUPIED BANDWIDTH: 17 3.4 99% OCCUPIED BANDWIDTH: 18 3.4.1 EUT Setup. 18 3.4.2 Test Procedure 18 3.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER: 19 3.5.1 Applicable Standard. 19 3.5.2 EUT Setup. 19 3.5.3 Test Procedure 19 3.5.4 Applicable Standard. 19 3.5.5 Astimum PEAK CONDUCTED OUTPUT POWER: 19 3.6 MAXIMUM PEAK CONDUCTED OUTPUT POWER: 19 3.6 MAXIMUM PEAK CONDUCTED OUTPUT POWER: 19 3.6 MAXIMUM POWER SPECTRAL DENSITY: 20 3.6.1 Applicable Standard. 20 3.6.1 Applicable Standard. 20 <tr< td=""><td>3.1.5 Corrected Amplitude & Margin Calculation</td><td>14</td></tr<>	3.1.5 Corrected Amplitude & Margin Calculation	14
3.2.2 EUT Setup. 15 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup. 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation. 16 3.2.6 DB EMISSION BANDWIDTH: 17 3.3.1 Applicable Standard. 17 3.3.2 EUT Setup. 17 3.3.3 Test Procedure 17 3.4 99% OCCUPIED BANDWIDTH: 17 3.4 99% OCCUPIED BANDWIDTH: 18 3.4.1 EUT Setup. 18 3.4.2 Test Procedure 18 3.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER: 19 3.5.1 Applicable Standard. 19 3.5.2 EUT Setup. 19 3.5.3 Test Procedure 19 3.5.1 Applicable Standard. 19 3.5.2 EUT Setup. 19 3.5.3 Test Procedure 19 3.6 MAXIMUM POWER SPECTRAL DENSITY: 20 3.6.1 Applicable Standard. 20 <td>3.2 RADIATION SPURIOUS EMISSIONS</td> <td>15</td>	3.2 RADIATION SPURIOUS EMISSIONS	15
3.2.3 EMI Test Receiver & Spectrum Analyzer Setup 16 3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation 16 3.3.6 DB EMISSION BANDWIDTH: 17 3.3.1 Applicable Standard 17 3.3.2 EUT Setup. 17 3.3.1 Applicable Standard 17 3.3.2 EUT Setup. 17 3.3.3 Test Procedure 17 3.4 99% OCCUPIED BANDWIDTH: 18 3.4.1 EUT Setup. 18 3.4.2 Test Procedure 18 3.5.1 Applicable Standard 19 3.5.1 Applicable Standard 19 3.5.2 EUT Setup. 19 3.5.1 Applicable Standard 19 3.5.2 EUT Setup. 19 3.6 MAXIMUM POWER SPECTRAL DENSITY: 20 3.6.1 Applicable Standard 20 3.6.2 EUT Setup. 20 3.6.1 Applicable Standard 20 3.6.2 EUT Setup. 20 3.6.1 Applicable Standard 20 3.6.1 Applicable Standard 20 3.7 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE: 21 3.7.1 Applicable Standard 21 </td <td>3.2.1 Applicable Standard</td> <td>15</td>	3.2.1 Applicable Standard	15
3.2.4 Test Procedure 16 3.2.5 Corrected Amplitude & Margin Calculation. 16 3.3.6 DB EMISSION BANDWIDTH: 17 3.3.1 Applicable Standard 17 3.3.2 EUT Setup. 17 3.3.3 Test Procedure 17 3.4 99% OCCUPIED BANDWIDTH: 18 3.4.1 EUT Setup. 18 3.4.2 Test Procedure 18 3.4.1 EUT Setup. 18 3.4.2 Test Procedure 18 3.5.1 Applicable Standard 19 3.5.2 EUT Setup. 19 3.5.1 Applicable Standard 19 3.5.2 EUT Setup. 19 3.5.3 Test Procedure 19 3.6 MAXIMUM POWER SPECTRAL DENSITY: 20 3.6.1 Applicable Standard 20 3.6.2 EUT Setup. 20 3.6.1 Applicable Standard 20 3.6.2 EUT Setup. 20 3.6.1 Applicable Standard 20 3.6.2 EUT Setup. 20 3.6.1 Applicable Standard 20 3.7 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE: 21 3.7.1 Applicable Standard 21		
3.2.5 Corrected Amplitude & Margin Calculation		
3.3 6 DB EMISSION BANDWIDTH: 17 3.3.1 Applicable Standard 17 3.2 EUT Setup 17 3.3 Test Procedure 17 3.4 99% OCCUPIED BANDWIDTH: 18 3.4.1 EUT Setup 18 3.4.2 Test Procedure 18 3.4.2 Test Procedure 18 3.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER: 19 3.5.1 Applicable Standard 19 3.5.2 EUT Setup 19 3.5.3 Test Procedure 19 3.5.4 Applicable Standard 19 3.5.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER: 19 3.5.1 Applicable Standard 19 3.5.2 EUT Setup 19 3.6.1 Applicable Standard 20 3.6.1 Applicable Standard 20 3.6.1 Applicable Standard 20 3.6.2 EUT Setup 20 3.6.1 Applicable Standard 20 3.6.2 EUT Setup 20 3.6.1 Applicable Standard 20 3.6.1 Applicable Standard 20 3.7 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE: 21 3.7.1 Applicable Standard 21		
3.3.2 EUT Setup		
3.3.2 EUT Setup	3.3.1 Applicable Standard	
3.4 99% OCCUPIED BANDWIDTH: 18 3.4.1 EUT Setup. 18 3.4.2 Test Procedure 18 3.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER: 19 3.5.1 Applicable Standard 19 3.5.2 EUT Setup. 19 3.5.3 Test Procedure 19 3.6 MAXIMUM POWER SPECTRAL DENSITY: 20 3.6.1 Applicable Standard 20 3.6.2 EUT Setup. 20 3.6.3 Test Procedure 20 3.6.1 Applicable Standard 20 3.6.2 EUT Setup. 20 3.6.7 I Applicable Standard 20 3.6.7 I Applicable Standard 20 3.6.7 I Applicable Standard 20 3.7.1 Noplicable Standard 21	3.3.2 EUT Setup	17
3.4.1 EUT Setup		
3.4.2Test Procedure18 3.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER: 193.5.1 Applicable Standard193.5.2 EUT Setup193.5.3Test Procedure19 3.6 MAXIMUM POWER SPECTRAL DENSITY:20 3.6.1 Applicable Standard203.6.2 EUT Setup203.6.3Test Procedure203.6.3Test Procedure203.6.1 Applicable Standard203.6.2 FUT Setup203.6.3Test Procedure203.6.3Test Procedure203.7 100 KHz BANDWIDTH OF FREQUENCY BAND EDGE:213.7.1 Applicable Standard21		
3.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER: 19 3.5.1 Applicable Standard 19 3.5.2 EUT Setup 19 3.5.3 Test Procedure 19 3.6 MAXIMUM POWER SPECTRAL DENSITY: 20 3.6.1 Applicable Standard 20 3.6.2 EUT Setup 20 3.6.3 Test Procedure 20 3.6.1 Applicable Standard 20 3.6.2 FUT Setup 20 3.6.3 Test Procedure 20 3.6.3 Test Procedure 20 3.6.1 Applicable Standard 20 3.6.2 FUT Setup 20 3.6.3 Test Procedure 20 3.7 100 KHz BANDWIDTH OF FREQUENCY BAND EDGE: 21 3.7.1 Applicable Standard 21		
3.5.1 Applicable Standard. 19 3.5.2 EUT Setup. 19 3.5.3 Test Procedure 19 3.6 MAXIMUM POWER SPECTRAL DENSITY: 20 3.6.1 Applicable Standard. 20 3.6.2 EUT Setup. 20 3.6.3 Test Procedure 20 3.6.1 Applicable Standard. 20 3.6.2 FUT Setup. 20 3.6.3 Test Procedure 20 3.6.3 Test Procedure 20 3.7 100 KHz BANDWIDTH OF FREQUENCY BAND EDGE: 21 3.7.1 Applicable Standard. 21		
3.5.2 EUT Setup		
3.5.3Test Procedure 19 3.6 MAXIMUM POWER SPECTRAL DENSITY: 20 3.6.1 Applicable Standard 20 3.6.2 EUT Setup 20 3.6.3Test Procedure 20 3.6.7 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE: 21 3.7.1 Applicable Standard 21	3.5.1 Applicable Standard	
3.6 MAXIMUM POWER SPECTRAL DENSITY: 20 3.6.1 Applicable Standard 20 3.6.2 EUT Setup 20 3.6.3Test Procedure 20 3.7 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE: 21 3.7.1 Applicable Standard 21		
3.6.2 EUT Setup		
3.6.2 EUT Setup	3.6.1. Applicable Standard	20
3.6.3Test Procedure .20 3.7 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE: .21 3.7.1 Applicable Standard .21		
3.7.1 Applicable Standard21		
	3.7 100 KHz BANDWIDTH OF FREQUENCY BAND EDGE:	21
3.7.2 EUT Setun 21		
5/72 D0 1 Seep	3.7.2 EUT Setup	21

