

Shenzhen Huatongwei International Inspection Co.,Ltd. Huatongwei Building, keji'nan 12th Road, High-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China. Phone:86-755-26715499 E-mail: cs@szhtw.com.cn Website:http://www.szhtw.com.cn

TE	EST REPORT	Г	
Report No:	CHTEW22010103	Report Verification:	
Project No	SHT2112079902EW		
FCC ID:	2AKSGST500		Reportive: CHTW22010103
Applicant's name:	Shanghai Hulu Devices Co.	, Ltd	
Address:	509 Caobao Road, Room 10 Shanghai, China	I-2 Building 9, Xuhu	i District,
Test item description:	Smart Wireless Stethoscop	е	
Trade Mark	-		
Model/Type reference:	STEMO500		
Listed Model(s)			
Standard:	FCC CFR Title 47 Part 15 Su	ubpart C Section 1	5.247
Date of receipt of test sample:	Dec.28, 2021		
Date of testing	Dec.29, 2021-Jan.17, 2022		
Date of issue	Jan.19, 2022		
Result:	PASS		
Compiled by (Position+Printed name+Signature):	File administrator Fanghui Zh	u Jang	witzhu
Supervised by (Position+Printed name+Signature):	Project Engineer Cheng Xiao	(he	nexia
Approved by (Position+Printed name+Signature):	RF Manager Hans Hu	Ho	msHu
Testing Laboratory Name:	Shenzhen Huatongwei International Inspection Co., Ltd. 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,		
	Tianliao, Gongming, Shenzhe		
Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.			
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. The test report merely correspond to the test sample.			

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	
1.1. 1.2.	Test Standards Report version	3 3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1. 3.2. 3.3. 3.4.	Client Information Product Description Radio Specification Description Testing Laboratory Information	5 5 5 6
<u>4.</u>	TEST CONFIGURATION	7_
4.1. 4.2. 4.3. 4.4. 4.5. 4.6.	Test frequency list Test mode Support unit used in test configuration and system Testing environmental condition Measurement uncertainty Equipment Used during the Test	7 7 7 8 8 9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9. 5.10.	Antenna Requirement AC Conducted Emission Peak Output Power Power Spectral Density 6dB bandwidth 99% Occupied Bandwidth Duty Cycle Conducted Band edge and Spurious Emission Radiated Band edge Emission Radiated Spurious Emission	11 12 15 16 17 18 19 20 22 24
<u>6.</u>	TEST SETUP PHOTOS	29
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS	31
<u>8.</u>	APPENDIX REPORT	36

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- <u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
- ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices
- KDB 558074 D01 15.247 Meas Guidance v05r02: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	2022-01-19	Original

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result
5.1	Antenna Requirement	15.203/15.247(c)	PASS
5.2	AC Conducted Emission	15.207	PASS
5.3	Peak Output Power	15.247(b)(3)	PASS
5.4	Power Spectral Density	15.247(e)	PASS
5.5	6dB Bandwidth	15.247(a)(2)	PASS
5.6	99% Occupied Bandwidth	-	PASS ^{*1}
5.7	Duty cycle	-	PASS ^{*1}
5.8	Conducted Band Edge and Spurious Emission	15.247(d)/15.205	PASS
5.9	Radiated Band Edge Emission15.205/15.209PASS		PASS
5.10	Radiated Spurious Emission15.247(d)/15.205/15.209PASS		PASS

Note:

- The measurement uncertainty is not included in the test result.
- *1: No requirement on standard, only report these test data.

3. SUMMARY

3.1. Client Information

Applicant:	Shanghai Hulu Devices Co., Ltd	
Address:	509 Caobao Road, Room 101-2 Building 9, Xuhui District, Shanghai, China	
Manufacturer:	Shanghai Hulu Devices Co., Ltd	
Address:	509 Caobao Road, Room 101-2 Building 9, Xuhui District, Shanghai, China	

3.2. Product Description

Name of EUT:	Smart Wireless Stethoscope	
Trade Mark:	-	
Model No.:	STEMO500	
Listed Model(s):	-	
Power supply:	DC 3.7V for battery	
Hardware version:	1.0 '	
Software version:	1.0.0	

3.3. Radio Specification Description

Bluetooth version:	V4.0	
Support function ^{*2} :	BLE	
Modulation:	GFSK	
Operation frequency:	2402MHz~2480MHz	
Channel number:	40	
Channel separation:	2MHz	
Antenna type:	SMD antenna	
Antenna gain:	2dBi	

Note:

*2: only show the RF function associated with this report.

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Phone: 86-755-26715499 E-mail: <u>cs@szhtw.com.cn</u> <u>http://www.szhtw.com.cn</u>		
Qualifications	Туре	Accreditation Number	
Qualifications	FCC	762235	

4. TEST CONFIGURATION

4.1. Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below blue front.

Channel	Frequency (MHz)
00	2402
01	2404
:	÷
19	2440
:	:
38	2478
39	2480

4.2. Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to continuous transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

4.3. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whether support unit is used?					
✓					
Item	Equipement	Trade Name	Model No.	FCC ID	Power cord
1	Adapter	-	SICO More 3	-	-

4.4. Testing environmental condition

Туре	Requirement Actual	
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

4.5. Measurement uncertainty

Test Item	Measurement Uncertainty
AC Conducted Emission (150kHz~30MHz)	3.00 dB
Radiated Emission (30MHz~1000MHz	4.36 dB
Radiated Emissions (1GHz~25GHz)	5.10 dB
Peak Output Power	0.77dB
Power Spectral Density	0.77dB
Conducted Spurious Emission	0.77dB
6dB Bandwidth	70Hz for <1GHz
	130Hz for >1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.6. Equipment Used during the Test

•	Conducted Emission											
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27					
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2021/9/14	2022/9/13					
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2021/9/17	2022/9/16					
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2021/9/13	2022/9/12					
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2021/9/17	2022/9/16					
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A					

•	Radiated emission-6th test site											
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2022/09/29					
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2021/9/14	2022/9/13					
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/04/06	2022/04/05					
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/04/06	2022/04/05					
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2021/11/5	2022/11/4					
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2021/02/26	2022/02/25					
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2021/02/26	2022/02/25					
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A					

