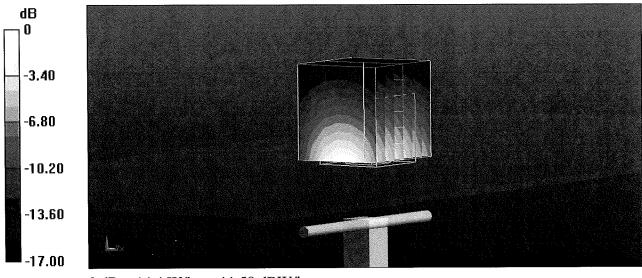
DASY5 Validation Report for Body TSL

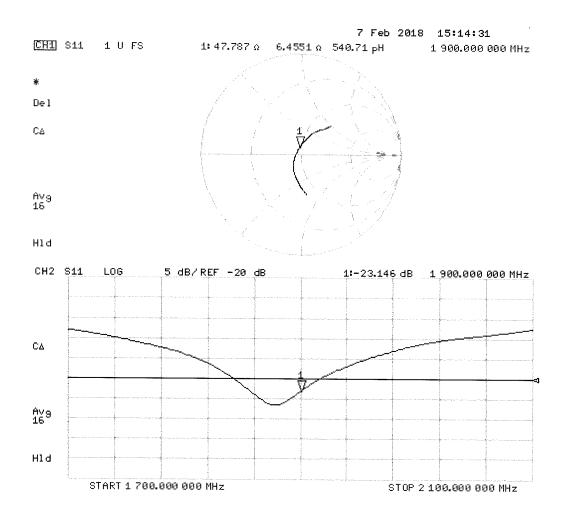
Date: 07.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.48 S/m; ϵ_r = 55.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.0 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.14 W/kg Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2300V2-1073_Jul16

Client PC Test

		_				
<u>∧ a i </u>	E International	A REAL PROPERTY.		CERT		
К СДАН —	IRD		CAL.	$\cap \square \square$		Self-Second Second Second
	IDN	AII			- I - I	
		_		🕊 Paul I. (L. 1		
	1000 Contract (100	1	ALC: NOT A		<u>, an </u>	

Object	D2300V2 - SN:	1073		
Calibration procedure(s)	QA CAL-05.v9		and and an and a second se	vρ
		edure for dipole validation kits al	200 700 MUL	01-
			JOVE 700 MHZ	8/9,
			1	North State
Calibration date:			en neere een een de enderde kandelen digt die en be	8/9, Sxte 1/2
	July 25, 2016			11:
			a da anti a constructura en en estado en transforma en en estadore en entre en entre en entre en entre en entre	10
This calibration certificate docur	ments the traceability to na	tional standards, which realize the physical u		SC
he measurements and the unc	ertainties with confidence	probability are given on the following pages a	inits of measurements (SI).	
Il calibrations have been condu	ucted in the closed laborate	bry facility: environment temperature (22 \pm 3)		
		syndemity: environment temperature (22 \pm 3)	°C and humidity < 70%.	
alibration Equipment used (M8	TE critical for calibration)			
		·		
rimary Standards	ID #	Cal Date (Certificate No.)	School Jack O. W	
	SN: 104778		Scheduled Calibration	
ower sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288/02289)	Apr-17	
ower sensor NRP-Z91	SN: 103244 SN: 103245	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288)	Apr-17 Apr-17	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator	SN: 103244 SN: 103245 SN: 5058 (20k)	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289)	Apr-17 Apr-17 Apr-17	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator /pe-N mismatch combination	SN: 103244 SN: 103245	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292)	Apr-17 Apr-17 Apr-17 Apr-17	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator /pe-N mismatch combination eference Probe EX3DV4	SN: 103244 SN: 103245 SN: 5058 (20k)	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator /pe-N mismatch combination eference Probe EX3DV4	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator /pe-N mismatch combination eference Probe EX3DV4 AE4	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator /pe-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator /pe-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check	
Dwer sensor NRP-Z91 Dwer sensor NRP-Z91 Deference 20 dB Attenuator (pe-N mismatch combination Deference Probe EX3DV4 AE4 Decondary Standards Dwer meter EPM-442A Wer sensor HP 8481A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator /pe-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16	
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 <u>econdary Standards</u> ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A = generator R&S SMT-06	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator /pe-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A wer sensor HP 8481A wer sensor HP 8481A generator R&S SMT-06	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15)	Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator /pe-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator /pe-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A egenerator R&S SMT-06 otwork Analyzer HP 8753E	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ope-N mismatch combination eference Probe EX3DV4 AE4 <u>condary Standards</u> wer meter EPM-442A wer sensor HP 8481A wer sensor HP 8481A generator R&S SMT-06 twork Analyzer HP 8753E	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: 100972 SN: US37390585	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ope-N mismatch combination eference Probe EX3DV4 AE4 <u>condary Standards</u> wer meter EPM-442A wer sensor HP 8481A wer sensor HP 8481A generator R&S SMT-06 twork Analyzer HP 8753E	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator /pe-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A generator R&S SMT-06 etwork Analyzer HP 8753E	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16	
ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ope-N mismatch combination eference Probe EX3DV4 AE4 <u>condary Standards</u> wer meter EPM-442A wer sensor HP 8481A wer sensor HP 8481A generator R&S SMT-06 twork Analyzer HP 8753E	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. ٠
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.69 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	48.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.90 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.85 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	48.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.85 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9 Ω - 4.9 jΩ	
Return Loss	- 25.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.5 Ω - 4.1 jΩ
Return Loss	- 23.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.171 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

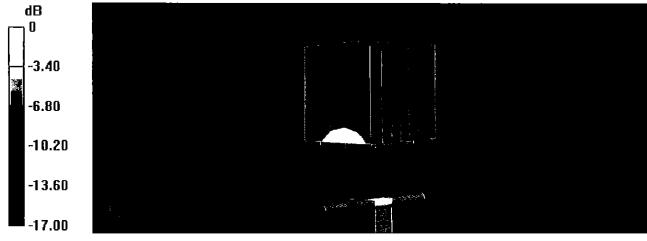
Manufactured by	SPEAG
Manufactured on	November 16, 2015

DASY5 Validation Report for Head TSL

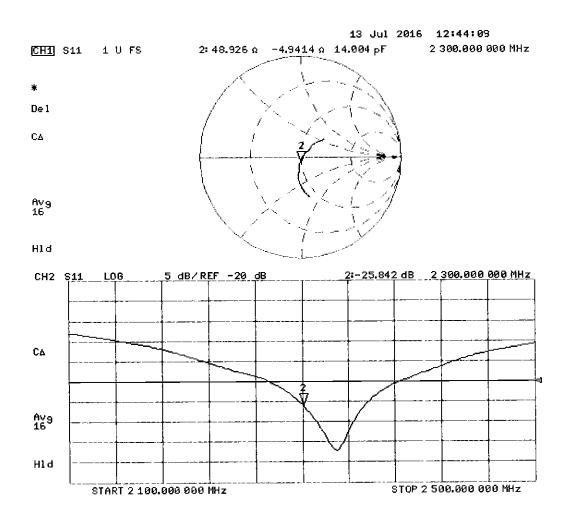
Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1073


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.69$ S/m; $\varepsilon_r = 38.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.99, 7.99, 7.99); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 113.1 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 24.1 W/kg SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.9 W/kg Maximum value of SAR (measured) = 19.8 W/kg

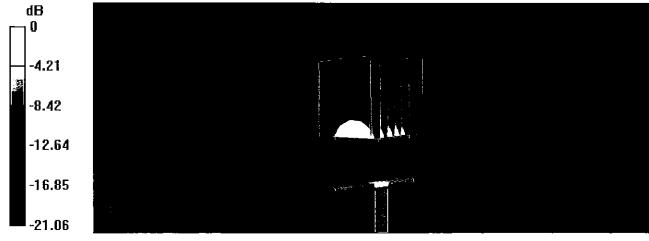
0 dB = 19.8 W/kg = 12.97 dBW/kg

DASY5 Validation Report for Body TSL

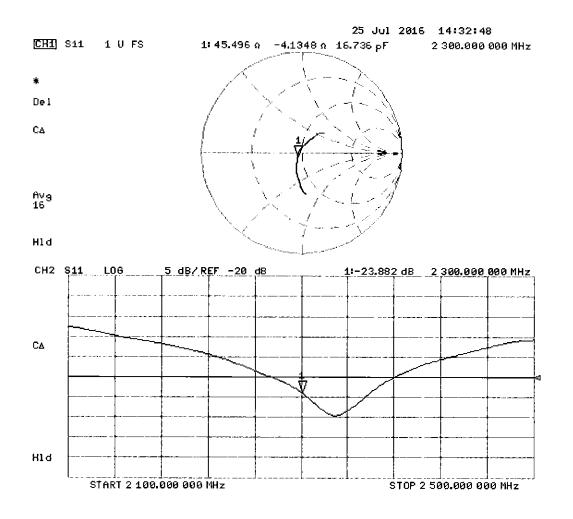
Date: 25.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1073


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 104.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 23.8 W/kg SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.85 W/kg Maximum value of SAR (measured) = 19.0 W/kg

0 dB = 19.0 W/kg = 12.79 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D2300V2 - SN: 1073

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Calibration date:

July 24, 2017

Description:

SAR Validation Dipole at 2300 MHz.

Calibration Equipment used:

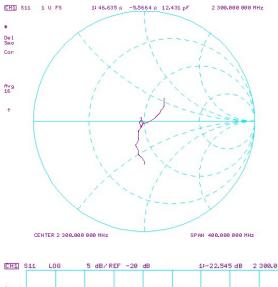
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/14/2016	Annual	9/14/2017	1408
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2017	Annual	2/9/2018	1272
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	ES3DV3	SAR Probe	9/19/2016	Annual	9/19/2017	3287
SPEAG	ES3DV3	SAR Probe	2/10/2017	Annual	2/10/2018	3213
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Seekonk	NC-100	Torque Wrench	11/6/2015	Biennial	11/6/2017	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK-

Object:	Date Issued:	Page 1 of 4
D2300V2 – SN: 1073	07/24/2017	Fage 1 01 4

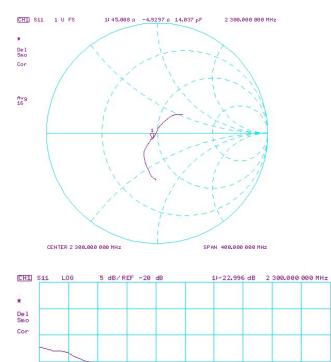
DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	dBm	(%)	w/кg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
7/25/2016	7/24/2017	1.171	4.86	5.06	4.12%	2.34	2.40	2.56%	48.9	46.6	2.3	-4.9	-5.6	0.7	-25.8	-22.5	12.80%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(40-) 10/2- @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
7/25/2016	7/24/2017	1.171	4.81	4.63	-3.74%	2.32	2.18	-6.03%	45.5	45.0	0.5	-4.1	-4.9	0.8	-23.9	-23.0	3.80%	PASS


Object:	Date Issued:	Page 2 of 4
D2300V2 – SN: 1073	07/24/2017	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2300V2 – SN: 1073	07/24/2017	Fage 5 01 4

1

Av9 16

CENTER 2 300.000 000 MHz

Impedance & Return-Loss Measurement Plot for Body TSL

SPAN 400.000 000 MHz

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

BC MRA

S Schweizerischer Kalibrierdienst
 C Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 0108

Multilateral Agreement for the recognition of calibration certificates
Client PC Test

Certificate No: D2450V2-797_Sep17

CALIBRATION CERTIFICATE							
Object	D2450V2 - SN:79	97					
Calibration procedure(s)	QA CAL-05.v9		· · · · · · · · · · · · · · · · · · ·				
		edure for dipole validation kits abo	ove 700 MHz کرک ره اوکا				
	F		10012				
			(0)03				
		· · · · · · · · · · ·					
Calibration date:	September 11, 2	017					
All calibrations have been conduc	ted in the closed laborato	ry facility: environment temperature (22 \pm 3)°	C and humidity < 70%.				
Calibration Equipment used (M&T	FE critical for calibration)						
	E critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration				
rimary Standards	1	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	Scheduled Calibration Apr-18				
rimary Standards ower meter NRP ower sensor NRP-Z91	ID # SN: 104778 SN: 103244	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)					
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ID # SN: 104778 SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522)	Apr-18				
rimary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18 Apr-18				
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18 Apr-18				
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17)	Apr-18 Apr-18 Apr-18 Apr-18				
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18				
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18				
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18				
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID #	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check				
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: 6B37480704	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_May17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18				
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18				
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (N	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18				
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (N	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18				
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-0258) 31-May-17 (No. 217-0258) 31-May-17 (No. 217-0258) 31-May-17 (No.	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17				
Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-0254) 31-May-17 (No. 217-0254) 31-May-17 (No. 217-0254) 31-May-17 (No.	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17				

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: September 11, 2017

Certificate No: D2450V2-797_Sep17

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	·
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 7.4 jΩ
Return Loss	- 21.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 9.1 jΩ
Return Loss	- 20.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	January 24, 2006	

ي: در مرجع

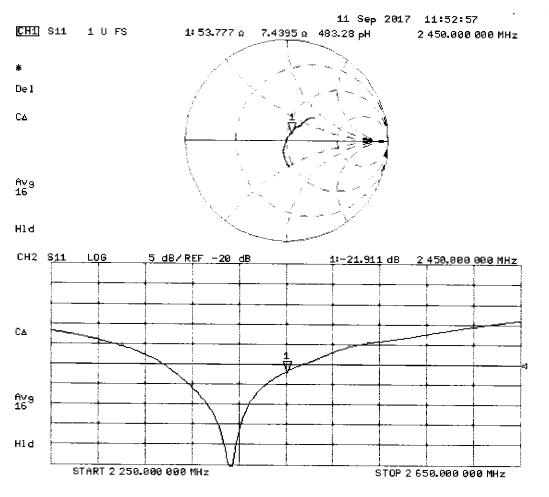
DASY5 Validation Report for Head TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 113.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (measured) = 21.6 W/kg

.