Page 3 of 49

Report No.: CR21110084-00A

3.7.3 Test Procedure	
3.8.1 EUT Setup 3.8.2Test Procedure 3.9 ANTENNA REQUIREMENT	
3.9.1 Applicable Standard 3.9.2 Judgment	
4. Test DATA AND RESULTS	
4.1 AC LINE CONDUCTED EMISSIONS	23
4.2 RADIATION SPURIOUS EMISSIONS	26
4.3 6 DB EMISSION BANDWIDTH:	
4.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER:	
4.6 MAXIMUM POWER SPECTRAL DENSITY:	
4.7 100 kHz Bandwidth of Frequency Band Edge:	43
4.8 DUTY CYCLE:	47
5. RF EXPOSURE EVALUATION	
5.1 MAXIMUM PERMISSIBLE EXPOSURE (MPE)	49
5.1.1 APPLICABLE STANDARD	
5.1.2 PROCEDURE	49
5.1.3 CALCULATED RESULT	

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	SP880
EUT Model:	B9G-HB76V70000
Operation Frequency:	2412-2462 MHz(802.11b/g/n ht20)
Maximum Peak Output Power (Conducted):	24.02 dBm
Modulation Type:	DSSS, OFDM
Rated Input Voltage:	DC 9V from adapter
Serial Number:	CR21100084-S1
EUT Received Date:	2021.11.23
EUT Received Status:	Good

Operation Frequency Detail:

For 802.11b/g/n ht20:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

Per section 15.31(m), the lowest frequency, middle frequency, and highest frequency were performed the test as below:

Test Channel	Frequency (MHz)
Lowest	2412
Middle	2437
Highest	2462

Antenna Information Detail▲:

Antenna Manufacturer	Antenna	input impedance	Antenna Gain	§15.203
	Type	(Ohm)	/Frequency Range	Requirement
Fujian Newland Payment Technology Co.,Ltd.	PIFA	50	2.2 dBi/2.4~2.5GHz	Compliance

The Method of §15.203 Compliance:

Antenna must be permanently attached to the unit.

Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Accessory Information:

Accessory Description	Manufacturer	Model	Parameters
Adapter	SHENZHEN HONOR ELECTRONIC Co., Ltd	ADS-25SGP-12 09023G	Input: 100-240V~50/60Hz Max. 0.7A Output: 9V 2.5A

1.2 Description of Test Configuration

1.2.1 EUT Operation Condition:

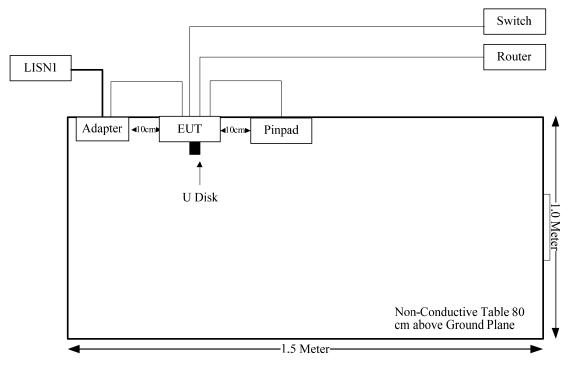
For 802.11b/g/n:

EUT Operation Mode:		The system was configured for testing in Engineering Mode, which was provided by the manufacturer.		
Equ	Equipment Modifications:			
E	EUT Exercise Software: Engineering mode			
	The software "Engineering mode "was provided by manufacturer. The maximum power was configured as below, that was provided by the manufacturer ▲:			wer was configured
Test Modes	Data Rate]	Power Level Setting	
Test Widdes	Data Kale	Lowest Channel	Middle Channel	Highest Channel
802.11b	1Mbps	40	40	40
000 11	0.5	40	40	40

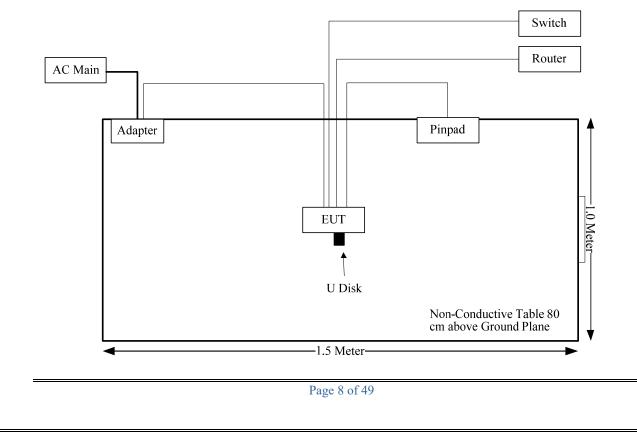
802.11g	6Mbps	40	40	40
802.11n ht20	6.5Mbps	40	40	40
The above are the worst-case data rates, which are determined for each mode based upon investigations				

by measuring the average power and PSD across all data rates, bandwidths, and modulations.

1.2.2 Support Equipment List and Details

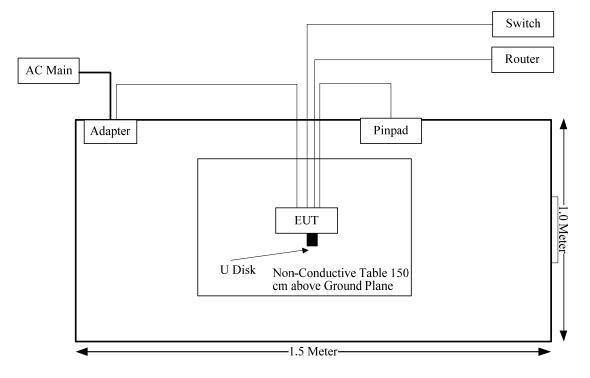

Manufacturer	Description	Model	Serial Number
SANDisk	USB Flash Disk	16G	16G-1
TOTOLINK	Wireless Router	LR1200	LR1200155P00167
Huawei	Switch	eSpaceU1981IP	H256335412
Newland	Pinpad	ME51	CR21100084-S6

1.2.3 Support Cable List and Details


Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
RJ45 Cable	No	No	10	EUT	Router
RJ11 Cable	No	No	10	EUT	Switch
Pinpad Cable	No	No	3	EUT	Pinpad
Adapter Cable	No	No	1.2	Adapter	EUT

Report No.: CR21110084-00A

1.2.4 Block Diagram of Test Setup AC line conducted emissions:



Spurious Emissions Below 1GHz:

Report No.: CR21110084-00A

Spurious Emissions Above 1GHz:

1.3 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	$\pm 5\%$
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.15 dB,200M~1GHz: 5.61 dB,1G~6GHz: 5.14 dB,
Oliwanted Emissions, fadiated	6G~18GHz: 5.93 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.26 dB
Temperature	±1°C
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%
AC Power Lines Conducted Emission	2.8 dB (150 kHz to 30 MHz)

2. SUMMARY OF TEST RESULTS

Standard(s) Section	Test Items	Result
§15.207(a)	AC line conducted emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Bandwidth	Compliance
§15.247(b)(3)	Maximum Conducted Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance
§15.203	Antenna Requirement	Compliance
\$15.247 (i) & \$1.1310 & \$2.1091	Maximum Permissible Exposure (MPE)	Compliance

3. REQUIREMENTS AND TEST PROCEDURES

3.1 AC Line Conducted Emissions

3.1.1 Applicable Standard

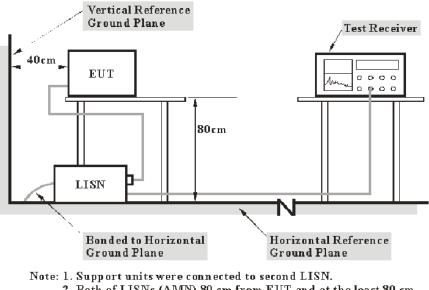
FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted limit (dBµV)	
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:


(1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μ V within the frequency band 535-1705 kHz, as measured using a 50 μ H/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

3.1.2 EUT Setup

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

3.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

3.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the reported associated for each of the current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the reported over all the current-carrying conductors.