•	Radiated emission-7th test site											
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2022/09/26					
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2021/9/13	2022/9/12					
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31					
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2020/4/27	2023/4/27					
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2021/11/5	2022/11/4					
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2021/03/05	2022/03/04					
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2021/02/26	2022/02/25					
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25					
•	RF Connection Cable	HUBER+SUHNER	HTWE0119-05	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25					
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25					
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	2021/02/26	2022/02/25					
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A					

Issued: 2022-01-19

Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum Analyzer	R&S	HTWE0242	FSV40	100048	2021/9/13	2022/9/12
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2021/9/13	2022/9/12
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2021/9/13	2022/9/12
•	Radio communication tester	R&S	HTWE0287	CMW500	137688-Lv	2021/9/13	2022/9/12
•	Test software	Tonscend	N/A	JS1120	N/A	N/A	N/A

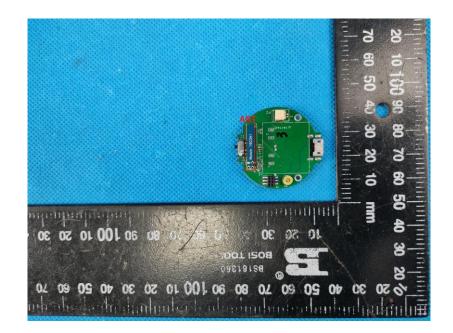
5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

<u>Requirement</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

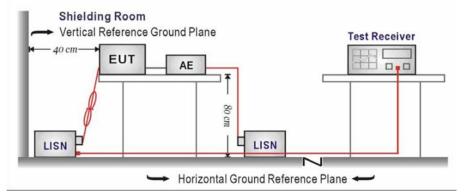
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULT

☑ Passed □ Not Applicable

The antenna type is a SMD Antenna, the directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. AC Conducted Emission


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

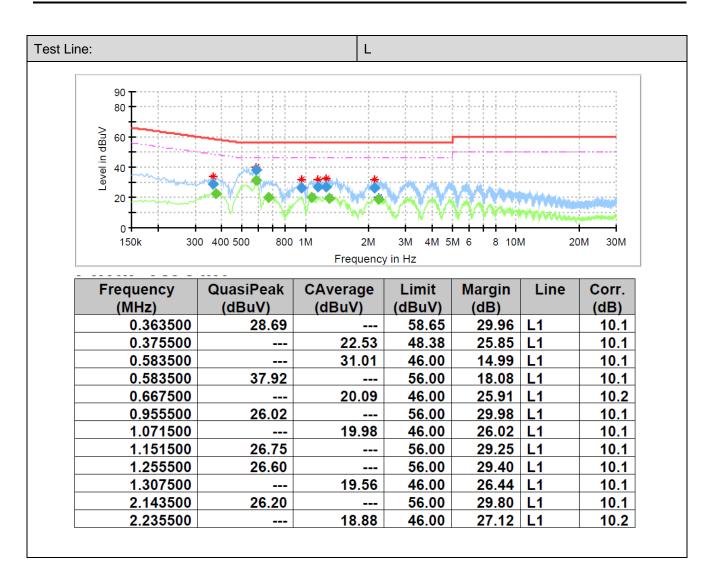
	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

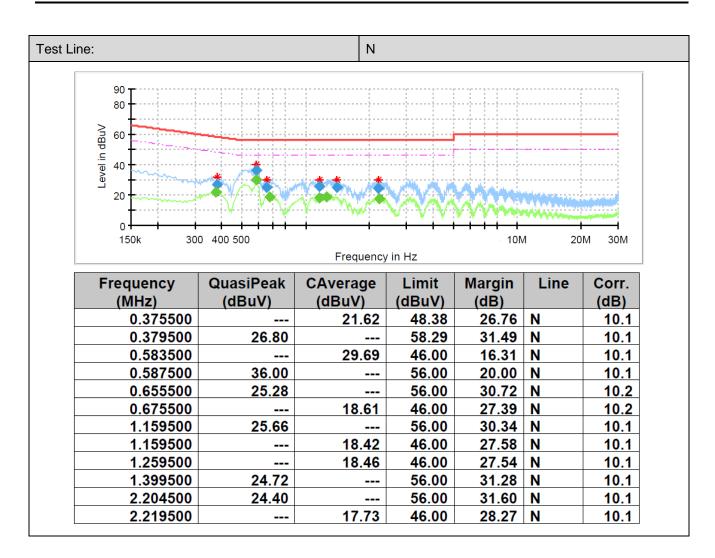
* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

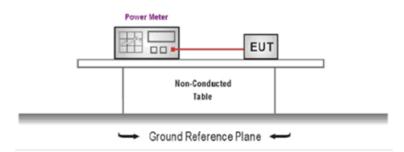

TEST MODE:


Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

Shenzhen Huatongwei International Inspection Co., Ltd.



5.3. Peak Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10 and KDB 558074 D01 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.
- 4. Record the measurement data.

TEST MODE:

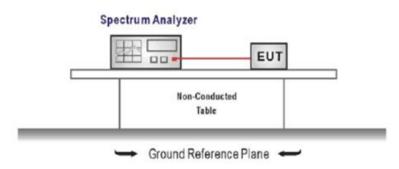
Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST Data

Please refer to appendix A on the appendix report


5.4. Power Spectral Density

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

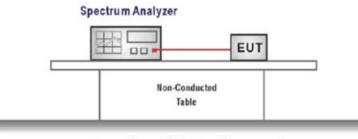
Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST Data

Please refer to appendix B on the appendix report


5.5. 6dB bandwidth

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

➡ Ground Reference Plane ◄

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency

Span=2 x DTS bandwidth

RBW = 100 kHz, VBW \ge 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:

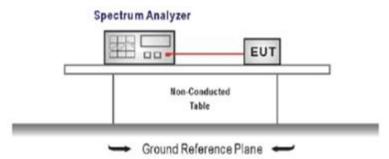
Please refer to the clause 4.2

TEST RESULT

🛛 Passed 🛛 🗌 N

Not Applicable

TEST Data


Please refer to appendix C on the appendix report

5.6. 99% Occupied Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =channel center frequency Span≥1.5 x OBW RBW = 1%~5%OBW VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

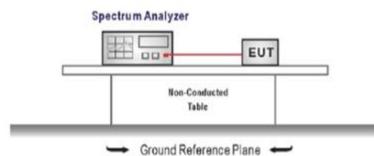
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable


TEST Data

Please refer to appendix D on the appendix report

5.7. Duty Cycle

N/A

TEST CONFIGURATION

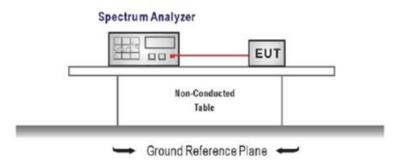
TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span=zero span, Frequency=centered channel, RBW= 1 MHz, VBW ≥ RBW Sweep=as necessary to capture the entire dwell time, Detector function = peak, Trigger mode
- 4. Measure and record the duty cycle data

TEST MODE:

Please refer to the clause 4.2

TEST Data


Please refer to appendix E on the appendix report

5.8. Conducted Band edge and Spurious Emission

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Emission level measurement

Set the center frequency and span to encompass frequency range to be measured

RBW = 100 kHz, VBW \ge 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum amplitude level.