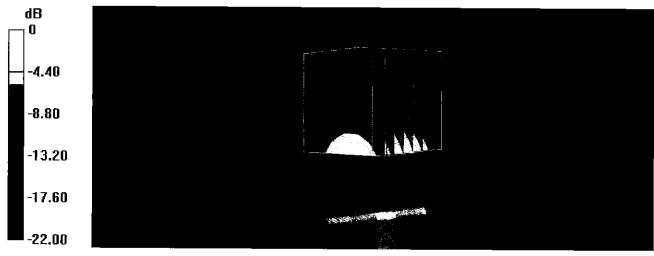
. Serva

DASY5 Validation Report for Body TSL

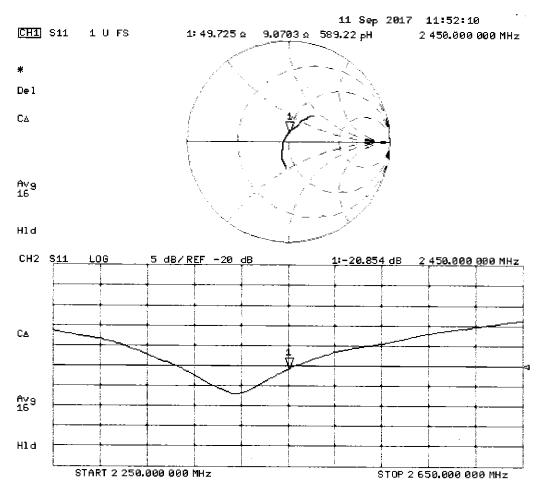
Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.04 S/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.4 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.14 W/kg Maximum value of SAR (measured) = 20.3 W/kg

0 dB = 20.3 W/kg = 13.07 dBW/kg

i.

i. Lina Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D2450V2-981_Jul16

CALIBRATION CERTIFICATE

	D2450V2 - SN:	98 I		
Calibration procedure(s)	QA CAL-05.v9		NGC 1999 - Destruction de la constance de la c	101
	Calibration proc	edure for dipole validation kits at	200 MIL	VII
				.10
				8/ J
		er en en sen en e		()
Calibration date:	July 25, 2016	CENTRE CONTRACTOR CONTRACTOR		Extran
				nL
				8/9, Extorn 7/20
This calibration certificate docurr	nents the traceability to na	tional standards, which realize the physical u		5C 1
The measurements and the unce	ertainties with confidence	probability are given on the following pages a	and are part of the eartifice :	
All calibrations have been condu	cted in the closed laborate	pry facility: environment temperature (22 \pm 3)	C and humberty -	
		(22 ± 3)	\bigcirc and humidity < 70%.	
Calibration Equipment used (M&	TE critical for calibration)			
Primary Standards	ID #	Cal Date (Certificate No.)	School de 1.0 million	
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Scheduled Calibration	
ower sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17	
ower sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17	
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17	
ype-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17	
			Apr-17	
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. FX3-7349 Jun16)	•	
leference Probe EX3DV4	SN: 7349 SN: 601	15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAF4-601_Dec15)	Jun-17	
Reference Probe EX3DV4 DAE4		15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15)	•	
Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 601	15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house)	Jun-17 Dec-16	
Reference Probe EX3DV4 DAE4 Secondary Standards Yower meter EPM-442A	SN: 601 ID # SN: GB37480704	30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house)	Jun-17 Dec-16 Scheduled Check	
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 601 ID # SN: GB37480704 SN: US37292783	30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222)	Jun-17 Dec-16 Scheduled Check In house check: Oct-16	
Reference Probe EX3DV4 DAE4 Secondary Standards Tower meter EPM-442A Tower sensor HP 8481A Tower sensor HP 8481A	SN: 601 ID # SN: GB37480704	30-Dec-15 (No. DAE4-601_Dec15) <u>Check Date (in house)</u> 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16	
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Re generator R&S SMT-06	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16	
Reference Probe EX3DV4 DAE4 Decondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15)	Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16	
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Regenerator R&S SMT-06	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16	
Reference Probe EX3DV4 DAE4 Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Regenerator R&S SMT-06 letwork Analyzer HP 8753E	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15)	Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16	
Reference Probe EX3DV4 DAE4 Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8753E	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16	
teference Probe EX3DV4 DAE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	30-Dec-15 (No. DAE4-601_Dec15) <u>Check Date (in house)</u> 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16	
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Reference Probe EX3DV4 Power Secondary Standards Power Sensor HP 8753E Reference Probe EX3DV4 Power Methods Power Secondary Standards Power Methods Power Secondary Standards Power Secondary Standards	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16	
Reference Probe EX3DV4 DAE4 Decondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	30-Dec-15 (No. DAE4-601_Dec15) <u>Check Date (in house)</u> 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function Laboratory Technician	Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16	
teference Probe EX3DV4 DAE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E alibrated by:	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name Michael Weber	30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.8 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.26 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2 Ω + 3.4 jΩ
Return Loss	- 26.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω + 4.5 jΩ
Return Loss	- 27.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

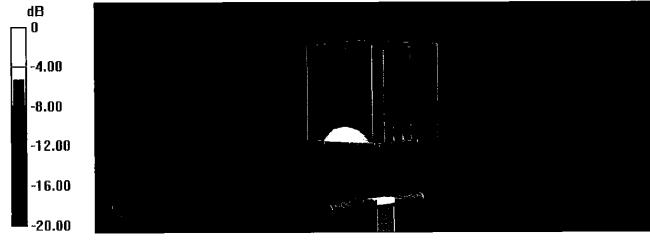
Manufactured by	SPEAG
Manufactured on	December 30, 2014

DASY5 Validation Report for Head TSL

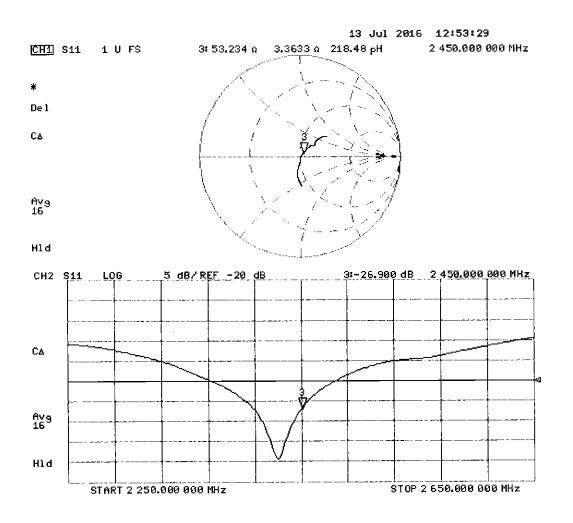
Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:981


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\varepsilon_r = 38$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 115.8 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.26 W/kg Maximum value of SAR (measured) = 22.5 W/kg

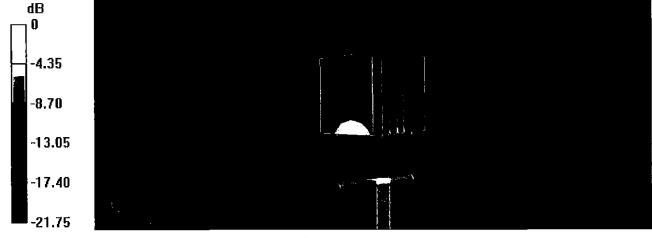
0 dB = 22.5 W/kg = 13.52 dBW/kg

DASY5 Validation Report for Body TSL

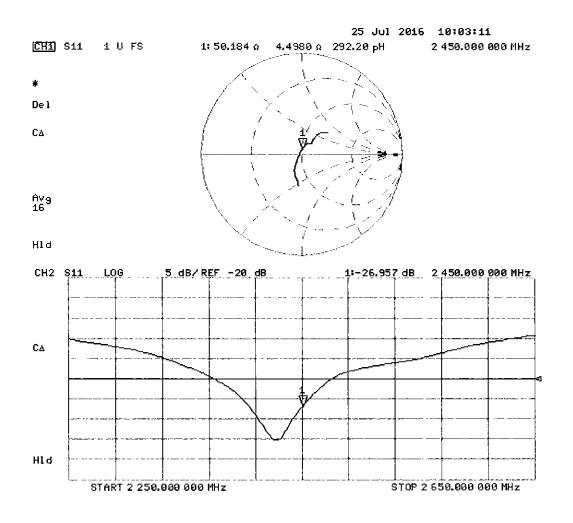
Date: 25.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:981


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\varepsilon_r = 51.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.1 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 26.0 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.04 W/kg Maximum value of SAR (measured) = 21.4 W/kg

0 dB = 21.4 W/kg = 13.30 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D2450V2 - SN: 981

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Calibration date:

July 24, 2017

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

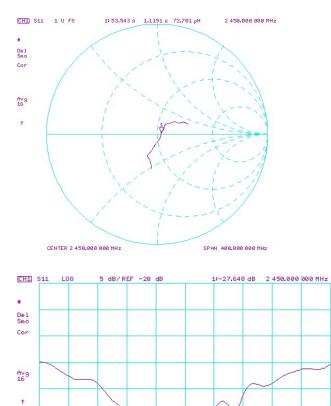
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/14/2016	Annual	9/14/2017	1408
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2017	Annual	2/9/2018	1272
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	ES3DV3	SAR Probe	9/19/2016	Annual	9/19/2017	3287
SPEAG	ES3DV3	SAR Probe	2/10/2017	Annual	2/10/2018	3213
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Seekonk	NC-100	Torque Wrench	11/6/2015	Biennial	11/6/2017	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK-

Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 981	07/24/2017	Fage 1 01 4

DIPOLE CALIBRATION EXTENSION

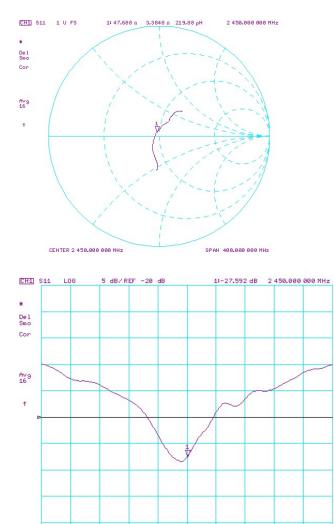

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
7/25/2016	7/24/2017	1.162	5.28	5.57	5.49%	2.47	2.56	3.64%	53.2	53.5	0.3	3.4	1.1	2.3	-26.9	-27.6	-2.60%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(40-) 14(0- @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
7/25/2016	7/24/2017	1.162	5.08	5.34	5.12%	2.38	2.39	0.42%	50.2	47.7	2.5	4.5	3.4	1.1	-27.0	-27.6	-2.20%	PASS

Object:	Date Issued:	Page 2 of 4	
D2450V2 – SN: 981	07/24/2017	raye 2 01 4	



CENTER 2 450.000 000 MHz

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dage 2 of 4	
D2450V2 – SN: 981	07/24/2017	Page 3 of 4	

SPAN 400.000 000 MHz

CENTER 2 450.000 000 MHz

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dogo 4 of 4	
D2450V2 – SN: 981	07/24/2017	Page 4 of 4	

SPAN 400.000 000 MHz

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: D2600V2-1126_Jul17

CALIBRATION CERTIFICATE

Object	D2600V2 - SN:1	126	BNV 813/2017			
Calibration procedure(s)	ration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz					
Calibration date:	July 10, 2017					
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.						
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.						
Calibration Equipment used (M&T	E critical for calibration)					
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration			
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18			
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18			
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18			
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18			
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18			
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18			
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18			
Secondary Standards	ID #	Check Date (in house)	Scheduled Check			
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18			
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18			
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18			
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18			
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17			
	Name	Function	Signature			
Calibrated by:	Jeton Kastratl	Laboratory Technician	Tela 1			
Approved by:	Kalja Pokovic	Technical Manager	belly			
Issued: July 11, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.						

Calibration Laboratory of

Gloceary

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Accreditation No.: SCS 0108

tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not measured

Multilateral Agreement for the recognition of calibration certificates

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.04 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	<u> </u>
SAR measured	250 mW input power	14.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
		· · · · · · · · · · · · · · · · · · ·
SAR measured	250 mW input power	6.40 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	2.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.8 Ω - 7.7 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.8 Ω - 5.8 jΩ
Return Loss	- 21.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 22, 2015

DASY5 Validation Report for Head TSL

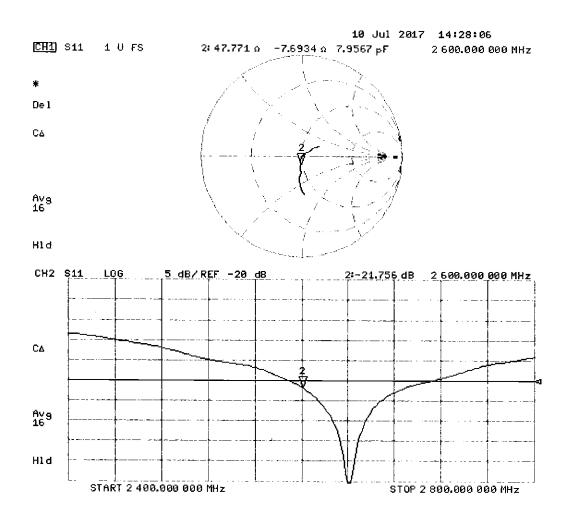
Date: 10.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1126

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.04$ S/m; $\varepsilon_r = 37.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 113.2 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.4 W/kg Maximum value of SAR (measured) = 24.0 W/kg

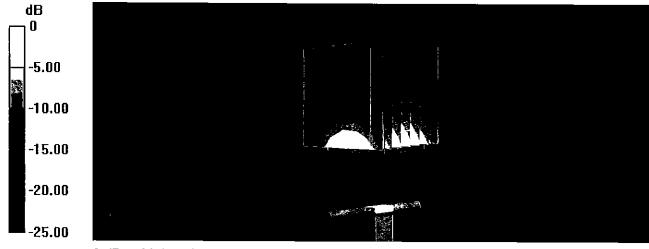
0 dB = 24.0 W/kg = 13.80 dBW/kg

DASY5 Validation Report for Body TSL

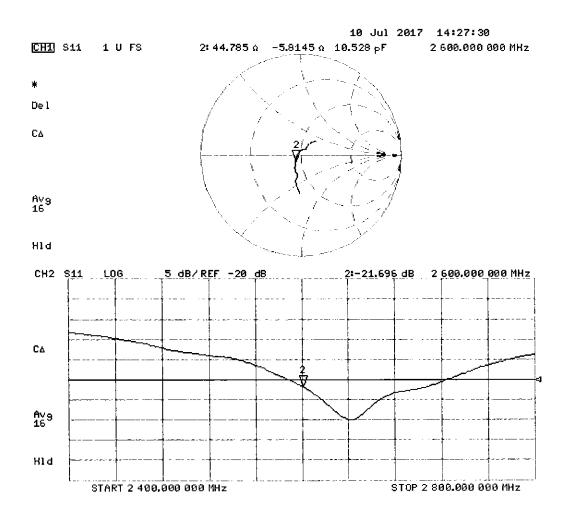
Date: 10.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1126