3.1.5 Corrected Amplitude & Margin Calculation

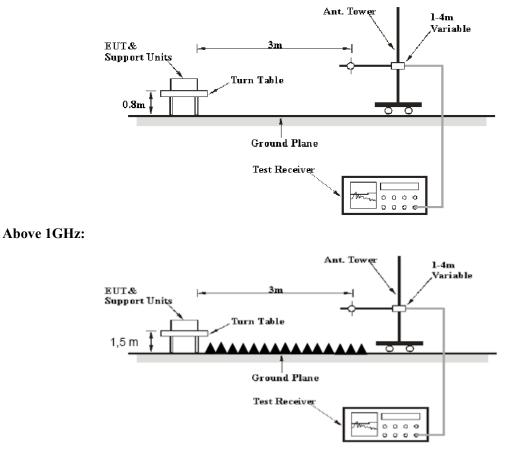
The basic equation is as follows:

Result = Reading + Factor Factor = attenuation caused by cable loss + voltage division factor of AMN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

3.2 Radiation Spurious Emissions


3.2.1 Applicable Standard

FCC §15.247 (d);

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

3.2.2 EUT Setup

Below 1GHz:

The radiated emissions were performed in the 3 meters distance, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

3.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

30MHz-1000MHz:

Measurement	RBW	Video B/W	IF B/W
QP	120 kHz	300 kHz	120kHz

1GHz-25GHz:

Measurement	Measurement Duty cycle		Video B/W
РК	Any	1MHz	3 MHz
A¥7	>98%	1MHz	10 Hz
AV	<98%	1MHz	1/T

Note: T is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

3.2.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

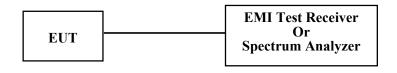
3.2.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor Factor = Antenna Factor + Cable Loss- Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit – Result

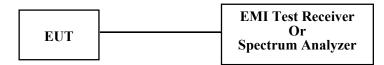

3.3 6 dB Emission Bandwidth:

3.3.1 Applicable Standard

FCC §15.247 (a)(2)

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

3.3.2 EUT Setup


3.3.3Test Procedure

According to ANSI C63.10-2013 Section 11.8

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.4 99% Occupied Bandwidth:

3.4.1 EUT Setup

3.4.2Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

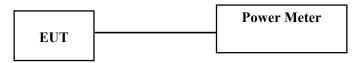
• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).


3.5 Maximum peak conducted output power:

3.5.1 Applicable Standard

FCC §15.247 (b)(3)

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

3.5.2 EUT Setup

3.5.3Test Procedure

According to ANSI C63.10-2013 Section 11.9.1.3

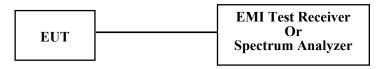
The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

a) Set the EUT in transmitting mode.

b) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to test equipment.

c) Add a correction factor to the display.

d) Set the power meter to test peak output power, record the result.


3.6 Maximum power spectral density:

3.6.1 Applicable Standard

FCC §15.247 (e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

3.6.2 EUT Setup

3.6.3Test Procedure

According to ANSI C63.10-2013 Section 11.10.2

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.

d) Set the VBW \geq [3 · RBW].

e) Detector = peak.

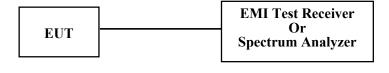
f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.


3.7 100 kHz Bandwidth of Frequency Band Edge:

3.7.1 Applicable Standard

FCC §15.247 (d);

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

3.7.2 EUT Setup

3.7.3 Test Procedure

According to ANSI C63.10-2013 Section 11.11

a) Set the center frequency and span to encompass frequency range to be measured.

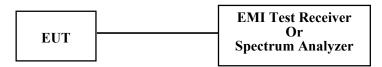
b) Set the RBW = 100 kHz.

c) Set the VBW \geq [3 × RBW].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.


g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

3.8 Duty Cycle:

3.8.1 EUT Setup

3.8.2Test Procedure

According to ANSI C63.10-2013 Section 11.6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

1) Set the center frequency of the instrument to the center frequency of the transmission.

2) Set $RBW \ge OBW$ if possible; otherwise, set RBW to the largest available value.

3) Set $VBW \ge RBW$. Set detector = peak or average.

4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7 \ \mu s$.)

3.9 Antenna Requirement

3.9.1 Applicable Standard

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

3.9.2 Judgment

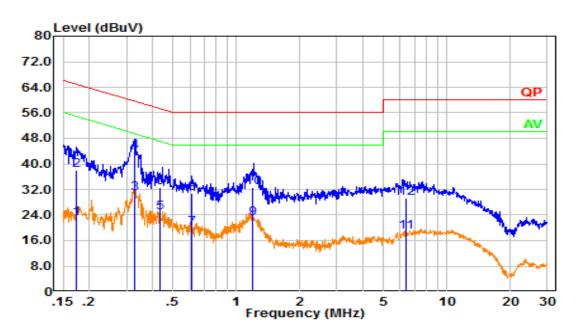
Please refer to the Antenna Information detail in Section 1.

4. Test DATA AND RESULTS

4.1 AC Line Conducted Emissions

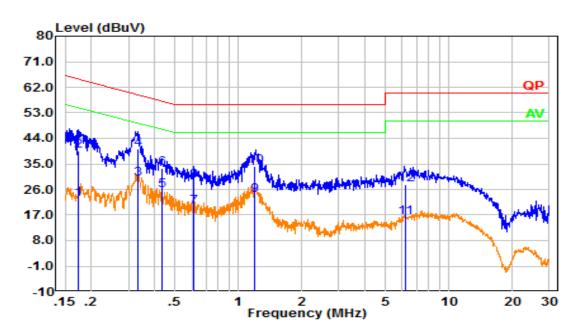
Serial Number:	CR21100084-S1	Test Date:	2021-11-29
Test Site:	CE	Test Mode:	Transmitting (802.11b Middle channel was the worst)
Tester:	Nick Tang	Test Result:	Pass

Environmental Conditions:


L	Liivii oliinelitai	conditions.				
	Temperature: (℃)	21.4	Relative Humidity: (%)	65	ATM Pressure: (kPa)	101.4

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101132	2021-04-25	2022-04-24
R&S	EMI Test Receiver	ESR3	102726	2021-07-22	2022-07-21
MICRO-COAX	Coaxial Cable	UTIFLEX	C-0200-01	2021-08-08	2022-08-07
Audix	Test Software	E3	190306 (V9)	N/A	N/A


* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

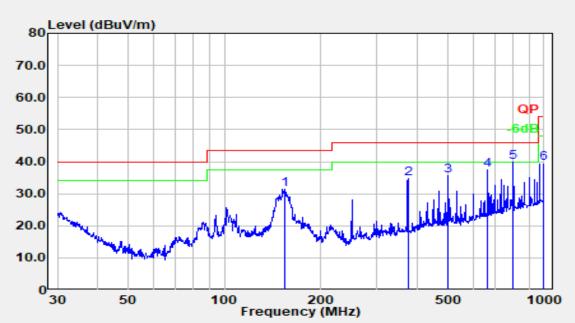
Line:

No.	Frequency	Reading	Factor	Result	Limit	Margin	Detector
	(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	
1	0.174	13.34	9.61	22.95	54.75	31.81	Average
2	0.174	28.52	9.61	38.13	64.75	26.62	QP
3	0.328	21.27	9.61	30.88	49.49	18.62	Average
4	0.328	34.10	9.61	43.71	59.49	15.78	QP
5	0.432	15.03	9.61	24.64	47.21	22.57	Average
6	0.432	22.91	9.61	32.52	57.21	24.69	QP
7	0.614	10.39	9.62	20.01	46.00	25.99	Average
8	0.614	21.15	9.62	30.77	56.00	25.23	QP
9	1.189	13.22	9.62	22.84	46.00	23.16	Average
10	1.189	22.98	9.62	32.60	56.00	23.40	QP
11	6.370	8.96	9.66	18.62	50.00	31.38	Average
12	6.370	19.54	9.66	29.20	60.00	30.80	QP

Neutral:

No.	Frequency	Reading	Factor	Result	Limit	Margin	Detector
	(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	
1	0.172	13.10	9.61	22.71	54.84	32.13	Average
2	0.172	29.96	9.61	39.57	64.84	25.27	QP
3	0.335	20.21	9.61	29.82	49.33	19.52	Average
4	0.335	30.65	9.61	40.26	59.33	19.07	QP
5	0.433	16.14	9.61	25.75	47.20	21.45	Average
6	0.433	23.94	9.61	33.55	57.20	23.65	QP
7	0.613	10.37	9.62	19.99	46.00	26.01	Average
8	0.613	19.48	9.62	29.10	56.00	26.90	QP
9	1.194	14.39	9.62	24.01	46.00	21.99	Average
10	1.194	24.57	9.62	34.19	56.00	21.81	QP
11	6.213	6.33	9.66	15.99	50.00	34.01	Average
12	6.213	17.93	9.66	27.59	60.00	32.41	QP