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE:

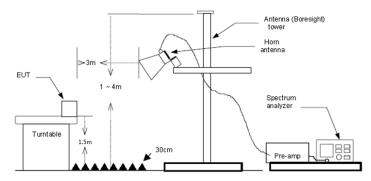
Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST Data

Please refer to appendix F on the appendix report


5.9. Radiated Band edge Emission

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement.
- 5. Use the following spectrum analyzer settings:
 - a) Span shall wide enough to fully capture the emission being measured
 - b) Set RBW=100kHz for <1GHz, VBW=3*RBW, Sweep time=auto, Detector=peak, Trace=max hold
 - c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- − VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- 3) Average measurement was not performed if peak level is lower than average limit(54 dBuV/m).

Test channel		CH00			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	2310.00	36.52	27.96	5.43	37.56	32.35	74.00	-41.65	Peak
2	2390.03	36.15	27.72	5.53	37.45	31.95	74.00	-42.05	Peak
Test channel		CH00			Polarity	/	,	Vertical	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	2310.00	36.40	27.96	5.43	37.56	32.23	74.00	-41.77	Peak
2	2329.37	42.15	27.88	5.45	37.54	37.94	74.00	-36.06	Peak
3	2390.03	36.90	27.72	5.53	37.45	32.70	74.00	-41.30	Peak

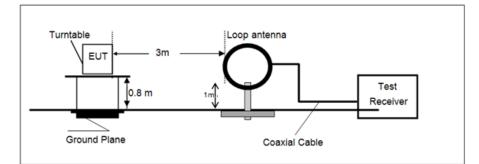
Test channel		CH39			Polarity			Horizontal		
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m		Remark	
1	2483.50	47.92	27.43	5.64	37.26	43.73	74.00	-30.27		
2	2500.00	36.93	27.40	5.66	37.26	32.73	74.00	-41.27	Peak	
Test channel		CH39			Polarity	,	۱.	Vertical		
		B 11	A	Cal-1a	Preamp	Level	Limit	0ver	Remark	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	dB	dBuV/m	dBuV/m	limit	Kellidrik	
Mark 1									Peak	

5.10. Radiated Spurious Emission

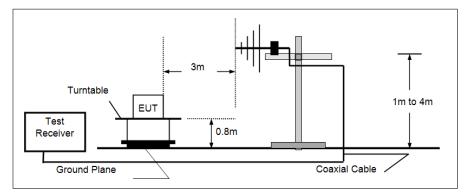
<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak

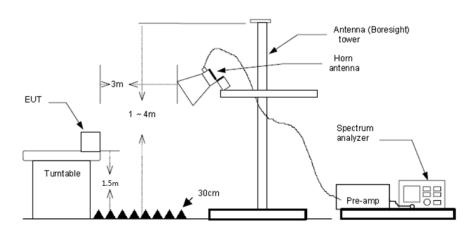

Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80,

Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.


Frequency	Limit (dBuV/m @3m)	Value		
30MHz~88MHz	40.00	Quasi-peak		
88MHz~216MHz	43.50	Quasi-peak		
216MHz~960MHz	46.00	Quasi-peak		
960MHz~1GHz	54.00	Quasi-peak		
Above 1GHz	54.00	Average		
	74.00	Peak		

TEST CONFIGURATION

> 9 kHz ~ 30 MHz



> 30 MHz ~ 1 GHz

Above 1 GHz

Page: 25 of 36

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10 .
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- − VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

Note:

- 1) Level= Reading + Factor/Transd; Factor/Transd = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.

<u> TEST DATA FOR 9 kHz ~ 30 MHz</u>

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

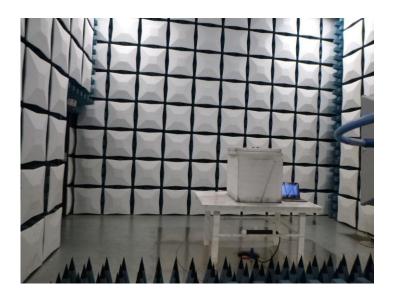
TEST DATA FOR 30 MHz ~ 1000 MHz

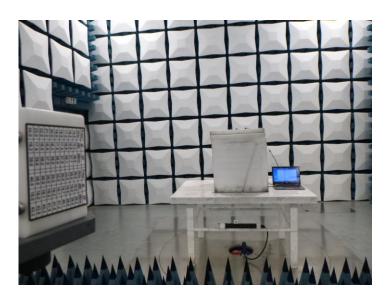
Have pre-scan all test channel, found CH39 which it was worst case, so only show the worst case's data on this report.

Test channel	CH00	CH00			Polarity			Horizontal			
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark		
1	1332.08	47.24	26.19	4.08	36.38	41.13	74.00	-32.87	Peak		
2	2655.59	42.43	27.73	5.87	37.01	39.02	74.00	-34.98	Peak		
3	4804.28	39.52	31.40	8.46	35.29	44.09	74.00	-29.91	Peak		
4	8074.41	32.77	37.20	11.12	33.32	47.77	74.00	-26.23	Peak		
Test channel		CH00	СН00			Polarity			Vertical		
Mark	Frequency	Reading	Antenna	Cable	Preamp	Level	Limit	0ver	Remark		
THAT IS	MHz	dBuV/m	dB	dB	dB	dBuV/m	dBuV/m	limit			
1			dB 25.85	dB 3.94	dB 36.53	dBuV/m 48.05	dBuV/m 74.00		Peak		
	MHz	dBuV/m							Peak Peak		
1	MHz 1241.63	dBuV/m 54.79	25.85	3.94	36.53	48.05	74.00	-25.95			