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.94, 7.94, 7.94); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.8 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.16 W/kg Maximum value of SAR (measured) = 22.2 W/kg

0 dB = 22.2 W/kg = 13.46 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D5GHzV2-1120_Feb18

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1	120	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	ween 3-6 GHz
			BN ()3-02-2
Calibration date:	February 12, 201	8	U7 02 2
The measurements and the unce All calibrations have been conduc	rtainties with confidence p	ional standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°(d are part of the certificate.
Calibration Equipment used (M&T Primary Standards		Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M.N.S.
Approved by:	Katja Pokovic	Technical Manager	Solly
			Issued: February 12, 2018

Calibration Laboratory of

Schmid & Partner Engineering AG ^{Zeughausstrasse} 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	4.59 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	4.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.7 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.4 ± 6 %	5.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.54 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	4	
SAR measured	100 mW input power	2.10 W/kg	
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 19.5 % (k=2)	

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

· · · · · · · · · · · · · · · · · · ·	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	5.95 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.85 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	6.15 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.51 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	52.0 Ω - 1.3 jΩ
Return Loss	- 32.5 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	57.9 Ω + 0.2 jΩ
Return Loss	- 22.7 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	53.3 Ω + 5.5 jΩ
Return Loss	- 24.2 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	51.4 Ω + 0.3 jΩ
Return Loss	- 36.8 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	59.1 Ω + 1.6 jΩ
Return Loss	- 21.4 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	54.0 Ω + 5.9 jΩ
Return Loss	- 23.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.206 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 08, 2011

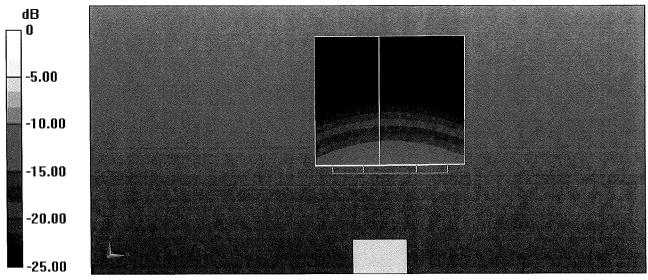
DASY5 Validation Report for Head TSL

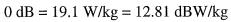
Date: 09.02.2018

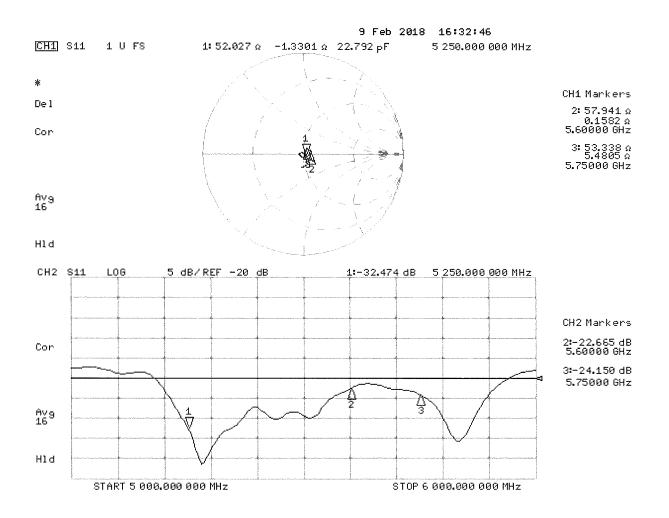
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1120

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.59$ S/m; $\varepsilon_r = 36.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.95$ S/m; $\varepsilon_r = 35.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.1$ S/m; $\varepsilon_r = 35.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017, ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.09 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.10 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 8.47 W/kg; SAR(10 g) = 2.42 W/kg Maximum value of SAR (measured) = 19.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.73 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 19.1 W/kg

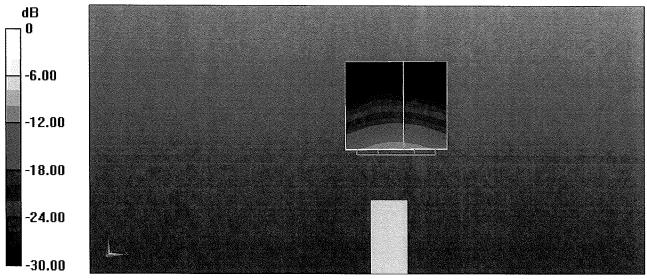
DASY5 Validation Report for Body TSL

Date: 12.02.2018

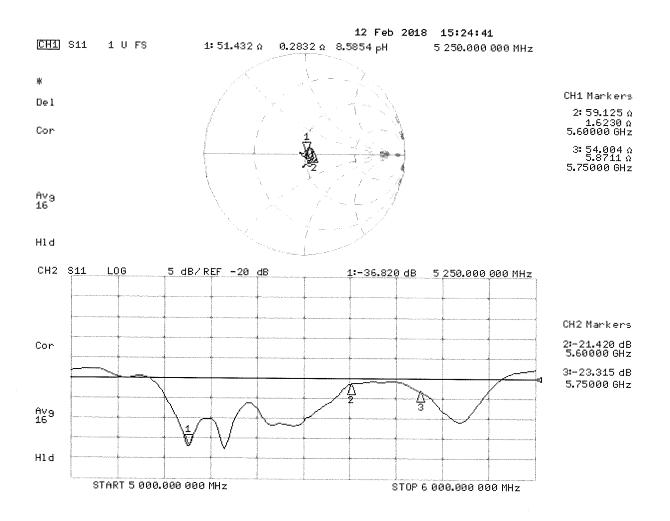
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1120

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.48$ S/m; $\varepsilon_r = 47.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.95$ S/m; $\varepsilon_r = 46.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.15$ S/m; $\varepsilon_r = 46.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26); Calibrated: 30.12.2017, ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.63 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.0 W/kg SAR(1 g) = 7.54 W/kg; SAR(10 g) = 2.1 W/kg Maximum value of SAR (measured) = 17.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.26 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.19 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.56 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.09 W/kg Maximum value of SAR (measured) = 17.9 W/kg

0 dB = 17.1 W/kg = 12.33 dBW/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: D5GHzV2-1237_Aug17

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1	237		
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	ween 3-6 GHz	PMV 8/27/1=
Calibration date:	August 15, 2017			
		ional standards, which realize the physical un robability are given on the following pages ar		
All calibrations have been conduct		ry facility: environment temperature (22 ± 3)°	C and humidity < 70%.	
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibratio	n
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18	
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18	
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18	
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18	
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18	
Reference Probe EX3DV4	SN: 3503	31-Dec-16 (No. EX3-3503_Dec16)	Dec-17	
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18	i.
Secondary Standards	1D #	Check Date (in house)	Scheduled Check	
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-	18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-	18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-	18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-	18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-	17
	Name	Function	Signature	
Calibrated by:	Johannes Kurikka	Laboratory Technician	Jer un	
Approved by:	Katja Pokovic	Technical Manager	fel lle	
This calibration certificate shall no	ot be reproduced except in	n full without written approval of the laboratory	Issued: August 16, 20	017

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.49 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.5 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	4.99 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	5.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.75 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.13 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.77 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.1 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.16 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	49.9 Ω - 5.3 jΩ
Return Loss	- 25.5 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	51.9 Ω + 2.3 jΩ
Return Loss	- 30.7 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	55.6 Ω - 0.5 jΩ
Return Loss	- 25.5 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	46.9 Ω - 4.2 jΩ			
Return Loss	- 25.4 dB			

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point $50.2 \Omega + 3.0 j\Omega$	
Return Loss	- 30.4 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	53.4 Ω + 0.2 jΩ				
Return Loss	- 29.7 dB				

General Antenna Parameters and Design

Electrical Delay (one direction)	1 194 pc
Electrical Delay (one direction)	1.194 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 04, 2015

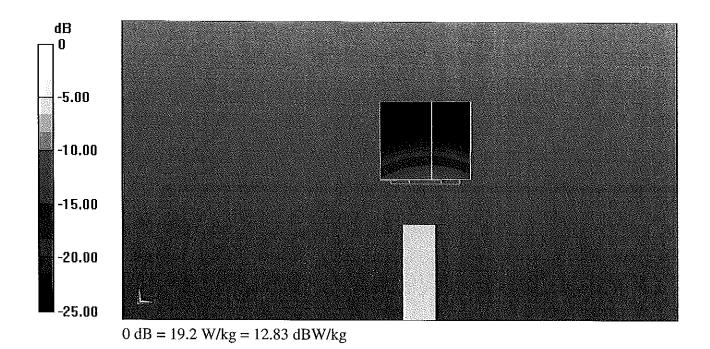
DASY5 Validation Report for Head TSL

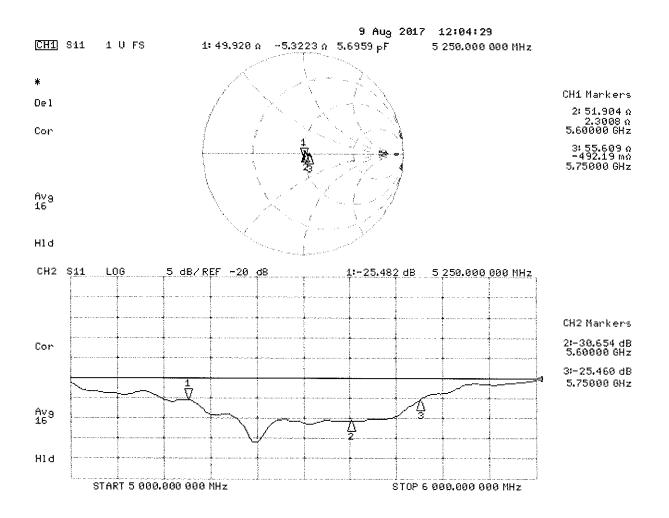
Date: 15.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.49 S/m; ϵ_r = 34.7; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.84 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 4.99 S/m; ϵ_r = 34; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(5.58, 5.58, 5.58); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.02, 5.02, 5.02); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.08 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.04 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.38 W/kg Maximum value of SAR (measured) = 19.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.11 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 19.6 W/kg

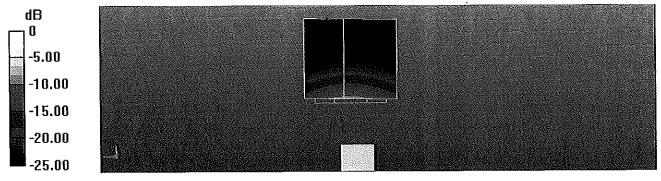
DASY5 Validation Report for Body TSL

Date: 08.08.2017

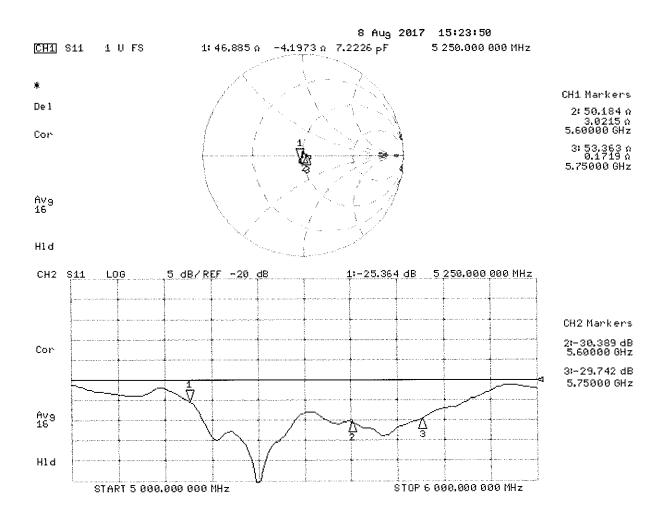
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.46$ S/m; $\varepsilon_r = 47$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.93$ S/m; $\varepsilon_r = 46.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.13$ S/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.14, 5.14, 5.14); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.51, 4.51, 4.51); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.87 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.11 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.64 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.16 W/kg Maximum value of SAR (measured) = 19.1 W/kg

0 dB = 18.4 W/kg = 12.65 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: ES3-3287_Sep17

Client PC Test

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3287	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes	SC 10/03/20/1
Calibration date:	September 18, 2017	
This calibration certificate doci	uments the traceability to national standards, which realize the physical units of measurements (SI).	

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18	
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18	
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18	
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18	
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17	
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17	
Secondary Standards		Check Date (in house)	Sahadulad Oh	
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	Scheduled Check	
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18	
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18	
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18	
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17	

Calibrated by:	Name Leif Klysner	Function La bo ratory Technician	Signature Seef Hilps
Approved by:	Katja Pokovic	Technical Manager	h Slef
		na san ƙasar Ingila. Tan	Issued: September 19, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

e e

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization ϕ φ rotation around probe axis Polarization & 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

.

Probe ES3DV3

SN:3287

Manufactured: Calibrated: June 7, 2010 September 18, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.87	0.98	1.00	± 10.1 %
DCP (mV) ^H	107.7	103.1	105.0	

Modulation Calibration Parameters

UID	Communication System Name		A	В	c		VR	Unc ^E
			dB	dBõV		dB	mV	(k=2)
<u> </u>		X	0.0	0.0	1.0	0.00	191.5	±3.3 %
		Y	0.0	0.0	1.0	F	198.9	
		Z	0.0	0.0	1.0		180.8	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

, . . .