4.2 Radiation Spurious Emissions

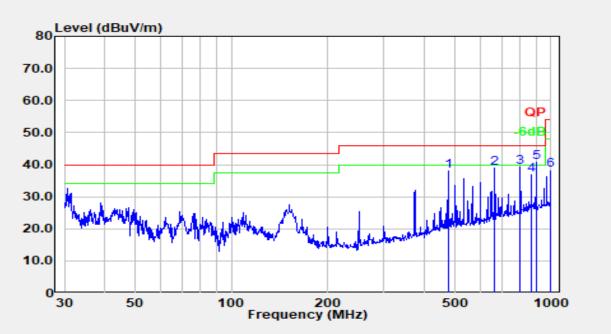

Serial Number:	CR21100084-S1	Test Date:	2021-11-29
Test Site:	966-1, 966-2	Test Mode:	Transmitting
Tester:	Great Qiao, Carl Liang	Test Result:	Pass

Environmental Conditions:						
Temperatur (°	21 5~23 5	Relative Humidity: (%)	55~62	ATM Pressure: (kPa)	101.4	

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Antenna	JB6	A082520-5	2020-10-19	2023-10-18
R&S	EMI Test Receiver	ESR3	102724	2021-07-22	2022-07-21
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0470-02	2021-07-18	2022-07-17
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0780-01	2021-07-18	2022-07-17
Sonoma	Amplifier	310N	186165	2021-07-18	2022-07-17
ETS-Lindgren	Horn Antenna	3115	9912-5985	2020-10-13	2023-10-12
PASTERNACK	Horn Antenna	PE9852/2F-20	112002	2021-02-05	2023-02-04
R&S	Spectrum Analyzer	FSV40	101591	2021-07-22	2022-07-21
MICRO-COAX	Coaxial Cable	UFA210A-1- 1200-70U300	217423-008	2021-08-08	2022-08-07
MICRO-COAX	Coaxial Cable	UFA210A-1- 2362-300300	235780-001	2021-08-08	2022-08-07
MICRO-COAX	Coaxial Cable	UFB142A-1- 2362-200200	235772-001	2021-08-08	2022-08-07
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2021-11-10	2022-11-09
AH	Preamplifier	PAM-1840VH	190	2021-11-20	2022-11-19
Audix	Test Software	E3	201021 (V9)	N/A	N/A
E-Microwave	Band Rejection Filter	2400-2483.5MHz	OE01902424	2021-08-08	2022-08-07
Mini Circuits	High Pass Filter	VHF-6010+	31119	2021-08-08	2022-08-07

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).



1) 30MHz-1GHz(802.11b Low channel was the worst) Horizontal:

No.	Frequency	Reading	Factor	Result	Limit	Margin	Detector
	(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	
1	154.821	43.83	-12.33	31.50	43.50	12.00	Peak
2	375.939	44.16	-9.48	34.68	46.00	11.32	Peak
3	501.179	41.93	-6.22	35.71	46.00	10.29	Peak
4	668.142	41.81	-4.38	37.43	46.00	8.57	Peak
5	801.786	42.30	-2.45	39.85	46.00	6.15	Peak
6	1000.000	38.66	0.77	39.43	54.00	14.57	Peak

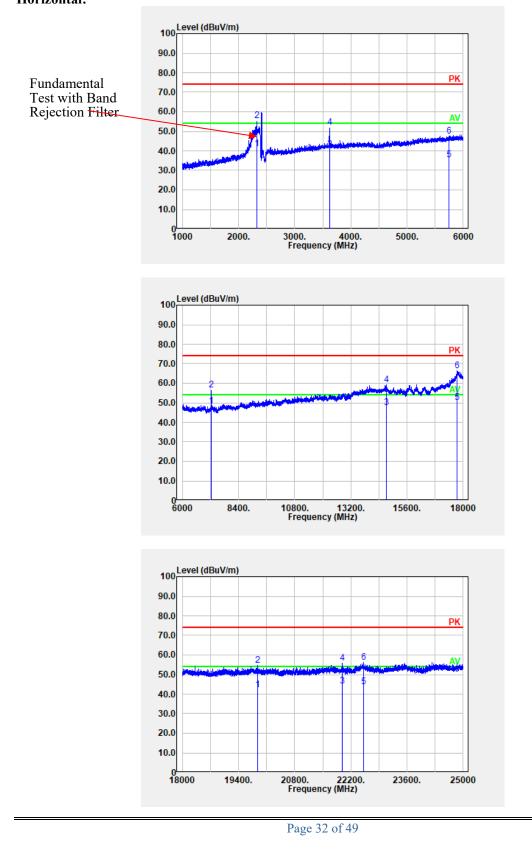
Report No.: CR21110084-00A

Vertical:

No.	Frequency	Reading	Factor	Result	Limit	Margin	Detector
	(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	
1	477.169	44.68	-6.51	38.17	46.00	7.83	Peak
2	668.142	43.33	-4.38	38.95	46.00	7.05	Peak
3	801.786	41.78	-2.45	39.33	46.00	6.67	Peak
4	869.130	38.30	-1.47	36.83	46.00	9.17	Peak
5	900.147	41.86	-1.23	40.64	46.00	5.36	QP
6	1000.000	37.47	0.77	38.24	54.00	15.76	Peak