<u> TEST DATA FOR 1 GHz ~ 25 GHz</u>

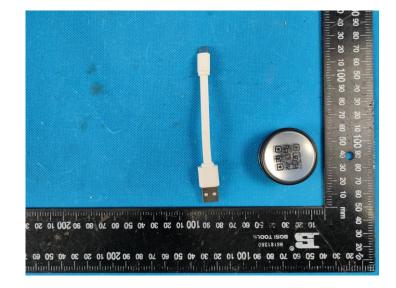
Test channe	CH19	CH19			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	1332.08	47.24	26.19	4.08	36.38	41.13	74.00	-32.87	Peak
2	2655.59	42.43	27.73	5.87	37.01	39.02	74.00	-34.98	Peak
3	4881.54	39.31	31.40	8.66	35.18	44.19	74.00	-29.81	Peak
4	7946.62	32.63	36.89	10.86	33.32	47.06	74.00	-26.94	Peak

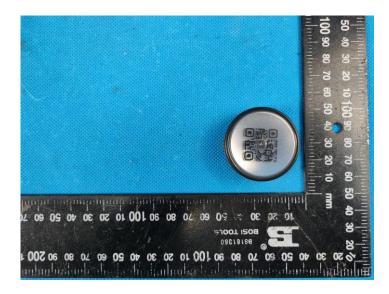

Test channel		CH19	CH19			Polarity			Vertical	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark	
1	1241.63	54.79	25.85	3.94	36.53	48.05	74.00	-25.95	Peak	
2	2658.51	49.89	27.75	5.87	37.01	46.50	74.00	-27.50	Peak	
3	4881.54	38.09	31.40	8.66	35.18	42.97	74.00	-31.03	Peak	
4	8062.71	32.51	37.20	11.08	33.32	47.47	74.00	-26.53	Peak	


est channel		СН39			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	1332.08	47.24	26.19	4.08	36.38	41.13	74.00	-32.87	Peak
2	2655.59	42.43	27.73	5.87	37.01	39.02	74.00	-34.98	Peak
3	4960.04	38.97	31.58	8.77	35.21	44.11	74.00	-29.89	Peak
4	8109.62	32.57	37.16	11.23	33.34	47.62	74.00	-26.38	Peak
est channel		СН39			Polarity			Vertical	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	1241.63	54.79	25.85	3.94	36.53	48.05	74.00	-25.95	Peak
2	2658.51	49.89	27.75	5.87	37.01	46.50	74.00	-27.50	Peak
2		44 64	29,90	7.38	36.38	42.51	74.00	-31.49	Peak
3	3990.33	41.61	29.90	1.00	20.20				1. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