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V⁻¹	T3 ms	T4 V⁻²	T5 V ⁻¹	Т6
<u> </u>	54.28	378.7	33.99	28.46	2.430	5.072	1.313	0.408	1.009
<u> Y </u>	59.16	422.2	35.13	29.85	3.583	5.094	0.041	0.732	1.008
<u> </u>	43.70	307.8	34.40	28.00	2.236	5.100	1.282	0.347	1.010

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^aNumerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287

<u>f (MHz)</u> ^C	Relative <u>Permittivity</u> ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)			
750	41.9	0.89	7.00	7.00	7.00	0.26	1.80	± 12.0 %			
835	41.5	0.90	6.70	6.70	6.70	0.56	1.23	± 12.0 %			
1750	40.1	1.37	5.57	5.57	5.57	0.53	1.28	± 12.0 %			
1900	40.0	1.40	5.34	5.34	5.34	0.41	1.52	± 12.0 %			
2300	39.5	1.67	4.94	4.94	4.94	0.42	1.57	± 12.0 %			
2450	39.2	1.80	4.64	4.64	4.64	0.55	1.39	± 12.0 %			
2600	39.0	1.96	4.44	4.44	4.44	0.58	1.43	± 12.0 %			

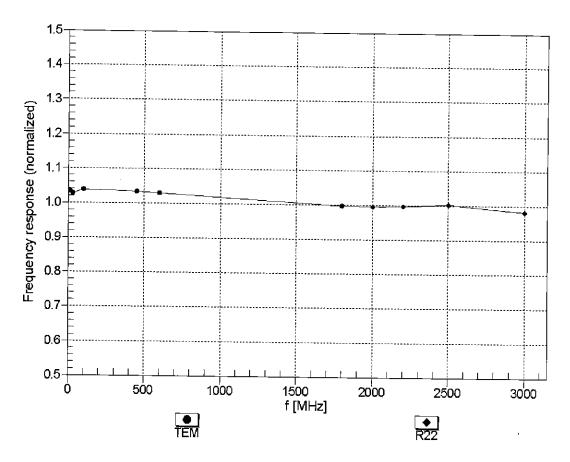
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency

validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

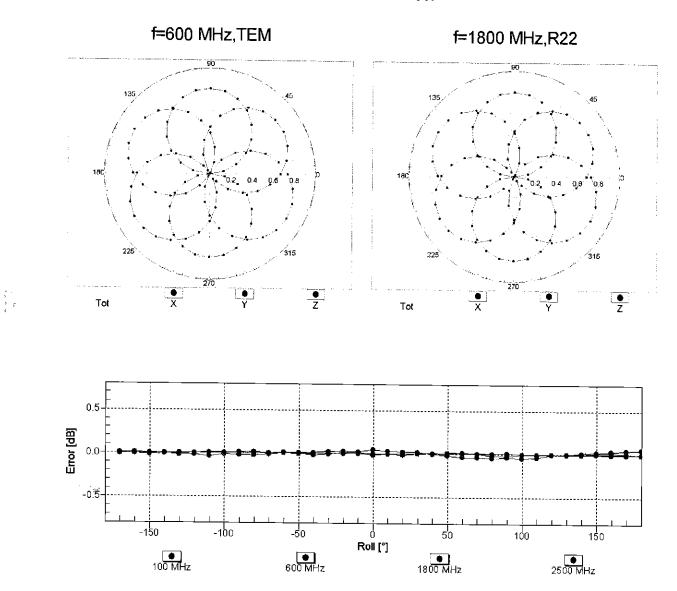
always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287

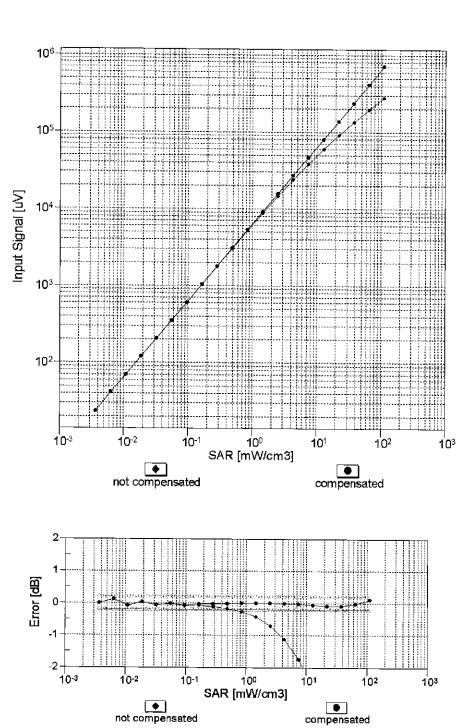

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)			
750	55.5	0.96	6.71	6.71	6.71	0.45	1.38	± 12.0 %			
835	55.2	0.97	6.56	6.56	6.56	0.80	1.05	± 12.0 %			
1750	53.4	1.49	5.19	5.19	5.19	0.37	1.73	± 12.0 %			
1900	53.3	1.52	5.00	5.00	5.00	0.47	1.51	± 12.0 %			
2300	52.9	1.81	4.66	4.66	4.66	0.59	1.36	± 12.0 %			
2450	52.7	1.95	4.47	4.47	4.47	0.55	1.20	± 12.0 %			
2600	52.5	2.16	4.28	4.28	4.28	0.50	1.20	± 12.0 %			

Calibration Parameter Determined in Body Tissue Simulating Media

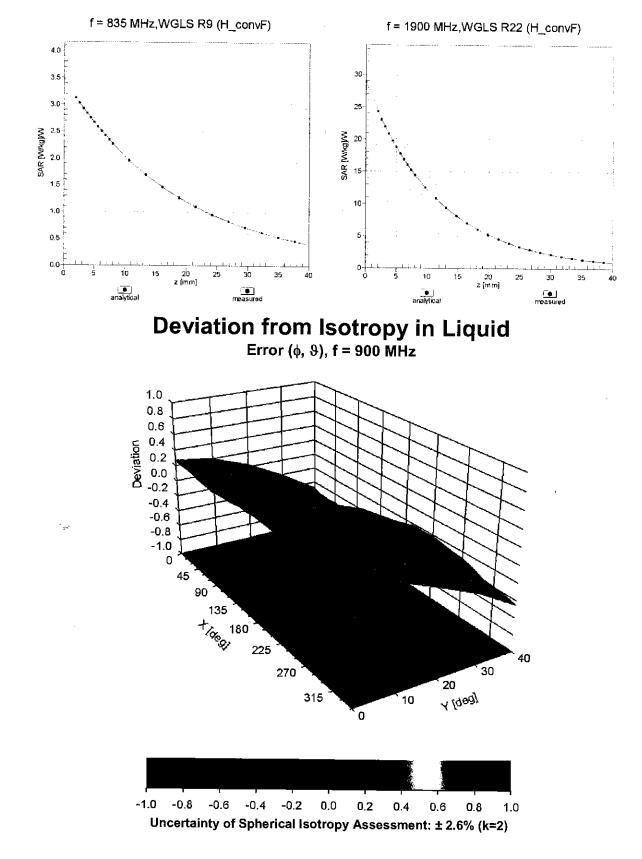
^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to \pm 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	89.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	
Probe Overall Length	337 mm
Probe Body Diameter	
Tip Length	
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

. 22 ; ; ; ;

`

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	191.5	± 3.3 %
		Y	0.00	0.00	1.00		198.9	
10010-		Z	0.00	0.00	1.00		180.8	
<u>CAA</u>	SAR Validation (Square, 100ms, 10ms)	X	10.31	82.54	19.92	10.00	25.0	± 9.6 %
		Y	9.70	81.57	20.65		25.0	
10011-	UMTS-FDD (WCDMA)	ZX	13.02 1.65	86.61 76.64	21.44 20.39	0.00	25.0 150.0	
CAB						0.00		± 9.6 %
	<u>+-</u>	Y Z	1.11	68.31	15.89		150.0	
10012-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	X	1.42	70.53 67.62	17.08 17.77	0.41	150.0 150.0	± 9.6 %
CAB	Mbps)					0.41		19.0%
		Y	1.35	65.44	16.09		<u>1</u> 50.0	
40040		Z	1.35	66.18	16.60		150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	5.13	67.63	17.69	1.46	150.0	± 9.6 %
		Y	5.21	67.37	17.49		150.0	
10021-	GSM-FDD (TDMA, GMSK)	ZX	5.05	67.67	17.63	0.00	150.0	10.0.0
DAC			36.11	104.66	28.70	9.39	50.0	± 9.6 %
		Y	17.06	92.75	26.26		50.0	
10023-	GPRS-FDD (TDMA, GMSK, TN 0)	Z	74.47	117.68	32.39	0.53	50.0	
DAC		x	29.01	100.99	27.69	9.57	50.0	± 9.6 %
		۲ <u>۲</u>	15.70	91.12	25.76		50.0	
10024-	GPRS-FDD (TDMA, GMSK, TN 0-1)	Z X	50.86 100.00	111.27	30.76	0.50	50.0	10.0.0/
DAC					30.37	6.56	60.0	±9.6 %
		Y	79.14	117.46	31.45		60.0	
10025-		Z	100.00	119.51	30.92	10 53	60.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	18.01	104.77	39.73	12.57	50.0	± 9.6 %
		Y	13.85	93.70	35.01		50.0	
10026-	EDGE-FDD (TDMA, 8PSK, TN 0-1)	Z X	19.28 22.37	108.70	41.83	0.50	50.0	100%
DAC				106.73	36.71	9.56	60.0	± 9.6 %
		Y	15.21	95.13	32.50		60.0	
10027-		Z	23.85	109.99	38.29	1.00	60.0	
DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	117.60	29.16	4.80	80.0	± 9.6 %
		Y	100.00	119.86	30.73		80.0	
10000		Z	100.00	118.96	29.76	0.55	80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	118.56	28.79	3.55	100.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	100.00	119.98	29.90	ļ	100.0	
10029-	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	Z	100.00	119.90	29.38	7.00	100.0	100%
10029- DAC		X	14.79	97.42	32.53	7.80	80.0	± 9.6 %
		Y	11.52	89.75	29.55		80.0	L
10030-	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	14.18 100.00	97.61 116.89	32.99 29.16	5.30	80.0 70.0	± 9.6 %
CAA						0.00		± 9.0 %
		Y	100.00	119.53	30.94		70.0	
10021	IEEE 802 15 1 Plustaath (OEOK, DUR)	Z	100.00	118.05	29.66	4.00	70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	122.60	28.99	1.88	100.0	± 9.6 %
	<u> </u>	Y	100.00	121.51	28.91	_	100.0	
		Z	100.00	122.48	28.93		100.0	

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	x	100.00	133.16	32.27	1.17	100.0	± 9.6 %
0//1			(00 00	100.10	<u> </u>		<u> </u>	
		Y	100.00	126.43	29.83		100.0	1
10033-	IEEE 802.15.1 Bluetooth (PI/4-DQPSK,	Z X	100.00	130.02	30.96		100.0	
CAA	DH1)		32.57	106.74	29.49	5.30	70.0	± 9.6 %
		Y	13.39	91.56	25.42		70.0	
40004		Z	28.98	104.37	28.55		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	45.93	114.88	30.10	1.88	100.0	± 9.6 %
		Y	7.50	87.12	22.45		100.0	
40005		Z	20.04	100.44	25.46		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	21.96	105.92	27.68	1.17	100.0	± 9.6 %
		Y	4.51	<u>81.</u> 47	20.26		100.0	
10036-		Z	9.42	91.44	22.56		100.0	
<u>CAA</u>	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	45.23	112.33	31.05	5.30	70.0	± 9.6 %
	·	Y	15.39	94.09	26.30		70.0	
10037-		Z	38.95	109.34	29.96		70.0	
10037- _CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	39.94	112.82	29.55	1.88	100.0	± 9.6 %
	<u> </u>	Y	7.15	86.45	22.19		100.0	<u> </u>
40000		Z	17.08	98.28	24.84		100.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	24.74	108.13	28.38	1.17	100.0	± 9.6 %
		Ý	4.66	82.21	20.61	·	100.0	
		Z [_]	9.87	92.45	22.99		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	7.01	92.94	24.21	0.00	150.0	± 9.6 %
		Υ	2.15	73.76	17.15		150.0	
		Z	2.61	77.73	17.80		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	117.06	30.06	7.78	50.0	± 9.6 %
		Y	33.54	102.85	27.66		50.0	
		Z	100.00	118.08	30.50		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	127.60	2.39	0.00	150.0	± 9.6 %
		Y	0.00	96.78	0.00		150.0	
		Z	0.01	122.93	2.94		150.0	
10048- · CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	×	13.06	86.13	24.73	13.80	25.0	±9.6 %
		Y	11.09	82.14	24.36		25.0	
		Z	16.17	90.99	26.57		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	16.50	91.24	25.09	10.79	40.0	±9.6 %
		Y	12.58	86.37	24.53		40.0	<u> </u>
40050		Z	22.30	97.25	27.17		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	15.28	90.62	25.52	9.03	50.0	± 9.6 %
		Y	11.72	85.08	24.19		50.0	
10058-		Z	17.40	93.38	26.42		50.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	10.69	91.04	29.62	6.55	100.0	± 9.6 %
	<u>+</u>	<u>Y</u>	9.07	85.67	27.37		100.0	
10050		Z	9.88	90.10	29.57		100.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.68	70.66	19.16	0.61	110.0	± 9.6 %
	<u> </u>	_Y	1.55	67.69	17.16		110.0	· · · · · · · · · · · · · · · · · · ·
10000		Z	1.56	68.66	17.81		110.0	
10060-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5	X	100.00	135.64	35.63	1.30	110.0	± 9.6 %
	Mbps)			· ·				/ 0
	Mbps)	_ <u>Y</u> _Z	100.00	131.50	34.05		110.0	

`

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	54.02	125.97	35.38	2.04	110.0	± 9.6 %
		Y	8.96	93.29	26.14		110.0	
		z	19.56	108.50	30.84		110.0	
10062- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.87	67.49	17.06	0.49	100.0	±9.6 %
		Y	4.91	67.10	16.78		100.0	
		Z	4.75	67.38	16.89		100.0	
10063- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.91	67.64	17.19	0.72	100.0	±9.6 %
		Y	4.96	67.27	16.93		100.0	
•		Z	4.80	67.55	17.03		100.0	
10064- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.22	67.92	17.42	0.86	100.0	± 9.6 %
		Y	5.29	67.61	17.19		100.0	
(Z	5.08	67.80	17.26		100.0	
10065- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	5.13	67.94	17.58	1.21	100.0	± 9.6 %
		Y	5.21	67.67	17.37		100.0	
10055		Z	5.00	67.84	17.45		100.0	
10066- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.18	68.06	17.79	1.46	100.0	± 9.6 %
		Y	5.27	67.81	17.60		100.0	
		Z	5.05	67.98	17.68		100.0	
10067- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.49	68.19	18.21	2.04	100.0	± 9.6 %
		Y	5.60	67.98	18.05		100.0	
		Z	5.39	68.30	18.20		100.0	
10068- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.62	68.50	18.55	2.55	100.0	± 9.6 %
		ΙY	5.76	68.37	18.43		100.0	
		Z	5.50	68.48	18.50		100.0	
10069- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.69	68.44	18.72	2.67	100.0	±9.6 %
		Y	5.84	68.31	18.60		100.0	
		Z	5.58	68.54	18.73		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.27	67.84	18.05	1.99	100.0	±9.6 %
		Y	5.37	67.63	17.89		100.0	
		Z	5.20	67.92	18.02		100.0	
10072- CAB	JEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.34	68.42	18.38	2.30	100.0	± 9.6 %
		Y	5.45	68.23	18.22		100.0	
		Z	5.25	68.45	18.35		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.47	68.76	18.79	2.83	100.0	±9.6 %
		Y	5.61	68.62	18.66		100.0	
		Z	5.40	68.87	18.81		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.51	68.83	19.02	3.30	100.0	± 9.6 %
		Y	5.66	68.73	18.92		100.0	
		Z	_ 5.46	68.99	19.07		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.65	69.27	19.49	3.82	90.0	±9.6 %
		Y	5.85	69.26	19.43		90.0	
		Z	5.60	69.37	19.53	L	90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.67	69.08	19.61	4.15	90.0	± 9.6 %
		Y	5.87	69.08	19.56		90.0	
		Z	5.65	69.30	19.73		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.72	69.19	19.72	4.30	90.0	±9.6 %
		Y	5.92	69.19	19.67		90.0	
		Z	5.70	69.44	19.85		90.0	

4 . 4 . 4 .