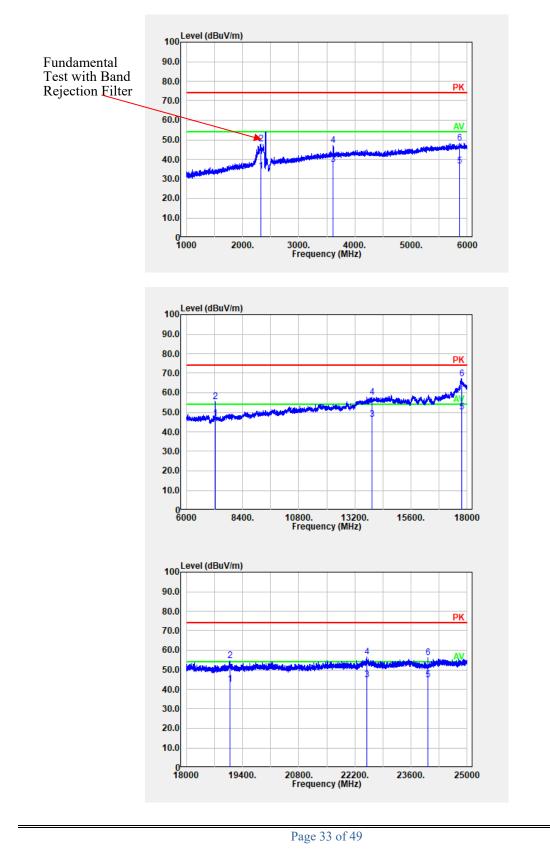
2) 1-25GHz: 8<u>02.11b Mode:</u>

F	Rece	eiver	Dulu	- En de la	Denk	T ••		
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel: 2412 MHz								
2412.00	77.98	РК	Н	31.53	109.51	N/A	N/A	
2412.00	72.13	AV	Н	31.53	103.66	N/A	N/A	
2412.00	72.77	РК	V	31.53	104.30	N/A	N/A	
2412.00	68.54	AV	V	31.53	100.07	N/A	N/A	
2390.00	29.49	PK	Н	31.46	60.95	74.00	13.05	
2390.00	16.61	AV	Н	31.46	48.07	54.00	5.93	
4824.00	35.62	PK	Н	10.94	46.56	74.00	27.44	
4824.00	23.84	AV	Н	10.94	34.78	54.00	19.22	
7236.00	42.54	PK	Н	14.44	56.98	74.00	17.02	
7236.00	34.36	AV	Н	14.44	48.80	54.00	5.20	
2331.00	52.24	PK	Н	3.24	55.48	74.00	18.52	
2331.00	37.51	AV	Н	3.24	40.75	54.00	13.25	
3618.00	42.31	PK	Н	8.01	50.32	74.00	23.68	
3618.00	31.69	AV	Н	8.01	39.70	54.00	14.30	
		N	Middle Ch	annel: 2437 M	Hz			
2437.00	77.63	PK	Н	31.60	109.23	N/A	N/A	
2437.00	72.65	AV	Н	31.60	104.25	N/A	N/A	
2437.00	71.86	PK	V	31.60	103.46	N/A	N/A	
2437.00	66.61	AV	V	31.60	98.21	N/A	N/A	
4874.00	35.62	РК	Н	11.05	46.67	74.00	27.33	
4874.00	22.59	AV	Н	11.05	33.64	54.00	20.36	
7311.00	41.58	PK	Н	14.80	56.38	74.00	17.62	
7311.00	32.69	AV	Н	14.80	47.49	54.00	6.51	
3659.00	41.58	PK	Н	8.11	49.69	74.00	24.31	
3659.00	31.24	AV	Н	8.11	39.35	54.00	14.65	
2277.00	52.48	PK	Н	3.09	55.57	74.00	18.43	
2277.00	37.56	AV	Н	3.09	40.65	54.00	13.35	
			High Cha	nnel: 2462MH	Z			
2462.00	77.42	PK	Н	31.63	109.05	N/A	N/A	
2462.00	72.48	AV	Н	31.63	104.11	N/A	N/A	
2462.00	72.74	PK	V	31.63	104.37	N/A	N/A	
2462.00	67.02	AV	V	31.63	98.65	N/A	N/A	
2483.50	29.71	РК	Н	31.64	61.35	74.00	12.65	
2483.50	15.53	AV	Н	31.64	47.17	54.00	6.83	
4924.00	35.83	PK	Н	11.18	47.01	74.00	26.99	
4924.00	23.49	AV	Н	11.18	34.67	54.00	19.33	
7386.00	39.52	РК	Н	14.89	54.41	74.00	19.59	
7386.00	32.87	AV	Н	14.89	47.76	54.00	6.24	
3695.00	43.95	РК	Н	8.33	52.28	74.00	21.72	
3695.00	32.35	AV	Н	8.33	40.68	54.00	13.32	


802.11g Mode:

F	Rece	eiver	D I			.		
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel: 2412 MHz								
2412.00	79.86	PK	Н	31.53	111.39	N/A	N/A	
2412.00	66.31	AV	Н	31.53	97.84	N/A	N/A	
2412.00	75.47	PK	V	31.53	107.00	N/A	N/A	
2412.00	62.38	AV	V	31.53	93.91	N/A	N/A	
2390.00	40.20	PK	Н	31.46	71.66	74.00	2.34	
2390.00	20.18	AV	Н	31.46	51.64	54.00	2.36	
4824.00	35.91	PK	Н	10.94	46.85	74.00	27.15	
4824.00	22.97	AV	Н	10.94	33.91	54.00	20.09	
7236.00	42.95	PK	Н	14.44	57.39	74.00	16.61	
7236.00	27.80	AV	Н	14.44	42.24	54.00	11.76	
2378.00	58.61	PK	Н	3.43	62.04	74.00	11.96	
2378.00	37.88	AV	Н	3.43	41.31	54.00	12.69	
			Middle Ch	annel: 2437 MI	Hz		I.	
2437.00	80.01	PK	Н	31.60	111.61	N/A	N/A	
2437.00	66.99	AV	Н	31.60	98.59	N/A	N/A	
2437.00	75.43	PK	V	31.60	107.03	N/A	N/A	
2437.00	62.54	AV	V	31.60	94.14	N/A	N/A	
4874.00	35.57	PK	Н	11.05	46.62	74.00	27.38	
4874.00	23.62	AV	Н	11.05	34.67	54.00	19.33	
7311.00	42.35	PK	Н	14.80	57.15	74.00	16.85	
7311.00	26.89	AV	Н	14.80	41.69	54.00	12.31	
2277.00	53.69	PK	Н	3.09	56.78	74.00	17.22	
2277.00	37.95	AV	Н	3.09	41.04	54.00	12.96	
		•	High Cha	nnel: 2462MH	Z		•	
2462.00	80.91	PK	Н	31.63	112.54	N/A	N/A	
2462.00	65.68	AV	Н	31.63	97.31	N/A	N/A	
2462.00	75.73	PK	V	31.63	107.36	N/A	N/A	
2462.00	62.95	AV	V	31.63	94.58	N/A	N/A	
2483.50	39.36	PK	Н	31.64	71.00	74.00	3.00	
2483.50	20.11	AV	Н	31.64	51.75	54.00	2.25	
4924.00	35.29	PK	Н	11.18	46.47	74.00	27.53	
4924.00	22.78	AV	Н	11.18	33.96	54.00	20.04	
7386.00	41.17	PK	Н	14.89	56.06	74.00	17.94	
7386.00	26.95	AV	Н	14.89	41.84	54.00	12.16	
2298.00	54.64	PK	Н	3.13	57.77	74.00	16.23	
2298.00	37.58	AV	Н	3.13	40.71	54.00	13.29	

802.11n ht20 Mode:


E	Receiver		Dolar	Factor	Descult	I :	Marrie	
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel: 2412 MHz								
2412.00	79.08	РК	Н	31.53	110.61	N/A	N/A	
2412.00	66.09	AV	Н	31.53	97.62	N/A	N/A	
2412.00	74.36	PK	V	31.53	105.89	N/A	N/A	
2412.00	62.34	AV	V	31.53	93.87	N/A	N/A	
2390.00	39.10	PK	Н	31.46	70.56	74.00	3.44	
2390.00	19.79	AV	Н	31.46	51.25	54.00	2.75	
4824.00	35.79	PK	Н	10.94	46.73	74.00	27.27	
4824.00	24.15	AV	Н	10.94	35.09	54.00	18.91	
7236.00	42.55	PK	Н	14.44	56.99	74.00	17.01	
7236.00	26.78	AV	Н	14.44	41.22	54.00	12.78	
2385.00	58.46	PK	Н	3.46	61.92	74.00	12.08	
2385.00	39.33	AV	Н	3.46	42.79	54.00	11.21	
		1	Middle Ch	annel: 2437 MI	Iz	•		
2437.00	79.27	PK	Н	31.60	110.87	N/A	N/A	
2437.00	65.93	AV	Н	31.60	97.53	N/A	N/A	
2437.00	74.24	PK	V	31.60	105.84	N/A	N/A	
2437.00	60.84	AV	V	31.60	92.44	N/A	N/A	
4874.00	34.42	РК	Н	11.05	45.47	74.00	28.53	
4874.00	23.55	AV	Н	11.05	34.60	54.00	19.40	
7311.00	42.15	PK	Н	14.80	56.95	74.00	17.05	
7311.00	26.31	AV	Н	14.80	41.11	54.00	12.89	
2277.00	51.78	PK	Н	3.09	54.87	74.00	19.13	
2277.00	38.42	AV	Н	3.09	41.51	54.00	12.49	
	-		High Cha	nnel: 2462MHz	Z			
2462.00	78.75	PK	Н	31.63	110.38	N/A	N/A	
2462.00	66.19	AV	Н	31.63	97.82	N/A	N/A	
2462.00	74.47	РК	V	31.63	106.10	N/A	N/A	
2462.00	60.63	AV	V	31.63	92.26	N/A	N/A	
2483.50	38.84	РК	Н	31.64	70.48	74.00	3.52	
2483.50	19.84	AV	Н	31.64	51.48	54.00	2.52	
4924.00	35.47	РК	Н	11.18	46.65	74.00	27.35	
4924.00	23.51	AV	Н	11.18	34.69	54.00	19.31	
7386.00	40.46	РК	Н	14.89	55.35	74.00	18.66	
7386.00	24.36	AV	Н	14.89	39.25	54.00	14.75	
2298.00	53.56	PK	Н	3.13	56.69	74.00	17.31	
2298.00	39.21	AV	Н	3.13	42.34	54.00	11.66	

Report No.: CR21110084-00A

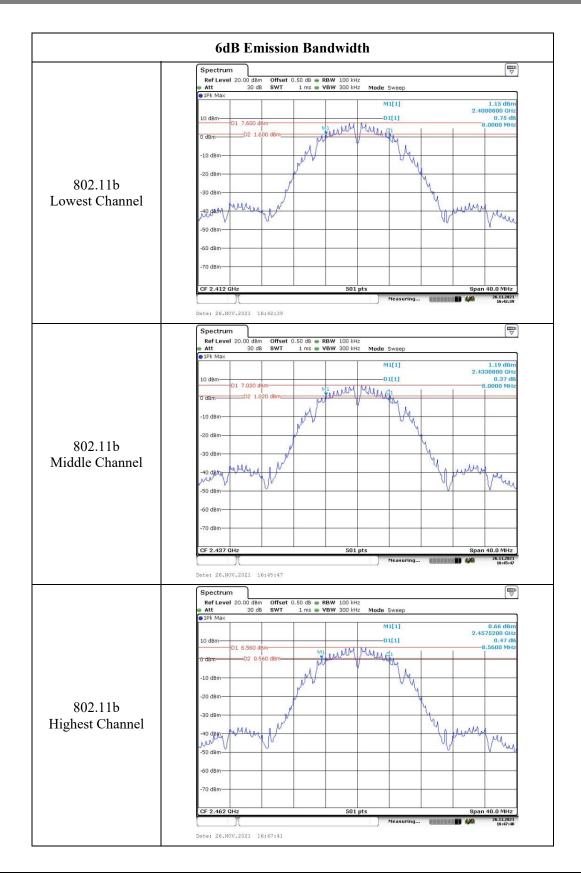
Worst Test plots(802.11b low channel was the worst) Horizontal:

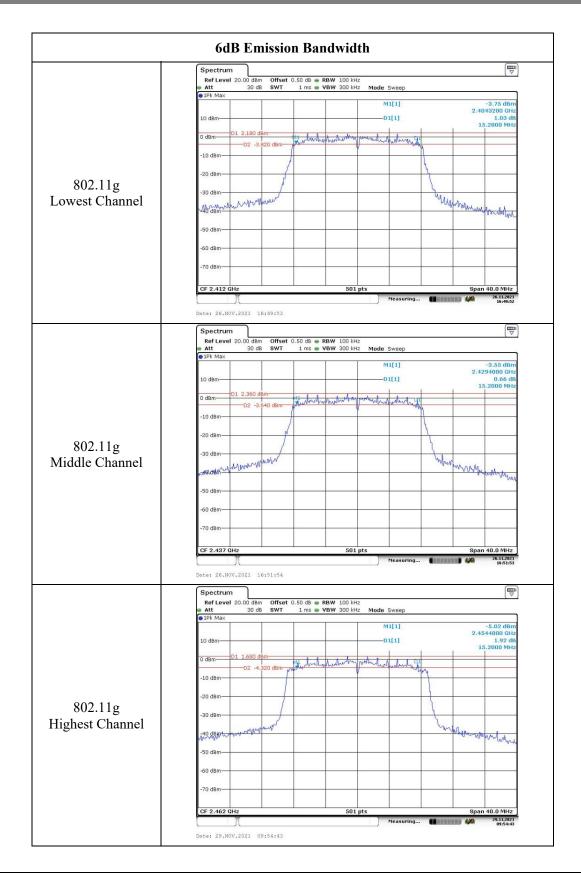
Vertical:

4.3 6 dB Emission Bandwidth:

Serial Number:	CR21100084-S1	Test Date:	2021/11/26~2021/11/29
Test Site:	RF	Test Mode:	Transmitting
Tester:	Wolf Mo	Test Result:	Pass

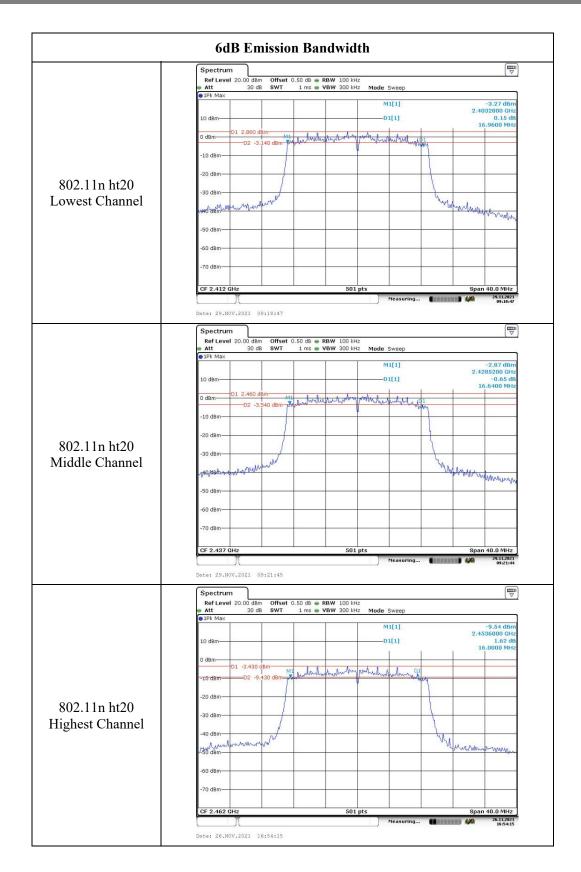
Environmental Conditions:						
Temperature: (℃)	25.9~25.9	Relative Humidity: (%)	60~61	ATM Pressure: (kPa)	101.1~101.4	


Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101474	2021-07-22	2022-07-21
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:


Test Modes	Test Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)
	2412	8.000	0.5
802.11b	2437	8.000	0.5
	2462	8.560	0.5
	2412	15.280	0.5
802.11g	2437	15.200	0.5
	2462	15.200	0.5
	2412	16.960	0.5
802.11n ht20	2437	16.640	0.5
	2462	16.000	0.5

Page 36 of 49

China Certification ICT Co., Ltd (Dongguan)

Page 37 of 49

4.5 Maximum peak conducted output power:

Serial Number:	CR21100084-S1	Test Date:	2021/11/29
Test Site:	RF	Test Mode:	Transmitting
Tester:	Wolf Mo	Test Result:	Pass

Environmental Conditions:					
Temperature: (°C)	25.9	Relative Humidity: (%)	60	ATM Pressure: (kPa)	101.4

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Agilent	USB Wideband Power Sensor	U2021XA	MY54080015	2021-08-08	2022-08-07
Coaxial Attenuator	2W-SMA-JK- 18G	21060301	2021-08-08	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

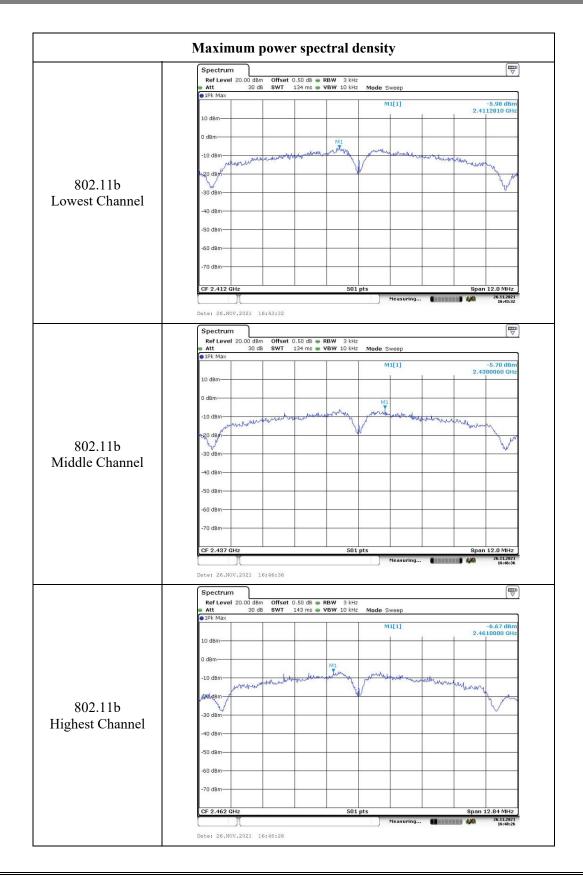
Test Data:

Test Modes	Test Channel	Test Frequency (MHz)	Maximum Conducted Peak Output Power (dBm)	Limit (dBm)
	Lowest	2412	19.85	30
802.11b	Middle	2437	19.51	30
	Highest	2462	19.28	30
	Lowest	2412	24.02	30
802.11g	Middle	2437	23.95	30
	Highest	2462	23.67	30
	Lowest	2412	23.95	30
802.11n ht20	Middle	2437	23.82	30
	Highest	2462	23.01	30

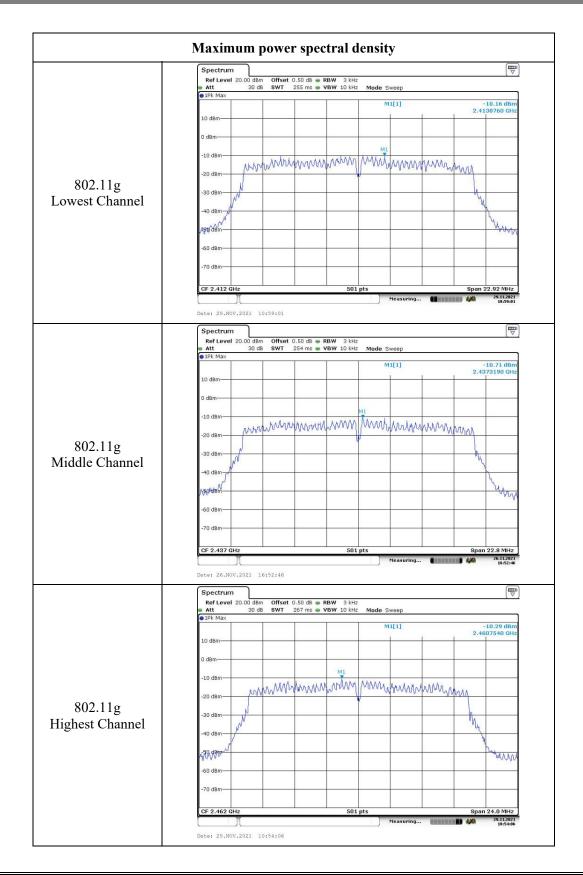
4.6 Maximum power spectral density:

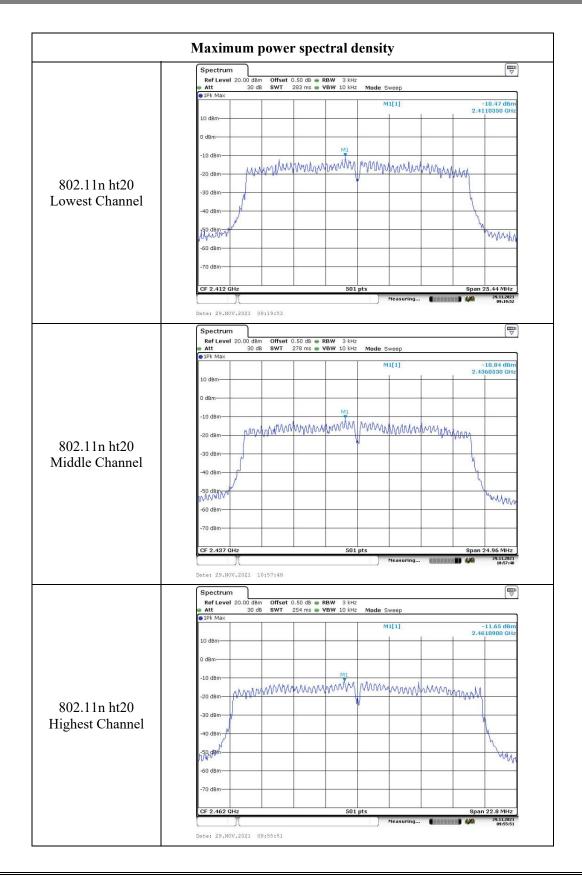
Serial Number:	CR21100084-S1	Test Date:	2021/11/26~2021/11/29
Test Site:	RF	Test Mode:	Transmitting
Tester:	Wolf Mo	Test Result:	Pass

Environmental Conditions:					
Temperature: (℃)	23.5~25.9	Relative Humidity: (%)	40~60	ATM Pressure: (kPa)	101.3~101.4


Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101474	2021/7/22	2022/7/21
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A

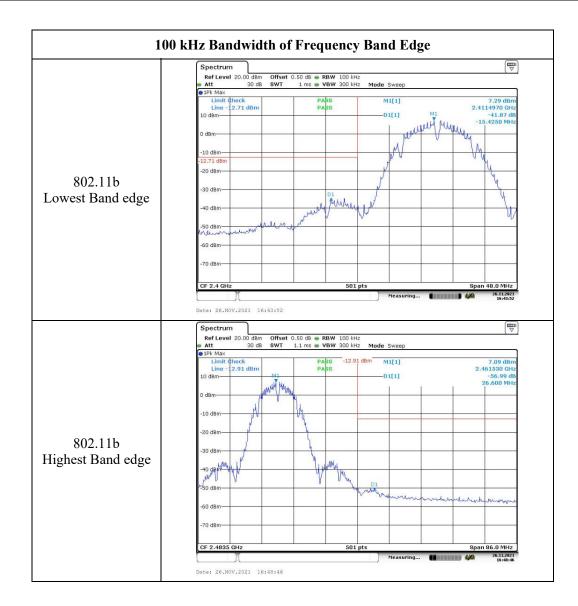

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

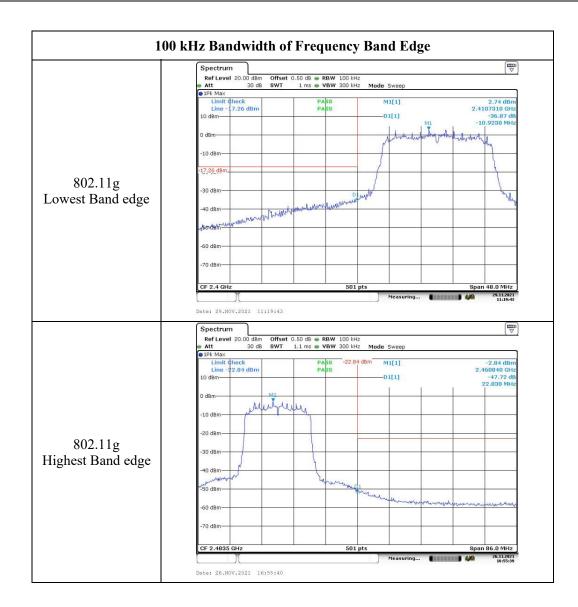

Test Data:

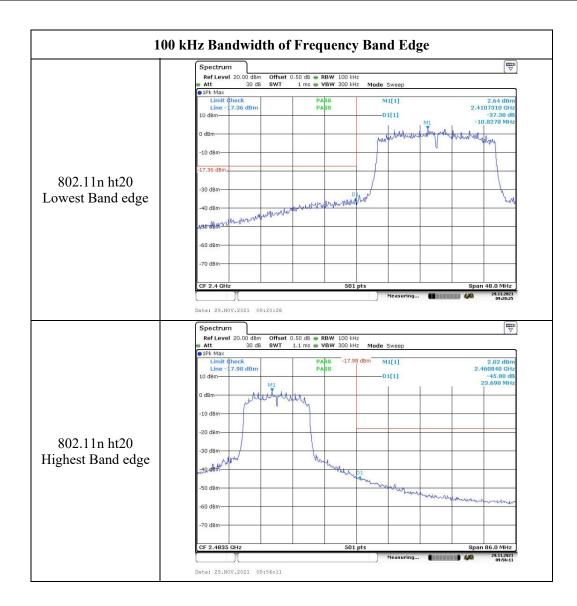
Test Channel	Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
	2412	-5.98	8.00
802.11b	2437	-5.70	8.00
	2462	-6.67	8.00
	2412	-10.16	8.00
802.11g	2437	-10.71	8.00
	2462	-10.29	8.00
	2412	-10.47	8.00
802.11n ht20	2437	-10.84	8.00
	2462	-11.65	8.00

Page 40 of 49

4.7 100 kHz Bandwidth of Frequency Band Edge:


Serial Number:	CR21100084-S1	Test Date:	2021/11/26~2021/11/29
Test Site:	RF	Test Mode:	Transmitting
Tester:	Wolf Mo	Test Result:	Pass


Environmental Conditions:					
Temperature: (℃)	23.5~25.9	Relative Humidity: (%)	40~60	ATM Pressure: (kPa)	101.3~101.4


Test Equipment List and Details:

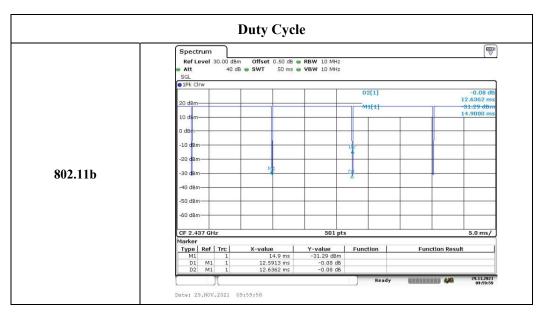
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101474	2021/7/22	2022/7/21
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

4.8 Duty Cycle:

Serial Number:	CR21100084-S1	Test Date:	2021/11/29
Test Site:	RF	Test Mode:	Transmitting
Tester:	Wolf Mo	Test Result:	N/A

Environmental Conditions:								
Temperature: (℃)	25.9	Relative Humidity: (%)	60	ATM Pressure: (kPa)	101.4			


Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101474	2021/7/22	2022/7/21
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Test Modes	Ton (ms)	Ton+off (ms)	Duty cycle (%)	
802.11b	12.591	12.636	99.64	
802.11g	2.131	2.289	93.10	
802.11n ht20	0.243	0.432	56.25	

China Certification ICT Co., Ltd (Dongguan)