6. TEST SETUP PHOTOS

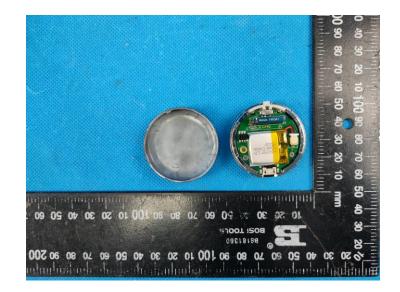
Radiated Emission

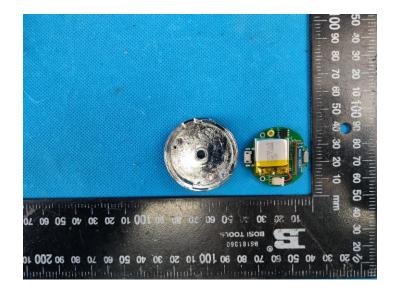


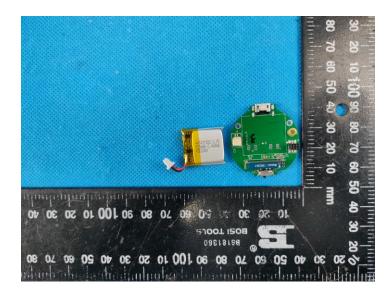

AC Conducted Emission

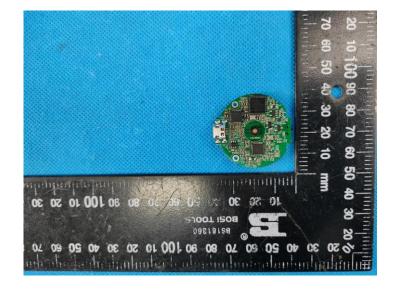
7. EXTERNAL AND INTERNAL PHOTOS

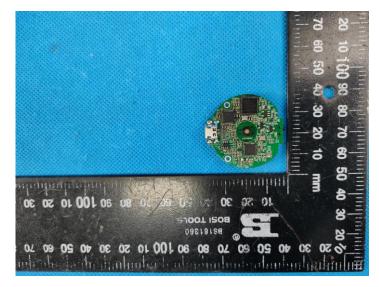
External photos

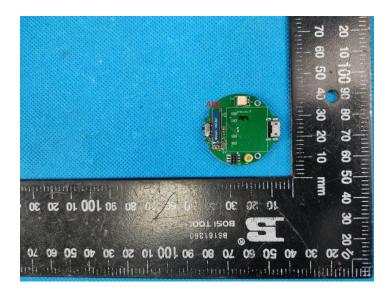


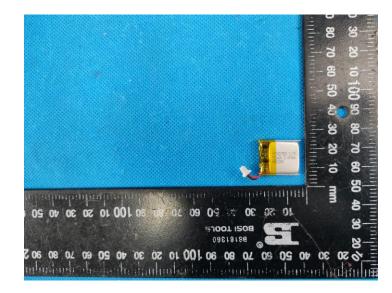


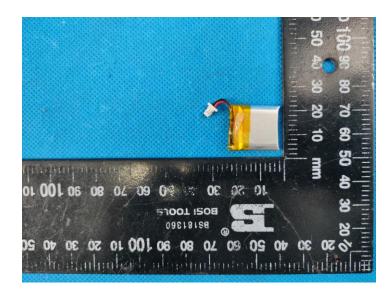





Internal photos







8. APPENDIX REPORT

APPENDIX REPORT

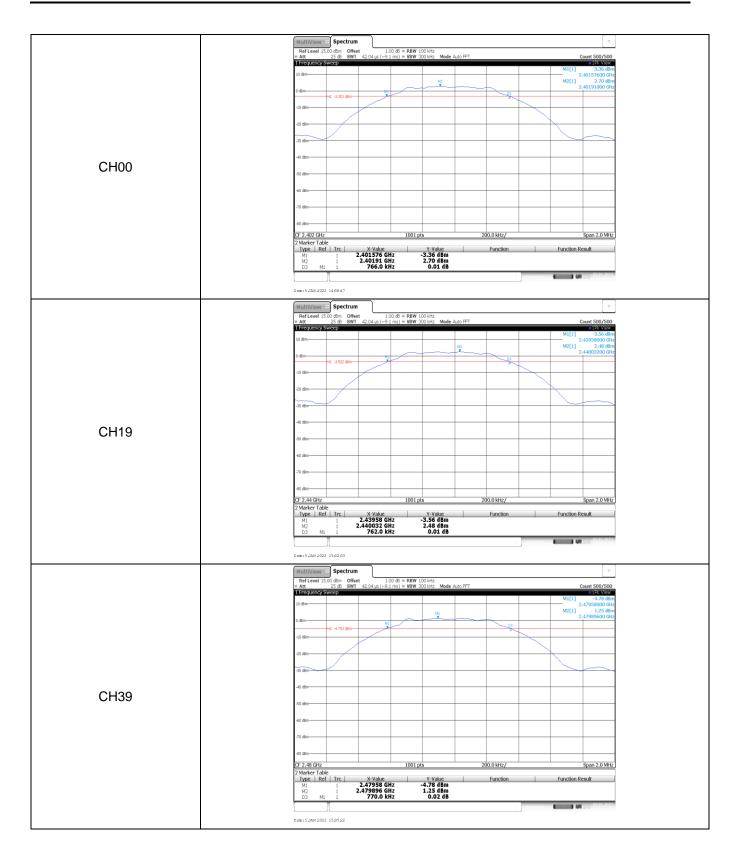
Project No.	SHT2112079902EW	Radio Specification	Bluetooth BLE
Test sample No.	YPHT21120799007	Model No.	STETHO500
Start test date	2022-01-05	Finish date	2022-01-05
Temperature	23.1 ℃	Humidity	37%
Test Engineer	Hailey Chen	Auditor	Xiaodong Zheo

Appendix clause	Test item	Result
А	Peak Output Power	PASS
В	Power Spectral Density	PASS
С	6 dB Bandwidth	PASS
D	99% Occupied Bandwidth	PASS
E	Duty cycle	PASS
F	Band edge and Spurious Emissions (conducted)	PASS

Appendix A: Peak Output Power

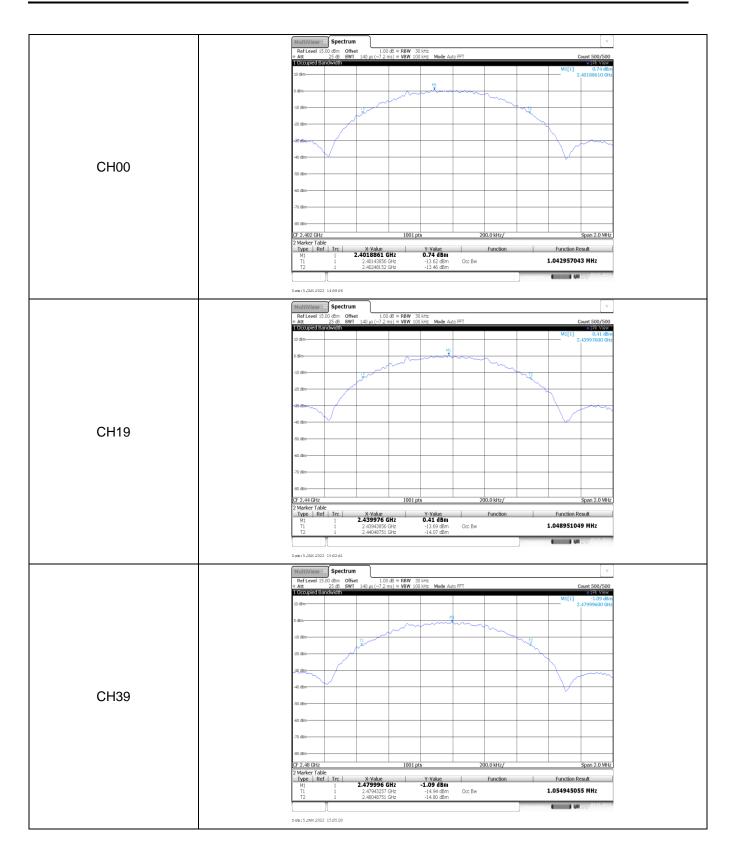
Туре	Channel	Peak Output power (dBm)	Average Output power (dBm)	Limit (dBm)	Result
	00	4.28	4.27		
BT-BLE	19	3.93	3.91	≤ 30.00	Pass
	39	2.85	2.81		

CH00		An a laiseine								
CH00		Ref Level 15.00 dBm 0	uni Hfset 1.00 dB = R	BW 2 MHz						Ψ
CH00		= Att 25 dB S 1 Frequency Sweep	wri 1.01 ms ⊜ Vi	swr.5™Hz Moo	e Auto Sweep		_			1Pk View
CH00		10 dBm							M1[1]2	4.28 dBm 2.40172030 GHz
CH00					M1					
CH00		0 dām								
CH00		~10 d8m-								
CH00										
CH19 CH39 CH39		-20 dBm								
CH19 CH39 CH39		20. day								
CH19	CHOO	-JU 06m								
CH19	CHOO	-40 dBm								
CH19										
CH19		-50 d8m								
CH19		-60 d8m								
CH19										
CH19 CH39 CH39 CH39 CH39 CH39 CH39 CH39		-70 d8m								
CH19 CH39 CH39 CH39 CH39 CH39 CH39 CH39		-80 dBm								
CH19				1001 nt	s	50	00.0 kHz/			Span 5.0 MHz
CH19				2.00 x pt		5		Newselling		
CH19		Date: 5 JAN 2022 14:58:35								
CH19			um							
CH19		Ref Level 15.00 dBm O	ffset 1.00 dB ⊕ R	SW 2 MHz						
CH19		Att 25 dB S 1 Frequency Sweep	wri 1.01 ms ⊜ Vi	swr.5™Hz Moo	e Auto Sweep					1Pk View
CH19		10 dBm							2	3.93 dBm 2.43973530 GHz
CH19					M1					
CH19		0 d8m							/	
CH19		10 dBm-								
CH19										
CH19		-20 d8m								
CH19		-30 dPm-								
CH39	CH19	-20 000								
CH39	CITIS	-40 dBm								
CH39										
CH39		-50 d8m								
CH39		-60 dBm								
CH39										
CH39		-70 dBm-								
CH39		-80 d8m								
CH39				1001 nt	s	50	00.0 kHz/			Span 5.0 MHz
CH39				1001 P				Newsering	CIIII (44	
CH39		Date:5_JAN 2022 15:02:51								
CH39		MultiView E Spectr	um							
CH39		Ref Level 15.00 dBm O	Hfset 1.00 dB ⊕ R	SW 2 MHz	a Auto Curro					Count 500 /500
CH39		1 Frequency Sweep		NOC STEELS MOC	ь ниго ожеер					1Pk View
CH39		10 d8m							2	2.47973530 GHz
CH39					MI					
CH39		U dam							/	
CH39		-10 d8m								
CH39										
CH39		-20 d8m-								
CH39		-30 dBm								
	CH39									
40 da-	01100	-40 dBm-		-						
40 da-										
		-50 dBm								
		-60 dBm								
-70 den										
		-70 dBm		-						
40 dbm		-80 dBm-								
				1001			0.0.6424			Span 5.0 MHz
G 2.48 GHZ 1001 pHs 5000 HHZ / Span 50.04		UF ZHO UFIZ		1001 pt	3	50	00.0 KHZ/	Manuality	(IIIII) (A	apan 3.0 MHZ
Data:5JAN 2022 15:05:09										