10081-	CDMA2000 (1xRTT, RC3)	Tx	2.28	81.48	20.27	0.00	150.0	± 9.6 %
CAB								1 0.0 %
		Y	1.00	67.64	14.10		150.0	
10082-	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-		1.04	69.66	14.21		150.0	
CAB	DQPSK, Fullrate)	X	2.13	64.08	8.83	4.77	80.0	± 9.6 %
		Y	2.57	65.34	10.16		80.0	
40000		Z	<u>2.</u> 13	64.35	9.02		80.0	-
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	118.32	30.42	6.56	60.0	± 9.6 %
		<u>Y</u>	75.01	116.70	31.30		60.0	· · · · · · · · · · · · · · · · · · ·
		Z	100.00	119.58	30.97		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	2.20	71.50	18.09	0.00	150.0	± 9.6 %
		Y	1.90	67.97	16.04		150.0	
(0000		Z	1.97	69.50	16.62		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	2.16	71.55	18.11	0.00	150.0	± 9.6 %
		Y	1.86	67.93	16.01		150.0	
10000		Z	1.93	69.49	16.61		150.0	<u> </u>
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	22.24	106.54	36.64	9.56	60.0	± 9.6 %
		Y	15.16	95.02	32.46		60.0	
		Z	23.72	109.80	38.22		60.0	
10100- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	3.77	73.97	18.60	0.00	150.0	± 9.6 %
		Y	3.32	71.02	16.99		150.0	
		Z	3.27	71.57	17.41		150.0	
10101- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.50	69.24	17.00	0.00	150.0	± 9.6 %
		ΤY	3.39	67.99	16.16		150.0	
		Z	3.29	68.22	16.35		150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	Х	3.59	69.07	17.02	0.00	150.0	± 9.6 %
_		Y	3.49	67.92	16.24		150.0	
		Z	3.39	68.14	16.41		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	9.27	79.88	21.95	3.98	65.0	±9.6 %
_		Y	8.43	77.27	20.93		65.0	
		Z	9.22	80.33	22.26		65.0	
1010 <mark>4-</mark>	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	8.81	77.80	21.97	3.98	65.0	± 9.6 %
		Y	8.62	76.41	21.37		65.0	
		Z	8.59	77.82	22.06			<u> </u>
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	8.19	76.36	21.65	3.98	65.0 65.0	± 9.6 %
		Y	7.71	74.18	20.67		65.0	
	· · · · · · · · · · · · · · · · · · ·	Z	7.86	76.00	21.56		65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	3.29	73.14	18.47	0.00	150.0	±9.6 %
		Y	2.93	70.22	16.82		150.0	
		Z	2.85	70.87	17.28		150.0	
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	3.18	69.27	17.05	0.00	150.0	± 9.6 %
		Y	3.05	67.82	16.11		150.0	
10110		Z	2.94	68.18	16.29		150.0	
10110- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.72	72.52	18.35	0.00	150.0	± 9.6 %
		Y	2.40	69.28	16.49		150.0	
10111		Z	2.33	70.22	16.99		150.0	
10111- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.96	70.65	17.72	0.00	150.0	± 9.6 %
		Y	2.76	68.51	16.45		150.0	
		Z	2.69	69.33	16.67		0.00	

September 18, 2017

`

10112- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.29	69.10	17.02	0.00	150.0	± 9.6 %
		Y	3.17	67.76	16.14		150.0	
		Z	3.06	68.15	16.32		150.0	<u> </u>
10113- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	3.11	70.58	17.73	0.00	150.0	± 9.6 %
		Y	2.92	68.59	16.56		150.0	
		Z	2.83	69.41	16.76		150.0	
10114- CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.26	67.86	16.86	0.00	150.0	± 9.6 %
		Y	5.25	67.40	16.53		150.0	
<u> </u>		Z	5.14	67.65	16.68		150.0	
10115- CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.60	68.11	16.98	0.00	150.0	± 9.6 %
		Y	5.62	67.73	16.70		150.0	
		Z	5.40	67.70	16.71		150.0	
10116- CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.38	68.12	16.91	0.00	150.0	±9.6 %
		Y	5.38	67.68	16.59		150.0	
		Z	5.23	67.82	16.70		150.0	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.24	67.79	16.84	0.00	150.0	± 9.6 %
		Y	5.25	67.40	16.55		150.0	
		Z	5.10	67.49	16.62		150.0	
10118- CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.68	68.30	17.08	0.00	150.0	± 9.6 %
		Y	5.70	67.92	16.80		150.0	
		Z	5.48	67.91	16.83		150.0	
10119- CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	Х	5.35	68.04	16.89	0.00	150.0	±9.6%
		Y	5.35	67.63	16.58	_	150.0	
		Z	5.21	67.79	16.69		150.0	
10140- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.63	69.06	16.93	0.00	150.0	± 9.6 %
		Y	3.53	67.92	16.17		150.0	
		Z	3.42	68.16	16.33		150.0	· · · ·
10141- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.75	69.06	17.04	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	3.65	67.98	16.31		150.0	
		Z	3.54	68.23	16.48		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	2.58	73.34	18.51	0.00	150.0	± 9.6 %
		Y	2.18	69.29	16.31		150.0	
		Z	2.13	70.56	16.73		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	3.01	72.46	18.03	0.00	150.0	± 9.6 %
		Y	2.65	69.32	16.38		150.0	
	· · · · · · · · · · · · · · · · · · ·	Z	2.60	70.44	16.44		150.0	[
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.64	69.45	16.13	0.00	150.0	± 9.6 %
		Y	2.44	67.23	14.90		150.0	
		Z	2.30	67.73	14.62		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	2.19	73.84	16.83	0.00	150.0	± 9.6 %
		Y	1.54	67.56	13.92		150.0	
		Z	1.24	66.10	11.96		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	6.00	80.94	18.56	0.00	150.0	± 9.6 %
		Y	2.97	71.15	15.11		150.0	
		Z	2.39	68.87	12.55		150.0	
10147- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	13.14	91.59	22.17	0.00	150.0	± 9.6 %
		Y	3.76	74.52	16.70		150.0	<u> </u>
			0.70	14.07	1 10.70		ວບ	

.

10149- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	x	3.19	69.34	17.10	0.00	150.0	± 9.6 %
		Y -	3.06	67.89	16.15		150.0	<u> </u>
		Z	2.95	68.25	16.34	-	150.0	
10150- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.29	69.16	17.06	0.00	150.0	± 9.6 %
		Y	3.18	67.81	16.18		150.0	
		Z	3.07	68.20	16.36		150.0	+
10151- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	10.08	82.65	23.10	3.98	65.0	± 9.6 %
		Y	9.04	79.65	21.96		65.0	
		Z	10.06	83.26	23.42		65.0	
10152- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	Х	8.50	78.17	21.88	3.98	65.0	± 9.6 %
		Y	8.23	76.54	21.20		65.0	
10/00		Z	8.27	78.18	21.88		65.0	
10153- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	8.91	78.99	22.55	3.98	65.0	± 9.6 %
·		Y	8.60	77.29	21.85		65.0	
		Ζ	8.71	79.10	22.58		65.0	<u>├</u> ─────
10154- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.81	73.15	18.70	0.00	150.0	± 9.6 %
		Y	2.46	69.77	16.80		150.0	
40455		Z	2.38	70.62	17.23		150.0	
10155- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.96	70.66	17.73	0.00	150.0	± 9.6 %
		Y	2.76	68.51	16.46		150.0	
		Z	2.69	69.35	16.69		150.0	
10156- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	2.55	74.52	18.86	0.00	150.0	± 9.6 %
		Y	2.05	69.58	16.30		150.0	
		Z	2.00	70.89	16.58		150.0	
10157- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.62	71.06	16.72	0.00	150.0	± 9.6 %
		Y	2.30	67.95	15.09		150.0	
		Z	2.17	68.55	14.74		150.0	
10158- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	3.11	70.65	17.78	0.00	150.0	±9.6 %
	<u> </u>	Y	2.92	68.65	16.60		150.0	
		Z	2.84	69.48	16.81		150.0	
10159- * CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.77	71.67	17.06	0.00	150.0	±9.6 %
		Y	2.42	68.44	15.40		150.0	
40402		Z	2.27	68.98	14.99		150.0	
10160- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	3.14	71.31	17.89	0.00	150.0	± 9.6 %
		Y	2.90	69.12	16.57		150.0	
10161-		Z	2.85	69.90	17.00		150.0	
<u>CAD</u>	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	3.19	69.15	17.05	0.00	150.0	± 9.6 %
		Y	3.08	<u>67.73</u>	16.13		150.0	
10160		Z	2.97	68.19	16.30		150.0	
10162- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.30	69.19	17.10	0.00	150.0	± 9.6 %
		Y	3.18	67.80	16.21		150.0	
10166		Z	3.08	68.34	16.41		150.0	
10166- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	4.14	72.27	20.63	3.01	150.0	± 9.6 %
		Y	3.92	70.06	19.35		150.0	
10107		Z	3.85	71.64	20.32		150.0	
10167- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	5.70	76.91	21.68	3.01	150.0	± 9.6 %
		Y	4.94	72.92	19.80		150.0	
		Z	5.14					

i i i i i

September 18, 2017

.

10168- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	6.50	79.76	23.17	3.01	150.0	± 9.6 %
		Ŷ	5.42	74.94	21.01		150.0	
		z	5.85	78.93	22.82		150.0	
10169- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.88	74.16	21.49	3.01	150.0	± 9.6 %
		Y	3.53	70.80	19.64		150.0	
		z	3.37	71.79	20.43		150.0	
10170- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	7.14	85.17	25.38	3.01	150.0	± 9.6 %
		Y	5.02	76.66	21.81		150.0	
	· · · · · · · · · · · · · · · · · · ·	z	5.41	80.65	23.72		150.0	
10171- AAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	5.21	78.32	21.78	3.01	150.0	± 9.6 %
		Y	4.13	72.50	19.15		150.0	
		Z	4.25	75.40	20.64		150.0	
10172- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	82.16	130.26	39.09	6.02	65.0	± 9.6 %
		Y	17.62	97.94	29.93		65.0	
		Ζ	65.78	128.99	39.45		65.0	
10173- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	91.21	124.95	35.70	6.02	65.0	± 9.6 %
		Y	19.75	96.35	28.03		65.0	
		Z	100.00	129.35	37.29		65.0	
10174- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	55.61	114.43	32.46	6.02	65.0	± 9.6 %
		Y	16.76	92.45	26.36		65.0	
		Z	70.56	121.14	34.65		65.0	
10175- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	3.81	73.71	21.19	3.01	150.0	± 9.6 %
		Y	3.48	70.45	19.37		150.0	
		Z	3.32	71.46	20.19		150.0	
10176- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	7.15	85.21	25.39	3.01	150.0	± 9.6 %
		Y	5.03	76.68	21.82		150.0	
		Z	5.42	80.68	23.74		150.0	
10177- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.85	73.93	21.31	3.01	150.0	± 9.6 %
		Y	3.51	70.63	19.48		150.0	
		Z	3.35	71.61	20.27		150.0	
10178- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	7.01	84.77	25.21	3.01	150.0	± 9.6 %
		Y	4.96	76.40	21.67		150.0	
		Z	5.36	80.45	23.62		150.0	
10179- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	6.07	81.52	23.41	3.01	150.0	± 9.6 %
		Y	4.53	74.41	20.33		150.0	
		Z	4.79	77.92	22.06		150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	5.18	78.18	21.70	3.01	150.0	± 9.6 %
		Y	4.12	72.40	19.09		150.0	
		Z	4.24	75.33	20.60		150.0	
10181- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	3.84	73.91	21.30	3.01	150.0	± 9.6 %
		Y	3.51	70.61	19.47		150.0	
10.10-		Z	3.35	71.60	20.27		150.0	
10182- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	6.99	84.74	25.19	3.01	150.0	± 9.6 %
		Y.	4.95	76.38	21.66		150.0	
10100		Z	5.35	80.42	23.61		150.0	
10183- AAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	×	5.17	78.15	21.69	3.01	150.0	± 9.6 %
		Y	4.11	72.38	19.08		150.0	
		Z	4.23	75.30	20.59		150.0	-