Report No.: CR21110084-00A

	E	Outy Cycle	e			
	Spectrum					
	Ref Level 30.00 dBm Att 40 dB	Offset 0.50 dB SWT 8 ms	VBW 10 MHz			
	SGL					
	1Pk Clrw			M1[1]		-32.98 dBm
	2RdBm rown And	manufacture man	Marken Marken	who to the the	anne sherring	2.7666 ms
	10 dBm			OIII)~		2 1306 ms
	0 dBm					
	-10 dBm					
	-20 dBm					
802.11g	-30 dBm	ML		0102		
002.11g	-40 dBm	C.#		N.K.		hand
	-50 dBm					
	-60 dBm					
	CF 2.437 GHz		501 pts			800.0 µs/
	Marker			2		
	Type Ref Trc M1 1	X-value 2.7666 ms	-32.98 dBm	Function	Function	Result
	D1 M1 1 D2 M1 1	2.1306 ms 2.2885 ms	1.94 dB 0.57 dB			
	C III	2.2003 113	0.57 00			
				Ready	NAME AND ADDRESS OF TAXABLE PARTY.	29.11.2021
				Ready	WEIGHTEN .	29.11.2021 10:02:23
	Date: 29.NOV.2021 10:	:02:23		Ready	COMPANYARY .	
	Spectrum			Ready		29,11,2021 10:02:23
	Spectrum Ref Level 30.00 dBm	Offset 0.50 dB 🖷		Ready	unnunne ·	
	Spectrum Ref Level 30.00 dBm Att 40 dB SGL	Offset 0.50 dB 🖷	RBW 10 MHz VBW 10 MHz	Ready		
	Spectrum Ref Level 30.00 dBm Att 40 dB	Offset 0.50 dB 🖷				
	Spectrum Ref Level 30.00 dBm Att 40 dB SGL 9 Tek Cinw	Offset 0.50 dB ● ● SWT 2 ms ●	VBW 10 MHz			-35.77 dBm 703.25 µs
	Spectrum Ref Level 30.00 dBm Att 40 dB SGL 9 IPK CIrw 20 dBm CM	Offset 0.50 dB ● ● SWT 2 ms ●				-35.77 dBm
	Spectrum Ref Level 30.00 dBm Att 40 dB SGL 10 k Cirw 20 dBm 10 dBm 10 dBm	Offset 0.50 dB ● ● SWT 2 ms ●	VBW 10 MHz			-35.77 dBm 703.25 µs ⊮^∿∿N 2.56 dB
	Spectrum Ref Level 30.00 dBm Att 40 dB SGL 9 IPK CIrw 20 dBm CM	Offset 0.50 dB ● ● SWT 2 ms ●	VBW 10 MHz			-35.77 dBm 703.25 µs ⊮^∿∿N 2.56 dB
	Spectrum Ref Level 30.00 dBm Att 40 dB SGL 10 k Cirw 20 dBm 10 dBm 10 dBm	Offset 0.50 dB ● ● SWT 2 ms ●	VBW 10 MHz			-35.77 dBm 703.25 µs ⊮^∿∿N 2.56 dB
	Spectrum Ref Level 30.00 dBm Att 40 dB SGL 9 DR: Cirw 20 dBm N/M/N 10 dBm 0 dBm	Offset 0.50 dB ● ● SWT 2 ms ●	VBW 10 MHz			-35.77 dBm 703.25 µs ⊮^∿∿N 2.56 dB
802 11n bt20	Spectrum Ref Level 30.00 dBm Att 40 dB SGL 9 1Pk Cirw 20 dBm 10 dBm -10 dBm -20 dBm	0ffset 0.50 dB SWT 2 ms ////	VBW 10 MHz	M1[1] [84603.19.101	New York	-35.77 dBm 703.25 µs 2.56 dB 242.78 µs
802.11n ht20	Spectrum Ref Level 30.00 dBm Att 40 dB SGL 10k Clrw 20 dBm 0 dBm 10 dBm 0 dBm -10 dBm -00 dBm -30 dBm -00 dBm	Offset 0.50 dB ● ● SWT 2 ms ●	VBW 10 MHz	M1[1] [84603.19.101		-35.77 dBm 703.25 µs ⊮^∿∿N 2.56 dB
802.11n ht20	Spectrum Ref Level 30.00 dBm Att 40 dB SGL Ink: Cinw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	0ffset 0.50 dB SWT 2 ms ////	VBW 10 MHz	M1[1] [84603.19.101		-35.77 dBm 703.25 µs 2.56 dB 242.78 µs
802.11n ht20	Spectrum Ref Level 30.00 dBm Att 40 dB SGL 10k Clrw 20 dBm 0 dBm 10 dBm 0 dBm -10 dBm -00 dBm -30 dBm -00 dBm	0ffset 0.50 dB SWT 2 ms ////	VBW 10 MHz	M1[1] [84603.19.101		-35.77 dBm 703.25 µs 2.56 dB 242.78 µs
802.11n ht20	Spectrum Ref Level 30.00 dBm Att 40 dB SGL Ink: Cinw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	0ffset 0.50 dB SWT 2 ms ////	VBW 10 MHz	M1[1] [84603.19.101		-35.77 dBm 703.25 µs 2.56 dB 242.78 µs
802.11n ht20	Spectrum Ref Level 30.00 dBm Att 40 dB GL 91Pk Clrw 20 dBm 0 dBm 10 dBm 0 dBm -20 dBm -0 dBm -30 dBm -0 dBm -50 dBm -0 dBm -60 dBm -60 dBm	0ffset 0.50 dB SWT 2 ms ////	VBW 10 MHz	M1[1] [84603.19.101		-35.77 dBm 703.25 µs 2.56 dB 242.78 µs
802.11n ht20	Spectrum Ref Level 30.00 dBm Att 40 dB SGL 91Pk: Chw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -60 dBm	0ffset 0.50 dB SWT 2 ms ////	VBW 10 MH2	M1[1] [Hetels with Vir		-35.77 dBm 703.25 μ5 2.56 dB 242.78 μ5
802.11n ht20	Spectrum Ref Level 30.00 dBm Att 40 dB SGL 91Pk Clrw 20 dBm 10 dBm 10 dBm 0 dB -20 dBm -0 dBm -30 dBm -0 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -60 dBm	Offset 0.50 dB SWT 2 ms	VBW 10 MHz	M1[1] [84603.19.101		-35.77 dBm 703.25 μ5 2.56 dB 242.78 μ5
802.11n ht20	Spectrum Ref Level 30.00 dBm Att 40 dB SGL 91Pk Clrw 20 dBm 10 dBm 10 dBm -0 dBm -20 dBm -0 dBm -30 dBm -0 dBm -30 dBm -0 dBm -50 dBm -60 dBm -60 dBm -10 dBm -50 dBm -10 dBm -10 dBm -10 dBm	Offset 0.50 dB SWT 2 ms MMm Mm Mm Mm Mm Mm Mm Mm Mm M	VBW 10 MHz	M1[1] [Hetels with Vir		-35.77 dBm 703.25 μ5 2.56 dB 242.78 μ5
802.11n ht20	Spectrum Ref Level 30.00 dBm Att 40 dB SGL 91Pk Chw 20 dBm 0 dBm 10 dBm 0 dBm -10 dBm -0 dBm -30 dBm -0 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -10 dBm -50 dBm -10 dBm -50 dBm -10 dBm -50 dBm -10 dBm -60 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -10 dBm	Offset 0.50 dB SWT 2 ms When your and the second	VBW 10 MH2	M1[1] [Hetels with Vir		-35.77 dBm 703.25 µ5 2.56 dB 242.78 µ5

Page 48 of 49

5. RF EXPOSURE EVALUATION

5.1 MAXIMUM PERMISSIBLE EXPOSURE (MPE)

5.1.1 Applicable Standard

FCC §15.247 (i) & §1.1310 & §2.1091

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See \$1.1307(b)(1) of this chapter.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)			
0.3–1.34	614	1.63	*(100)	30			
1.34–30	824/f	2.19/f	*(180/f ²)	30			
30–300	27.5	0.073	0.2	30			
300-1500	/	/	f/1500	30			
1500-100,000	/	/	1.0	30			

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

5.1.2 Procedure

Prediction of power density at the distance of the applicable MPE limit

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain; R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

5.1.3 Calculated Result

Operation Modes			nna Gain	Conducted output power including Tune-up Tolerance		Evaluation Distance (cm)	Power Density (mW/cm ²)	MPE Limit (mW/cm ²)
		(dBi)	(numeric)	(dBm)	(mW)			
Wi-Fi	2412-2462	2.2	1.66	25	316.23	20.00	0.1045	1.0

Result: The device meet FCC MPE at 20 cm distance.

== END OF REPORT ==

Page 49 of 49