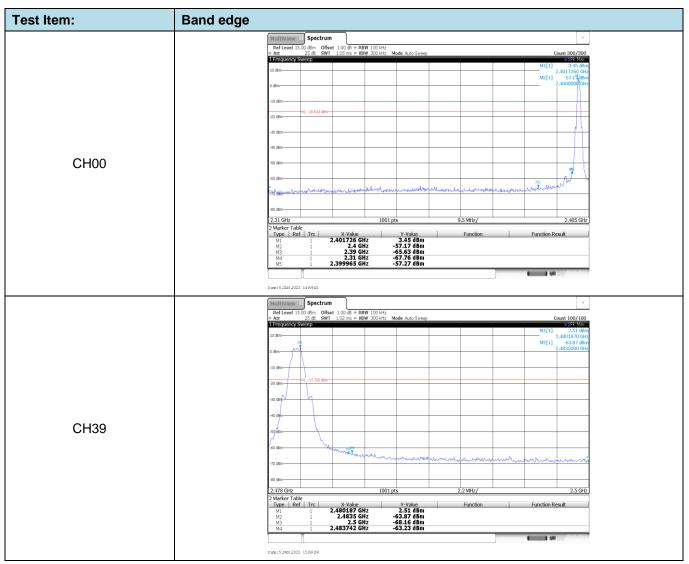

Appendix B: Power Spectral Density

Туре	Channel	Power Spectral Density(dBm/3KHz)	Limit (dBm/3KHz)	Result
	00	-8.05		
BT-BLE	19	-8.15	≤8.00	Pass
	39	-9.42		