10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	3.86	73.96	21.33	3.01	150.0	± 9.6 %
		Y	3.52	70.65	19.50	<u> </u>	150.0	
		Z	3.36	71.64	20.29		150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	7.04	84.85	25.24	3.01	150.0	± 9.6 %
		ΤŸ	4.98	76.45	21.70		150.0	<u> </u>
		Z	5.38	80.50	23.65		150.0	
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	5.20	78.24	21.73	3.01	150.0	± 9.6 %
		Y	4.13	72.45	19.11		150.0	<u> </u>
		Z	4.25	75.38	20.62		150.0	<u>† </u>
10187- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	3.87	74.02	21.39	3.01	150.0	± 9.6 %
		Γ <u>Υ</u>	3.53	70.69	19.55		150.0	
		Z	3.37	71.71	20.36		150.0	<u> </u>
10188- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	7.44	86.01	25.76	3.01	150.0	± 9.6 %
		Y	5.15	77.16	22.09		150.0	<u> </u>
		Z	5.58	81.30	24.05		150.0	<u> </u>
10189- AAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	5.39	78.94	22.10	3.01	150.0	± 9.6 %
		Y	4.22	72.89	19.39		150.0	
		Z	4.36	75.91	20.93		150.0	⊢—
10193- CAB	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.67	67.32	16.65	0.00	150.0	± 9.6 %
		Y	4.67	66.82	16.30		150.0	
		Z	4.53	67.11	16.38		150.0	
10194- CAB	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	X	4.85	67.66	16.76	0.00	150.0	± 9.6 %
		Y	4.86	67.18	16.41		150.0	
		Z	4.69	67.40	16.51		150.0	
10195- CAB	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	4.89	67.68	16.77	0.00	150.0	± 9.6 %
		Y	4.90	67.20	16.42		150.0	j
		Z	4.73	67.43	16.52		150.0	
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.68	67.41	16.68	0.00	150.0	± 9.6 %
		Y	4.68	66.91	16.33		150.0	
		Z	4.52	67.15	16.39		150.0	
10197- * CAB	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	4.87	67.69	16.78	0.00	150.0	± 9.6 %
		Y	4.88	67.20	16.42		150.0	
1040		Z	4.70	67.42	16.52		150.0	·
10198- CAB	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.90	67.70	16.79	0.00	150.0	± 9.6 %
		Y	4.91	67.21	16.43	_	150.0	
40040		Z	4.73	67.45	16.54		150.0	
10219- CAB	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.63	67.43	16.65	0.00	150.0	± 9.6 %
		Y	4.63	66.93	16.29		150.0	
10000		Z	4.47	67.18	16.36		150.0	
10220- CAB	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.86	67.66	16.77	0.00	150.0	± 9.6 %
	<u> </u>	Y	4.88	67.19	16.42		150.0	
10221-		Z	4.69	67.38	16.50		150.0	
CAB	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	X	4.90	67.62	16.76	0.00	150.0	± 9.6 %
		Y	4.91	67.14	16.42		150.0	
10222-		Z	4.74	67.37	16.52		150.0	
CAB	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	х	5.22	67.81	16.85	0.00	150.0	± 9.6 %
		Y Z	5.23 5.08	67.42	16.55		150.0	

September 18, 2017

.

10223-	IEEE 802.11n (HT Mixed, 90 Mbps, 16-	x	5.53	67.07	40.04		450.0	1000
CAB	QAM)			67.97	16.94	0.00	150.0	± 9.6 %
		Y	5.59	67.74	16.73		150.0	
10224-		Z	5.38	67.75	16.76		150.0	
	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	5.26	67.91	16.83	0.00	150.0	± 9.6 %
		Y	5.27	67.51	16.52		150.0	
		Z	5.12	67.61	16.60	_	150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	3.00	67.51	16.39	0.00	150.0	± 9.6 %
		Y	2.93	66.39	15.65		150.0	
		Z	2.82	66.88	15.63		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	100.00	126.81	36.25	6.02	65.0	± 9.6 %
		Υ	20.60	97.21	28.37		65.0	
		Z	100.00	129.54	37.41		65.0	
10227- <u>CA</u> A	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	65.64	117.49	33.34	6.02	65.0	± 9.6 %
		Y	18.22	94.00	26.93		65.0	
		Z	85.61	124.65	35.59		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	79.85	130.36	39.26	6.02	65.0	± 9.6 %
		Y	20.21	101.07	31.01		65.0	
		Z	65.84	129.47	39.67		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	91.11	124.93	35.70	6.02	65.0	±9.6 %
		Y	19.80	96.38	28.04		65.0	
		Z	100.00	129.35	37.29		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	60.15	115.83	32.84	6.02	65.0	± 9.6 %
-		Y	17.60	93.31	26.65		65.0	
		z	77.12	122.67	35.03		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	72.28	128.22	38.64	6.02	65.0	± 9.6 %
		Y	19.39	100.17	30.67		65.0	
		z	59.87	127.39	39.07		65.0	
10232- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	91.25	124.96	35.71	6.02	65.0	± 9.6 %
		Y	19.78	96.37	28.04		65.0	
_		†- <u>'</u>	100.00	129.36	37.30		65.0	
10233- CAD	JETE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	x	60.26	115.87	32.85	6.02	65.0	± 9.6 %
		Y	17.59	93.32	26.66		65.0	
		Z	77.19	122.70	35.04		65.0	
10234- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	65.41	125.97	37.96	6.02	65.0	± 9.6 %
		Y	18.62	99.23	30.29		65.0	
		Z	54.84	125.34	38.42		65.0	
10235- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	<u>x</u>	91.93	125.11	35.75	6.02	65.0	± 9.6 %
		Y	19.81	96.41	28.05	ļ	65.0	
		Z	100.00	129.37	37.30		65.0	
10236- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	61.00	116.05	32.90	6.02	65.0	± 9.6 %
		Y	17.69	93.40	26.68		65.0	
		Z	78.43	122.94	35.10		65.0	
10237- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	73.61	128.60	38.74	6.02	65.0	±9.6 %
		Y	19.49	100.29	30.70		65.0	
		Z	60.90	127.76	39.16		65.0	
10238- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	91.47	125.02	35.72	6.02	65.0	± 9.6 %
		Y	19.78	96.38	28.04		65.0	
		Z	100.00	129.37	37.30		65.0	

CAD QPSK) 10241- LTE-TDD (SC 10242- LTE-TDD (SC 10243- LTE-TDD (SC CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAB 16-QAM) 10245- LTE-TDD (SC CAB G4-QAM) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAD 16-QAM) 10247- LTE-TDD (SC CAD 64-QAM) 10247- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10249- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- <t< th=""><th>-TDD (SC-FDMA, 1 RB, 15 MHz,</th><th>x</th><th>60.36</th><th>115.92</th><th>32.87</th><th>6.02</th><th>65.0</th><th>± 9.6 %</th></t<>	-TDD (SC-FDMA, 1 RB, 15 MHz,	x	60.36	115.92	32.87	6.02	65.0	± 9.6 %
CAD QPSK) 10241- LTE-TDD (SC 10242- LTE-TDD (SC 10243- LTE-TDD (SC 10243- LTE-TDD (SC 10244- LTE-TDD (SC 10245- LTE-TDD (SC 10245- LTE-TDD (SC 10245- LTE-TDD (SC 10246- LTE-TDD (SC 10247- LTE-TDD (SC 10248- LTE-TDD (SC 10248- LTE-TDD (SC 10248- LTE-TDD (SC CAD 64-QAM) 10247- LTE-TDD (SC CAD 16-QAM) 10247- LTE-TDD (SC CAD 64-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10250- LTE-TDD (SC CAD 64-QAM) 10250- LTE-TDD (SC CAD 64-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD 64-QAM) 10253- LTE-TDD (SC CAD 16-QAM) <td></td> <td></td> <td>17.50</td> <td>+</td> <td></td> <td></td> <td><u> </u></td> <td></td>			17.50	+			<u> </u>	
CAD QPSK) 10241- LTE-TDD (SC 10242- LTE-TDD (SC CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10243- LTE-TDD (SC CAA QPSK) 10243- LTE-TDD (SC CAB 16-QAM) 10244- LTE-TDD (SC CAB QPSK) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAD 16-QAM) 10247- LTE-TDD (SC CAD G4-QAM) 10247- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-		<u>Y</u>	17.58	93.32	26.66		65.0	+
CAD QPSK) 10241- LTE-TDD (SC 10242- LTE-TDD (SC 10243- LTE-TDD (SC 10243- LTE-TDD (SC 10244- LTE-TDD (SC 10245- LTE-TDD (SC 10245- LTE-TDD (SC 10245- LTE-TDD (SC 10246- LTE-TDD (SC 10247- LTE-TDD (SC 10248- LTE-TDD (SC 10248- LTE-TDD (SC 10248- LTE-TDD (SC CAD 64-QAM) 10247- LTE-TDD (SC CAD 16-QAM) 10247- LTE-TDD (SC CAD 64-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10250- LTE-TDD (SC CAD 64-QAM) 10250- LTE-TDD (SC CAD 64-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD 64-QAM) 10253- LTE-TDD (SC CAD 16-QAM) <td></td> <td></td> <td>77.24</td> <td>122.72</td> <td>35.05</td> <td></td> <td>65.0</td> <td></td>			77.24	122.72	35.05		65.0	
CAA 16-QAM) 10242- LTE-TDD (SC CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAB 16-QAM) 10244- LTE-TDD (SC CAB 16-QAM) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10247- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE	-TDD (SC-FDMA, 1 RB, 15 MHz, SK)	X	73.31	128.53	38.72	6.02	65.0	± 9.6 %
CAA 16-QAM) 10242- LTE-TDD (SC CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAB 16-QAM) 10244- LTE-TDD (SC CAB 16-QAM) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10247- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE		<u>Υ</u>	19.44	100.25	30.69		65.0	
CAA 16-QAM) 10242- LTE-TDD (SC CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAB 16-QAM) 10244- LTE-TDD (SC CAB 16-QAM) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- LTE		Z	60.69	127.70	39.15		65.0	
CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAB 16-QAM) 10245- LTE-TDD (SC CAB G4-QAM) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE	-TDD (SC-FDMA, 50% RB, 1.4 MHz, QAM)	X	14.22	90.30	28.70	6.98	65.0	± 9.6 %
CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAB 16-QAM) 10245- LTE-TDD (SC CAB G4-QAM) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE		Y	11.91	84.78	26.56		65.0	
CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAB 16-QAM) 10245- LTE-TDD (SC CAB G4-QAM) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE		Z	15.04	92.96	29.82		65.0	
CAA QPSK) 10244- CAB LTE-TDD (SC 16-QAM) 10245- CAB LTE-TDD (SC 64-QAM) 10246- CAB LTE-TDD (SC 64-QAM) 10247- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC CAD 10251- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10254- 10254- LTE-TDD (SC	-TDD (SC-FDMA, 50% RB, 1.4 MHz, DAM)	X	12.20	86.96	27.37	6.98	65.0	± 9.6 %
CAA QPSK) 10244- CAB LTE-TDD (SC 16-QAM) 10245- CAB LTE-TDD (SC 64-QAM) 10246- CAB LTE-TDD (SC CAB 10247- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10249- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC CAD 10251- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10254- LTE-TDD (SC		Υ	11.04	83.09	25.82		65.0	·
CAA QPSK) 10244- CAB LTE-TDD (SC 16-QAM) 10245- CAB LTE-TDD (SC 64-QAM) 10246- CAB LTE-TDD (SC 64-QAM) 10247- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC CAD 10251- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10254- 10254- LTE-TDD (SC		Z	14.66	92.40	29.55		65.0	<u> </u>
CAB 16-QAM) 10245- LTE-TDD (SC 64-QAM) 10246- LTE-TDD (SC QPSK) 10247- LTE-TDD (SC QPSK) 10247- LTE-TDD (SC QPSK) 10248- LTE-TDD (SC GAD) 10249- LTE-TDD (SC QPSK) 10249- LTE-TDD (SC QPSK) 10250- LTE-TDD (SC QPSK) 10250- LTE-TDD (SC CAD) 10251- LTE-TDD (SC CAD) 10252- LTE-TDD (SC CAD) 10252- LTE-TDD (SC CAD) 10253- LTE-TDD (SC CAD) 10254- LTE-TDD (SC CAD)	-TDD (SC-FDMA, 50% RB, 1.4 MHz, SK)	X	9.46	83.32	26.91	6.98	65.0	± 9.6 %
CAB 16-QAM) 10245- LTE-TDD (SC 64-QAM) 10246- LTE-TDD (SC QPSK) 10247- LTE-TDD (SC QPSK) 10248- LTE-TDD (SC CAD 10248- LTE-TDD (SC CAD 10248- LTE-TDD (SC CAD 10249- LTE-TDD (SC QPSK) 10250- LTE-TDD (SC QPSK) 10250- LTE-TDD (SC CAD 10251- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10254- LTE-TDD (SC CAD	· · · · · · · · · · · · · · · · · · ·	Y	9.15	80.79	25.71		65.0	+
CAB 16-QAM) 10245- LTE-TDD (SC 64-QAM) 10246- LTE-TDD (SC QPSK) 10247- LTE-TDD (SC QPSK) 10247- LTE-TDD (SC QPSK) 10248- LTE-TDD (SC GAD 10248- LTE-TDD (SC QPSK) 10249- LTE-TDD (SC QPSK) 10250- LTE-TDD (SC QPSK) 10250- LTE-TDD (SC CAD 10251- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10254- LTE-TDD (SC CAD		Z	10.96	87.97	28.96		65.0	┼───┤
CAB 64-QAM) 10246- CAB LTE-TDD (SC QPSK) 10247- CAD LTE-TDD (SC CAD 10247- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC G4-QAM) 10249- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC QPSK) 10251- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC G4-QAM) 10252- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10254- LTE-TDD (SC SC	-TDD (SC-FDMA, 50% RB, 3 MHz, DAM)	X	10.76	82.68	21.60	3.98	65.0	± 9.6 %
CAB 64-QAM) 10246- CAB LTE-TDD (SC QPSK) 10247- CAD LTE-TDD (SC CAD 10247- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC G4-QAM) 10249- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC QPSK) 10251- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC G4-QAM) 10252- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10254- 10254- LTE-TDD (SC		Y	9.17	79.37	20.74		65.0	┼───┥
CAB 64-QAM) 10246- CAB LTE-TDD (SC QPSK) 10247- CAD LTE-TDD (SC CAD 10247- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC G4-QAM) 10249- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC QPSK) 10251- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC G4-QAM) 10252- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10254- 10254- LTE-TDD (SC		Z	9.65	80.90	20.36		65.0	┼───┤
CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10249- LTE-TDD (SC CAD QPSK) 10250- LTE-TDD (SC CAD 16-QAM) 10250- LTE-TDD (SC CAD 16-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC CAD 16-QAM)	-TDD (SC-FDMA, 50% RB, 3 MHz, DAM)	X	10.44	81.95	21.29	3.98	65.0	± 9.6 %
CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10249- LTE-TDD (SC CAD QPSK) 10250- LTE-TDD (SC CAD 16-QAM) 10250- LTE-TDD (SC CAD 16-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC CAD 16-QAM)		Y	9.07	78.96	20.54		65.0	<u> </u>
CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10249- LTE-TDD (SC CAD QPSK) 10250- LTE-TDD (SC CAD 16-QAM) 10250- LTE-TDD (SC CAD 16-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC CAD 16-QAM)		Z	9.24	79.99	19.97		65.0	
CAD 16-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10249- LTE-TDD (SC CAD QPSK) 10250- LTE-TDD (SC CAD 10-QAM) 10250- LTE-TDD (SC CAD 10-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM)	-TDD (SC-FDMA, 50% RB, 3 MHz, K)	X	11.35	86.57	23.09	3.98	65.0	± 9.6 %
CAD 16-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10249- LTE-TDD (SC CAD QPSK) 10250- LTE-TDD (SC CAD 10-QAM) 10250- LTE-TDD (SC CAD 10-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM)		Y	8.94	81.85	21.69		65.0	
CAD 16-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10249- LTE-TDD (SC CAD QPSK) 10250- LTE-TDD (SC CAD 10-QAM) 10250- LTE-TDD (SC CAD 10-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM)		Ż	10.01	84.49	21.88		65.0	<u> </u>
CAD 64-QAM) 10249- 2 LTE-TDD (SC QPSK) 10250- LTE-TDD (SC CAD 10251- LTE-TDD (SC CAD 10251- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10254- LTE-TDD (SC CAD	TDD (SC-FDMA, 50% RB, 5 MHz, DAM)	x	8.24	79.27	21.00	3.98	65.0	± 9.6 %
CAD 64-QAM) 10249- CAD QPSK) 10250- CAD LTE-TDD (SC QPSK) 10251- LTE-TDD (SC GAD G4-QAM) 10252- LTE-TDD (SC QPSK) 10253- LTE-TDD (SC QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10254- LTE-TDD (SC GAD 16-QAM)		TY.	7.74	77.28	20.43		05.0	
CAD 64-QAM) 10249- CAD QPSK) 10250- CAD LTE-TDD (SC QPSK) 10251- LTE-TDD (SC GAD G4-QAM) 10252- LTE-TDD (SC QPSK) 10253- LTE-TDD (SC QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10254- LTE-TDD (SC GAD 16-QAM)		Ż	7.64	78.13	20.43		65.0	
10249- 2 LTE-TDD (SC QPSK) 10250- LTE-TDD (SC QPSK) 10251- LTE-TDD (SC CAD 10251- LTE-TDD (SC CAD 10252- CAD 10252- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10254- LTE-TDD (SC CAD	TDD (SC-FDMA, 50% RB, 5 MHz,	X	8.11	78.56	20.70	3.98	65.0 65.0	± 9.6 %
CAD QPSK) 10250- LTE-TDD (SC CAD 16-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC 10254- LTE-TDD (SC		ΓY-	7.73	76.82	20.23		05.0	<u> </u>
CAD QPSK) 10250- LTE-TDD (SC CAD 16-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10254- LTE-TDD (SC		Z	7.48	77.39			65.0	
10250- CAD LTE-TDD (SC 16-QAM) 10251- CAD LTE-TDD (SC 64-QAM) 10252- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- LTE-TDD (SC 10254- LTE-TDD (SC	TDD (SC-FDMA, 50% RB, 5 MHz, K)	X	12.62	88.79	19.79 24.56	3.98	65.0 65.0	± 9.6 %
CAD 16-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10254- LTE-TDD (SC		Y	9.64	83.20	22.76		65.0	
CAD 16-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10254- LTE-TDD (SC		Ż	12.16	88.40	24.15			<u> </u>
CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC	TDD (SC-FDMA, 50% RB, 10 MHz, AM)	x	9.13	81.24	23.10	3.98	65.0 65.0	± 9.6 %
CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC		Y	8.50	78.84	22.20		65.0	╉─────┦
CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC		Z	8.86	81.11	22.89		65.0	╄────┥
CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10254- LTE-TDD (SC	TDD (SC-FDMA, 50% RB, 10 MHz, AM)	X	8.47	78.74	21.83	3.98	65.0	± 9.6 %
CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10254- LTE-TDD (SC		Y	8.10	76.89	21.13		65.0	╞───┤
CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10254- LTE-TDD (SC		Z	8.20	78.63	21.61		65.0	┼────┤
CAD 16-QAM) 10254- LTE-TDD (SC	TDD (SC-FDMA, 50% RB, 10 MHz, K)	X	11.59	86.92	24.65	3.98	65.0	± 9.6 %
CAD 16-QAM) 10254- LTE-TDD (SC		Y	9.53	82.29	23.01		65.0	
CAD 16-QAM) 10254- LTE-TDD (SC		Z	11.63	87.60	24.87		65.0	├────┤
	TDD (SC-FDMA, 50% RB, 15 MHz, AM)	X	8.27	77.55	21.65	3.98	65.0	± 9.6 %
\		Y	8.04	76.02	21.02		65.0	┟─────┤
		Z	8.09	77.65	21.62		65.0	<u> </u>
<u>CAD</u> <u>64-QAM</u>)	TDD (SC-FDMA, 50% RB, 15 MHz, AM)	Х	8.67	78.35	22.26	3.98	65.0	± 9.6 %
		Y	8.41	76.75	21.61		65.0	┝────┥
		z	8.50	78.49	22.25	——	<u>65.0</u> 65.0	┝── ─┤