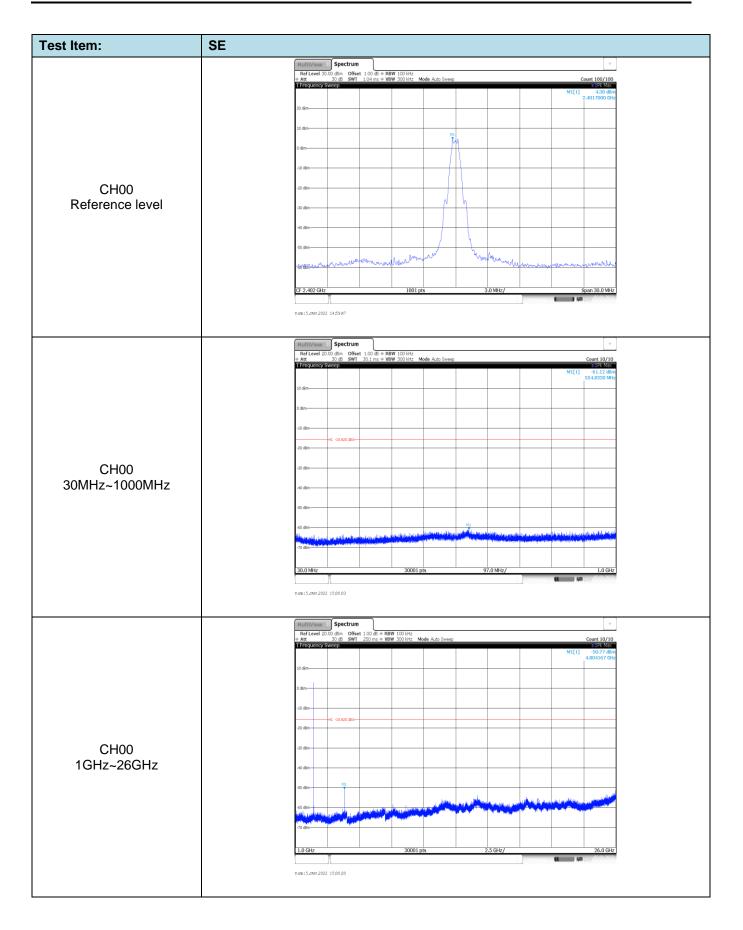
	(Concentration of the second									
	MultiView Ref Level 1	5.00 dBm Offset 25 dB SWT		dB ∈ RBW 3	Hz						
	 Att Frequency 	25 dB SWT Sweep	1.4 ms (~9.2 r	ns)⊜ VBW 10↓	Hz Mode Auto) FFT				ount 100/100 1Pk Max	
	10 d8m	+							M1[1] 2.4	-8.05 dBm 02047000 GHz	
	n. 41										
	0 dBm					MI					
	-10 d8m	www.	Marshiller	mande	walaanda	mannen	man	What is			
	androwen	rowwww						· VI WALN	munum	5 mar 10	
CH00	420 dBm									and w	
	-30 d8m	+									
	-40 dBm										
	-40 doin										
	-50 d8m	+				<u> </u>				<u> </u>	
	-60 d8m										
	-70 dBm	+									
	-80 dBm										
	CF 2.402 GH	2		1001 pt	;	16	00.0 kHz/			Span 1.0 MHz	
][]						Measuring	(IIIII) (A		
	Date: 5.JAN 202	:2 14:59:11									
	MultiView	:: Spectrum									
	Ref Level 1 # Att	5.00 dBm Offset 25 dB SWT	t 1.00 1.4 ms (~9.2 r	dB = RBW 34 ns) = VBW 104	Hz Hz Mode Auto	o FFT			c	ount 100/100	
	1 Frequency	Śweep							M1[1]	 1Pk Max -8.15 dBm 	
	10 d8m	+ +							2.4	39965000 GHz	
	0 d8m										
					M1						
	-10 dBm	nammana	JuniMan	مايانيېم پېږيندې	and the second	- AMALON DOWN	manner	When me .			
	420'08m								mum	www.ww	
										- W	
CH19	-30 dBm										
CLIA	-40 dBm										
	-50 dBm										
	-60 dBm	+									
	-70 dBm										
	-80 dBm	+									
		1		1001 pt	;	1					
	CF 2.44 GHz	W.				10	00.0 kHz/	_	_	Span 1.0 MHz	
		J				10	JU.U KHZ/	Measuring	tunna 440	Span 1.0 MHz	
	CF 2.44 GHz	J				10	UU.U KHZ/	Meaning	(Span 1.0 MHz	
	Date: 5.37N 200 MultiView	22 15:03:55 Spectrum					UU.U KHZ/	Measuring		Span 1.0 MHz	
	Date: 5. JAN 202 MultiView Ref Level 1 = Att	22 15:03:55 Spectrum 5:00 dBm Offset 25 dB SWT	t 1.00 1.4 ms (~9.2 r				U.U KH2/	Meaning	(v 0501 2022	
	Date 15 JAN 200 Hult2View Ref Levi 1 1 ForQuerry	22 15:03:55 Spectrum 5:00 dBm Offset 25 dB SWT	t 1.00 1.4 ms (~9.2 m				UUU KH2/	Hamming	C		
	Date: 5. JAN 202 MultiView Ref Level 1 = Att	22 15:03:55 Spectrum 5:00 dBm Offset 25 dB SWT	t 1.00 1.4 ms (~9.2 r				0.0 kHz/	Meendog	C	e 19k Max	
	Date 15 JAN 200 Hult2View Ref Levi 1 1 ForQuerry	22 15:03:55 Spectrum 5:00 dBm Offset 25 dB SWT	t 1.00 1.4 ms (~9.2 n		Hz Hz Mode Auto	o FFT			C M1[1] 2.4	v v v v v v v v v v v v v v	
	Date 15 JUNI 200 MultiView Ref Level 1 11 Fragversy 10 den	22 15.03.65 Spectrum 5.00 dBm Offset 25 dB SWT Sweep	t 1.00 1.4 ms (~9.2 m	dB = RBW 3 i ns) = VBW 10 i	Hz Hz Mode Auto	o FFT			C M1[1] 2.4	v v v v v v v v v v v v v v	
	Date 15 JUNI 200 MultiView Ref Level 1 11 Fragversy 10 den	22 15.03.65 Spectrum 5.00 dBm Offset 25 dB SWT Sweep	t 1.00 1.4 ms (~9.2 m	dB = RBW 3 i ns) = VBW 10 i	Hz Hz Mode Auto	o FFT		March March	C M1[1] 2.4	v v v v v v v v v v v v v v	
	Date 15 JUNI 200 MultiView Ref Level 1 11 Fragversy 10 den	22 15:03:55 Spectrum 5:00 dBm Offset 25 dB SWT	t 1.00 1.4 ms (~9.2 m	dB = RBW 3 i ns) = VBW 10 i	Hz Hz Mode Auto			Mr. Carlon	C M1[1] 2.4		
	Date 15 JAN 200 MultiView Part Level 16 date 0 dan -11 dan JA date JA date J	22 15.03.65 Spectrum 5.00 dBm Offset 25 dB SWT Sweep	t 1.00 1.4 ms (~9.2 m	dB = RBW 3 i ns) = VBW 10 i	Hz Hz Mode Auto	o FFT		M. Constant	C M1[1] 2.4	v v v v v v v v v v v v v v	
СНЗ9	Date 15 JUNI 200 MultiView Ref Level 1 11 Fragversy 10 den	22 15.03.65 Spectrum 5.00 dBm Offset 25 dB SWT Sweep	t 1.00 1.4 ms (~9.2 m	dB = RBW 3 i ns) = VBW 10 i	Hz Hz Mode Auto	o FFT		March Control	C M1[1] 2.4		
CH39	Date 15 JAN 200 MultiView Part Level 16 date 0 dan -11 dan JA date JA date J	22 15.03.65 Spectrum 5.00 dBm Offset 25 dB SWT Sweep	t 1.00 1.4 ms (~9.2 m	dB = RBW 3 i ns) = VBW 10 i	Hz Hz Mode Auto	o FFT		Marchanger	C M1[1] 2.4		
CH39	D att 15 JAN 200 MultiView # Ref Level 3 10 dbn	22 15.03.65 Spectrum 5.00 dBm Offset 25 dB SWT Sweep	t 1.00 1.4 ms (~9.2 m	dB = RBW 3 i ns) = VBW 10 i	Hz Hz Mode Auto	o FFT		an an an	C M1[1] 2.4		
CH39	Date : 5 JUNI 200 Ref Level 1 If requery 10 dan -16 dan -36 dan	22 15.03.65 Spectrum 5.00 dBm Offset 25 dB SWT Sweep	t 1.00 1.4 ms (~9.2 m	dB = RBW 3 i ns) = VBW 10 i	Hz Hz Mode Auto	o FFT		an an an	C M1[1] 2.4		
CH39	D att 15 JAN 200 MultiView # Ref Level 3 10 dbn	22 15.03.65 Spectrum 5.00 dBm Offset 25 dB SWT Sweep	t 1.00 1.4 ms (~9.2 m	dB = RBW 3 i ns) = VBW 10 i	Hz Hz Mode Auto	o FFT		wW.wewger.	C M1[1] 2.4		
CH39	D alt 15 JAN 200 Patter 15 JAN 200 Patter 14 16 Columnary 0 dbm -11 dbm -12 dbm -13 dbm -15 dbm -15 dbm -15 dbm -15 dbm	22 15.03.65 Spectrum 5.00 dBm Offset 25 dB SWT Sweep	t 1.00 1.4 ms (~9.2 m	dB = RBW 3 i ns) = VBW 10 i	Hz Hz Mode Auto	o FFT		and a second sec	C M1[1] 2.4		
CH39	Date : 5 JUNI 200 Participation of the second of the seco	22 15.03.65 Spectrum 5.00 dBm Offset 25 dB SWT Sweep	t 1.00 1.4 ms (~9.2 m	dB = RBW 3 i ns) = VBW 10 i	Hz Hz Mode Auto	o FFT		an and a second se	C M1[1] 2.4		
CH39	D alt 15 JAN 200 Patter 15 JAN 200 Patter 14 16 Columnary 0 dbm -11 dbm -12 dbm -13 dbm -15 dbm -15 dbm -15 dbm -15 dbm	22 15.03.65 Spectrum 5.00 dBm Offset 25 dB SWT Sweep	t 1.00 1.4 ms (~9.2 m	dB = RBW 3 i ns) = VBW 10 i	Hz Hz Mode Auto	o FFT		M. A. Mar	C M1[1] 2.4		
CH39	Date : 5 JUNI 200 Public View Ref Level : 10 dan	22 15.03.65 Spectrum 5.00 dBm Offset 25 dB SWT Sweep	t 1.00 1.4 ms (~9.2 m	dB = RBW 3 i ns) = VBW 10 i	Ht Mode Auto			mm on mark	C	v v soutt 100/100 300/200 300/200 300/200 7996-4000 Geb 90 v 400/200 Span 1.0 MHz 500/200	