``

10255- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	9.69	82.20	23.16	3.98	65.0	±9.6 %
		Y	8.77	79.29	22.03		65.0	
		Z	9.70	82.84	23.45		65.0	<u> </u>
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	9.10	79.45	19.54	3.98	65.0	±9.6 %
		Y	8.28	77.46	19.27		65.0	
		Z	7.50	76.38	17.64		65.0	-
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	8.71	78.44	19.07	3.98	65.0	± 9.6 %
		Y	8.14	76.86	18.96		65.0	
		Z	7.10	75.27	17.09		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	9.16	82.49	20.98	3.98	65.0	± 9.6 %
		Y	7.92	79.54	20.28	-	65.0	
		Z	7.29	78.75	18.94		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	8.59	79.95	21.73	3.98	65.0	± 9.6 %
		Y	8.03	77.80	21.03		65.0	
		Z	8.13	79.27	21.11		65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	8.53	79.55	21.59	3.98	65.0	±9.6 %
		Y	8.06	77.57	20.96		65.0	
		Z	8.06	78.82	20.93		65.0	İ
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	11.51	87.11	24.32	3.98	65.0	± 9.6 %
		Y	9.26	82.24	22.68		65.0	
		Z	11.28	87.12	24.13		65.0	t
10262- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	9.12	81.19	23.06	3.98	65.0	± 9.6 %
		Y	8.49	78.79	22.16		65.0	
		Z	8.84	81.05	22.85		65.0	
10263- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	8.46	78.73	21.82	3.98	65.0	± 9.6 %
		Y	8.09	76.88	21.13		65.0	
		Z	8.19	78.61	21.60		65.0	
10264- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	11.49	86.74	24.57	3.98	65.0	± 9.6 %
		Y	9.47	82.16	22.94		65.0	
		Z	11.51	87.39	24.78		65.0	
10265- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	8.50	78.18	21.88	3.98	65.0	± 9.6 %
		Y	8.22	76.54	21.21		65.0	1
		Z	8.27	78.18	21.88		65.0	
10266- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	8.90	78.98	22.54	3.98	65.0	± 9.6 %
		Y	8.60	77.28	21.84		65.0	
		Z	8.71	79.09	22.57		65.0	
10267- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	10.06	82.61	23.09	3.98	65.0	± 9.6 %
		Ý	9.03	79.62	21.95		65.0	
		Z	<u>1</u> 0.04	83.22	23.41		65.0	
10268- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	8.87	77.45	21.95	3.98	65.0	± 9.6 %
		Y	8.72	76.18	21.40		65.0	
		Z	8.67	77.54	22.05		65.0	
10269- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	8.77	76.99	21.83	3.98	65.0	± 9.6 %
		Y	8.66	75.80	21.31		65.0	
		Z	8.60	77.10	21.92		65.0	<u> </u>
10270- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	9.16	79.20	21.93	3.98	65.0	± 9.6 %
		Y	8.71	77.35	21.19		65.0	1
		Z	9.06	79.57	22.19	[65.0	1

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.80	68.17	16.47	0.00	150.0	± 9.6 %
		Y	2.67	66.63	15.50	<u> </u>	150.0	1
		Z	2.65	67.51	15.70		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	2.12	73.27	18.65	0.00	150.0	± 9.6 %
		Y	1.72	68.53	16.00		150.0	<u> </u>
_		Z	1.76	70.05	16.72		150.0	-
10277- CAA	PHS (QPSK)	X	5.32	68.96	13.42	9.03	50.0	± 9.6 %
		Y	6.41	71.20	15.49		50.0	-
		Z	5.12	68.74	13.08		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	9.11	79.62	20.31	9.03	50.0	± 9.6 %
		Υ	9.22	79.31	21.03		50.0	
		Z	8.20	77.78	19.21	_	50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	9.25	79.80	20.39	9.03	50.0	±9.6 %
		Y	9.36	79.46	21.09		50.0	
		Z	8.30	77.91	19.28		50.0	<u> </u>
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	3.59	82.57	20.48	0.00	150.0	± 9.6 %
		Y	1.73	70.44	15.45		150.0	
		Z	1.75	72.09	15.26		150.0	<u> </u>
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	2.13	80.55	19.92	0.00	150.0	± 9.6 %
		<u>Y</u>	0.98	67.37	13.95		150.0	
		Z	1.01	69.27	14.02		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	12.02	108.71	29.17	0.00	150.0	± 9.6 %
		Y	1.26	72.03	16.54		150.0	
		Z	1.93	79.12	18.49		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	100.00	144.61	38.38	0.00	150.0	± 9.6 %
		Y	1.90	78.46	19.68		150.0	
		Z	6.64	97.19	24.86		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	11,58	85.59	24.60	9.03	50.0	± 9.6 %
		_ Y	10.44	82.50	23.85		50.0	
·		Z	13.98	88.93	25.45		50.0	
10297- * AAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	3.31	73.28	18.55	0.00	150.0	± 9.6 %
		Y	2.94	70.32	16.89		150.0	
		Z	2.86	70.97	17.35		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	2.53	75.50	18.42	0.00	150.0	± 9.6 %
		Y	1.83	69.14	15.39		150.0	
40000		Z	1.69	69.62	14.84		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	6.61	82.78	20.21	0.00	150.0	±9.6 %
		Y	3.43	72.67	16.51		150.0	
40000		Z	3.82	74.80	16.21		150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	3.24	71.51	15.06	0.00	150.0	± 9.6 %
		Y	2.57	67.68	13.54		150.0	
10204		Z	2.21	66.93	12.03		150.0	
10301- <u>AAA</u>	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	5.62	68.28	18.87	4.17	80.0	±9.6 %
	<u> </u>	Y	5.93	68.63	18.94		80.0	
10200		Z	5.89	69.91	19.47		80.0	
10302- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	6.17	69.25	19.82	4.96	80.0	± 9.6 %
		Y	6.38	69.08	19.58		80.0	
		Z	6.23	69.95	19.93		80.0	

1 -1 -1 - 7 - 4 September 18, 2017

`

10303-	IEEE 802.16e WIMAX (31:15, 5ms,	ĪXĪ	6.02	69.32	19.87	4.96	80.0	± 9.6 %
AAA	10MHz, 64QAM, PUSC)							
		Y.	6.26	69.22	19.66		80.0	
		Z	6.09	70.04	19.96		80.0	
10304- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	5.67	68.65	19.09	4.17	80.0	± 9.6 %
		Y	5.85	68.42	18.82		80.0	
		Z	5.71	69.28	19.12		80.0	
10305- AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	9.13	83.00	26.75	6.02	50.0	± 9.6 %
		Y	11.08	85.83	27.58		50.0	
		Z	11.97	88.64	28.23		50.0	
10306- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	6.47	72.26	21.90	6.02	50.0	±9.6 %
		Y	6.84	72.27	21.68		50.0	
		Z	6.81	73.77	22.17		50.0	
10307- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	6.58	73.04	22.08	6.02	50.0	± 9.6 %
		Y	8.34	78.37	24.64		50.0	
		Z	6.92	74.46	22.29		50.0	
10308- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	6.66	73.56	22.34	6.02	50.0	± 9.6 %
		Y	8.60	79.30	25.04		50.0	
	-	Z	7.08	75.16	22.62		50.0	
10309- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	6.58	72.60	22.09	6.02	50.0	±9.6 %
		Y	6.95	72.58	21.85		50.0	
		Z	6.90	74.05	22.35		50.0	
10310- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	6.50	72.56	21.95	6.02	50.0	± 9.6 %
		Y	6.87	72.52	21.70		50.0	
		Z	6.86	74.10	22.23		50.0	
10311- AAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.70	72.28	18.01	0.00	150.0	± 9.6 %
	•	Y	3.30	69.61	16.53		150.0	
		Z	3.23	70.11	16.90		150.0	
10313- AAA	iDEN 1:3	X	9.18	81.61	19.86	6.99	70.0	±9.6 %
·		Y	7.64	78.40	19.13		70.0	
		Z	9.78	83.14	20.58		70.0	
10314- AAA	"iDEN 1.6	X	13.83	90.60	25.32	10.00	30.0	±9.6 %
		Y	9.35	83.01	23.15		30.0	
	·	Z	14.01	91.81	25.99		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.27	67.24	17.67	0.17	150.0	±9.6 %
		Y	1.20	64.93	15.83		150.0	
		Z	1.21	65.68	16.36		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.76	67.47	16.83	0.17	150.0	± 9.6 %
		Y	4.78	67.03	16.51		150.0	
		Z	4.63	67.31	16.62		150.0	
10317- AAB	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.76	67.47	16.83	0.17	150.0	± 9.6 %
		Y	4.78	67.03	16.51		150.0	
		Z	4.63	67.31	16.62		150.0	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.86	67.74	16.77	0.00	150.0	± 9.6 %
		Y	4.87	67.24	16.40		150.0	
		Z	4.68	67.47	16.52		150.0	
10401- AAC	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.51	67.76	16.81	0.00	150.0	± 9.6 %
		Y	5.52	67.36	16.52		450.0	
		Z	0.02	07.30	10.02		150.0	