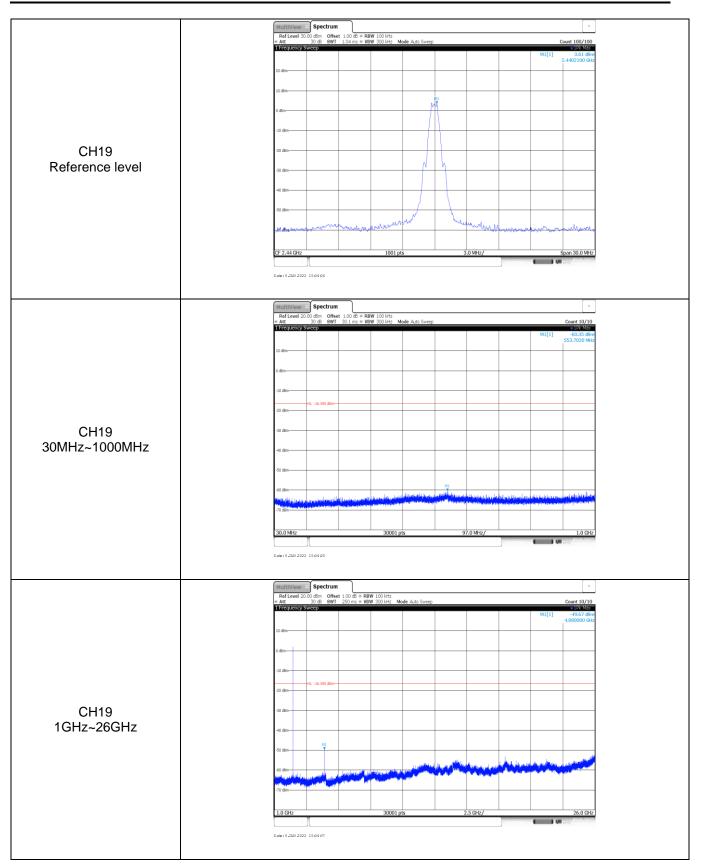

Appendix C: 6dB bandwidth

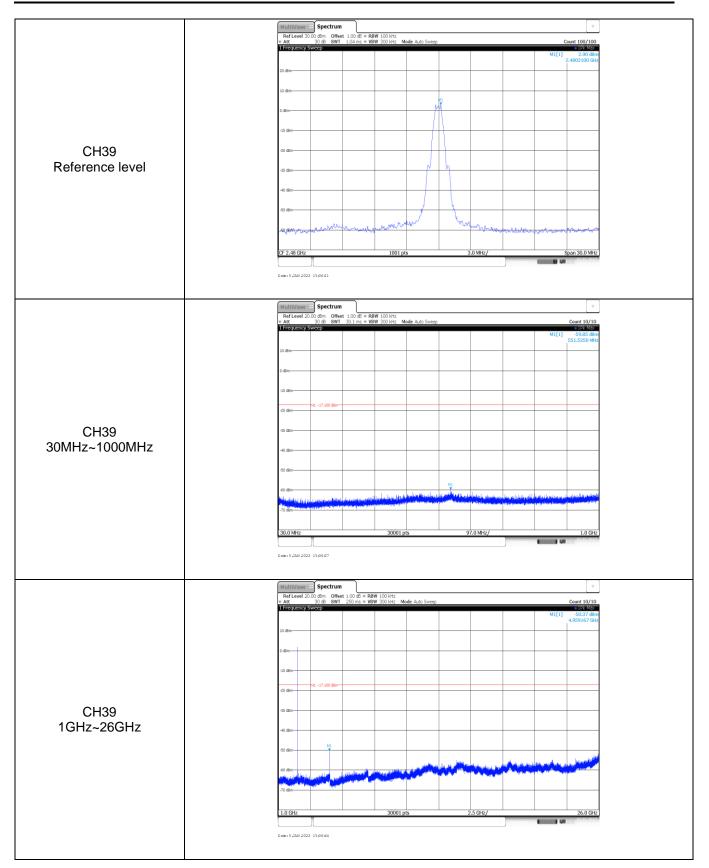
Туре	Channel	6dB Bandwidth(kHz)	Limit (kHz)	Result
	00	766.00		
BT-BLE	19	762.00	≥500	Pass
	39	770.00		


Appendix D: 99% Occupied Bandwidth

Туре	Channel	99% Occupied Bandwidth(MHz)	Limit (kHz)	Result
	00	1.04		
BT-BLE	19	1.05	-	Pass
	39	1.05		




Appendix E: Duty cycle


Test Frequency (MHz)	T _{on time} for single burst (ms)	T _{period} (ms)	Duty cycle	1/T _{on time} (kHz)
2440	1.00	1.00	100%	1.0
		ectrum = 680 1 Mit: = 5WT 10 ms = V8W 1 MHz		
	20 #8m			
	-10 clim	00 dm 0		
	-20 dim			
	-50 dim			
	CF 2.44 GHz	8000 pts		

Appendix F: Band edge and Spurious Emissions (conducted)

-----End of Report------