10402- AAC	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	x	5.79	68.18	16.86	0.00	150.0	± 9.6 %
		Y	5.81	67.85	16.61	<u> </u>	150.0	
		Z	5.64	67.83	16.63	· · · ·	150.0	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	3.59	82.57	20.48	0.00	115.0	± 9.6 %
		Y	1.73	70.44	15.45	<u> </u>	115.0	
		Z	1.75	72.09	15.26	· · · · ·	115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	3.59	82.57	20.48	0.00	115.0	± 9.6 %
_		Y	1.73	70.44	15.45		115.0	
		Z	1.75	72.09	15.26		115.0	
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	122.57	31.18	0.00	100.0	± 9.6 %
		LΥ	1 <u>8.35</u>	99.60	26.20		100.0	
		Z	100.00	120.33	29.78		100.0	
10410- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	120.29	30.51	3.23	80.0	± 9.6 %
		Y [100.00	120.68	31.13		80.0	
		Z	100.00	122.62	31.38		80.0	<u> </u>
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.09	65.33	16.67	0.00	150.0	± 9.6 %
		Y	1.03	63.31	14.91		150.0	
		Z	1.05	64.05	15.43		150.0	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	4.67	67.36	16.71	0.00	150.0	± 9.6 %
		Y	4.67	66.86	16.34		150.0	
		Z	4.53	67.14	16.45		150.0	
10417- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.67	67.36	16.71	0.00	150.0	± 9.6 %
		Y	4.67	66.86	16.34		150.0	
		Z	4.53	67.14	16.45		150.0	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.66	67.53	16.73	0.00	150.0	± 9.6 %
		Y	4.66	67.00	16.35		150.0	
_		Z	4.52	67.33	16.49		150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.68	67.47	16.73	0.00	150.0	± 9.6 %
2	·	Y	4.68	66.95	16.36		150.0	
		Z	4.54	67.26	16.48		150.0	
10422- AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.80	67.45	16.73	0.00	150.0	±9.6%
		Y	4.81	66.96	16.37		150.0	
		z	4.65	67.24	16.49	——		
10423- AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.99	67.80	16.85	0.00	150.0 150.0	± 9.6 %
		Y	5.00	67.33	16.51		150.0	
		Z	4.80	67.54	16.59		150.0	
10424- AAA	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.90	67.76	16.83	0.00	150.0	± 9.6 %
		Y	4.91	67.27	16.47	-	150.0	
		z	4.73	67.50	16.57			
10425- AAA	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.49	68.02	16.94	0.00	150.0 150.0	±9.6 %
		Y	5.50	67.62	16.64		150.0	
		z	5.34	67.73	16.73			
10426- AAA	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	<u> </u>	68.02	16.94	0.00	150.0 150.0	±9.6 %
		Y	5.51	67.65	16.65		150.0	
		z					150.0	
	<u> </u>	- 1	5.36	67.83	16.78		150.0	

i i Fii Fii

September 18, 2017

.

10427- AAA	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	x	5.50	68.00	16.93	0.00	150.0	± 9.6 %
		Y	5.52	67.64	16.64		150.0	
		Z	5.36	67.74	16.73		150.0	· · · · · · · · · · · · · · · · · · ·
10430- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.54	72.09	19.09	0.00	150.0	± 9.6 %
		Y	4.40	70.73	18.36		150.0	
		Z	4.26	71.56	18.37		150.0	
10431- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.40	68.10	16.85	0.00	150.0	±9.6%
		Y	4.40	67.42	16.40		150.0	
		Z	4.19	67.79	16.46		150.0	
10432- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.68	67.87	16.83	0.00	150.0	± 9.6 %
		Y	4.69	67.31	16.44	_	150.0	
40.000		<u>Z</u>	4.50	67.59	16.53		150.0	
10433- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.92	67.80	16.85	0.00	150.0	± 9.6 %
		Y	4.93	67.31	16.50		150.0	
		Z	4.74	67.53	16.59		150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.73	73.25	19.23	0.00	150.0	± 9.6 %
		<u>Y</u>	4.51	71.54	18.38		150.0	
		Z	4.38	72.53	18.34		150.0	
10435- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	120.11	30.42	3.23	80.0	± 9.6 %
		Y	100.00	120.53	31.07		80.0	
		Z	100.00	122.42	31.29		80.0	
10447- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.76	68.51	16.50	0.00	150.0	± 9.6 %
<u> </u>		T Y	3.71	67.48	15.90		150.0	
		Z	3.49	67.91	15.73		150.0	
10448- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	4.23	67.89	16.73	0.00	150.0	± 9.6 %
		Υ	4.22	67.19	16.26		150.0	
		Z	4.04	67.58	16.33	—	150.0	·
10449- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	4.49	67.72	16.75	0.00	150.0	± 9.6 %
		Y	4.48	67.13	16.34		150.0	
		Z	4.32	67.42	16.43		150.0	·
10450- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.67	67.59	16.73	0.00	150.0	±9.6 %
		Y	4.66	67.07	16.35		150.0	
		Z	4.52	67.31	16.45		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.71	68.96	16.29	0.00	150.0	± 9.6 %
		Y_	3.63	67.76	15.64		150.0	
		Z	3.37	68.05	15.28		150.0	
10456- AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.34	68.51	17.03	0.00	150.0	±9.6 %
		Y	6.36	68.23	16.81		150.0	
		Z	6.24	68.31	16.89		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	×	3.87	65.97	16.44	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	3.87	65.48	16.06		150.0	
		Z	3.81	65.79	16.17		150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	4.35	72.54	18.72	0.00	150.0	± 9.6 %
		Y	4.10	70.59	17.78		150.0	
10150		Z	4.02	71.83	17.67		150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	5.25	68.89	18.60	0.00	150.0	± 9.6 %
		Y	5.22	68.08	_ 18.20		150.0	
		Z	4.96	68.66	18.04		150.0	

. . . . September 18, 2017

•

10460- AAA	UMTS-FDD (WCDMA, AMR)	X	1.62	80.44	22.68	0.00	150.0	± 9.6 %
		Y	0.96	69.05	16.73		150.0	<u> </u>
		Z	1.09	72.04	18.32		150.0	
10461- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	125.40	32.90	3.29	80.0	± 9.6 %
		Y	100.00	122.42	32.02		80.0	<u> </u>
		Z	100.00	127.89	33.84	-	80.0	· · ·
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	109.25	25.21	3.23	80.0	± 9.6 %
		Y	100.00	110.42	26.29		80.0	<u>├─</u> ──
		Ż	100.00	110.42	25.54		80.0	<u> </u>
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	106.10	23.70	3.23	80.0	± 9.6 %
		Y	31.87	95.11	22.04		80.0	<u> </u>
		Z	100.00	107.01	23.88		80.0	
10464- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.48	31.85	3.23	80.0	± 9.6 %
		Y	100.00	120.78	31.11		80.0	<u> </u>
		Z	100.00	125.94	32.77	·	80.0	<u> </u>
10465- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.73	24.95	3.23	80.0	±9.6 %
		Y	57.38	103.50	24.59		80.0	
		Z	100.00	109.93	25.28	·	80.0	
10466- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	105.62	23.47	3.23	80.0	± 9.6 %
		Y	19.30	89.18	20.39		80.0	
		Z	100.00	106.51	23.65		80.0	· · · · · · · · · · · · · · · · · · ·
10467- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.71	31.96	3.23	80.0	± 9.6 %
		Y	100.00	120.96	31.19		80.0	
		Z	100.00	126.19	32.89		80.0	
10468- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.89	25.03	3.23	80.0	± 9.6 %
		Y	68.69	105.73	25.14		80.0	
		Z	100.00	110.12	25.37	_	80.0	
10469- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	105.63	23.47	3.23	80.0	± 9.6 %
_		Y	19.75	89.45	20.46		80.0	
		Z	100.00	106.53	23.66		80.0	
10470- * AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	100.00	123.74	31.96	3.23	80.0	±9.6 %
		Y	100.00	120.98	31.20		80.0	
_		Ζ	100.00	126.22	32.89		80.0	
10471- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.84	25.00	3.23	80.0	± 9.6 %
_		Y	69.00	105.75	25.13		80.0	
		Z	100.00	110.07	25.35		80.0	
10472- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	105.58	23.44	3.23	80.0	± 9.6 %
		Y	19.79	89.46	20.45		80.0	
40.475		Ζ	100.00	106.47	23.62		80.0	
10473- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	100.00	123.71	31.95	3.23	80.0	±9.6 %
		Y	100.00	120.96	31.18		80.0	
40474		Z	100.00	126.20	32.88		80.0	
10474- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.85	25.00	3.23	80.0	± 9.6 %
		Y	67.79	105.55	25.09		80.0	
40475		Z	100.00	110.08	25.35		80.0	
10475- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	х	100.00	105.59	23.45	3.23	80.0	± 9.6 %
		Y	19.52	89.31	20.44			
		Z	I3.JZ _	09.31 1	20.41		80.0	

September 18, 2017

.

10477- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.68	24.92	3.23	80.0	± 9.6 %
		Y	60.00	104.00	24.69		80.0	<u> </u>
		Z	100.00	109.90	25.26	· · · · ·	80.0	
10478- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	105.53	23.42	3.23	80.0	± 9.6 %
		Y	19.24	89.12	20.35		80.0	· · · · · · · · · · · · · · · · · · ·
		Z	100.00	106.43	23.60		80.0	
10479- 	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	94.50	124.14	33.84	3.23	80.0	± 9.6 %
		<u>Y</u>	12.50	90.83	25.02		80.0	
40400		Z	100.00	124.95	33.67		80.0	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	95.67	115.16	29.54	3.23	80.0	± 9.6 %
	<u> </u>	Y	12.83	86.63	22.28		80.0	
40404		Z	100.00	114.83	28.84		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)		58.64	107.02	27.16	3.23	80.0	± 9.6 %
		Y	11.35	84.25	21.22		80.0	
40400		Z	80.09	110.11	27.23		80.0	
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	12.89	91.14	23.86	2.23	80.0	± 9.6 %
		Y	6.25	79.51	20.15		80.0	
40400		Z	8.39	84.42	21.05		80.0	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	18.92	92.85	24.00	2.23	80.0	± 9.6 %
		Y	8.58	80.90	20.47		80.0	
40404		Z	13.62	87.31	21.48		80.0	
10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	15.36	89.71	23.07	2.23	80.0	± 9.6 %
		Y	7.99	79.65	20.04		80.0	
		<u>Z</u>	10.91	84.16	20.49		80.0	
10485- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	10.83	89.50	24.25	2.23	80.0	± 9.6 %
		Υ	6.29	79.77	20.91		80.0	
	· · · · · · · · · · · · · · · · · · ·	Z	8.35	85.48	22.54		80.0	
10486- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.33	78.08	19.97	2.23	80.0	± 9.6 %
		Y	5.11	73.82	18.38		80.0	
		Z	5.40	75.74	18.50		80.0	
10487- AAC	"LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	6.09	77.15	19.61	2.23	80.0	± 9.6 %
		Y	5.06	73.33	18.18		80.0	
		<u>z</u>	5.20	74.88	<u>1</u> 8.15		80.0	
10488- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.97	83.54	22.89	2.23	80.0	± 9.6 %
		Y_	6.02	77.67	20.60		80.0	
10/22		Z	6.66	81.06	21.92		80.0	
10489- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.54	75.17	19.93	2.23	80.0	± 9.6 %
		Y	5.05	72.55	18.77		80.0	
10.000		Z	5.10	74.15	_ 19.29 _		80.0	
10490- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.52	74.58	19.72	2.23	80.0	± 9.6 %
		Y	5.10	72.20	18.66		80.0	
40/0/		Z	5.11	73.70	19.12		80.0	
10491- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.68	78.67	21.27	2.23	80.0	± 9.6 %
		Y	5.75	75.05	19.71		80.0	
		Z	5.90	77.08	20.64		80.0	
10492- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.47	73.05	19.35	2.23	80.0	± 9.6 %
		Y	5.22	71.31	18.50		80.0	1
		Z	5.12	72.35	18.92	·	80.0	<u>├</u> ·

; ; ; ; ; ;

10493- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.48	72.72	19.22	2.23	80.0	± 9.6 %
		Y	5.27	71.08	18.43		80.0	1
10.10		Z	5.15	72.07	18.82		80.0	
10494- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.90	81.45	22.09	2.23	80.0	± 9.6 %
		Y	6.41	76.92	20.25		80.0	
		Z	6.69	79.16	21.27		80.0	
10495- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.61	73.73	19.62	2.23	80.0	± 9.6 %
		Y	5.32	71.86	18.72		80.0	
10100		Z	5.21	72.81	19.16		80.0	
10496- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.57	73.09	19.41	2.23	80.0	± 9.6 %
	<u> </u>	Y	5.35	71.43	18.59		80.0	
40.07		Z	5.21	72.31	18.99		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	10.14	86.59	21.54	2.23	80.0	± 9.6 %
		Y	5.12	76.51	18.39		80.0	
10400		Z	5.35	77.20	17.46		80.0	
10498- AAA 	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.29	72.00	15.43	2.23	80.0	± 9.6 %
		Y	3.72	69.52	14.77		80.0	·
		Ζ	2.43	65.17	11.54		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	x	3.97	70,70	14.77	2.23	80.0	± 9.6 %
		Y	3.61	68.83	14.36		80.0	
		Z	2.26	64.14	10.91		80.0	
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	8.79	85.79	23.33	2.23	80.0	± 9.6 %
		Y	5:95	78.30	20.59		80.0	·
		Z	7.25	82.97	22.08		80.0	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	5.90	76.65	19.85	2.23	80.0	± 9.6 %
		Y	5.06	73.18	18.47		80.0	T
10500		Z	5.28	75.13	18.80		80.0	
10502- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.87	76.18	19.62	2.23	80.0	±9.6%
25		Y	5.09	72.91	18.33		80.0	· · · · · · · · · · · · · · · · · · ·
		Z	5.26	74.71	18.58		80.0	
10503- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	7.83	83.24	22.77	2.23	80.0	± 9.6 %
		Υ	5.94	77,45	20.51		80.0	
10501		Z	6.55	80.79	21.81		80.0	
10504- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz,	X	5.51	75.05	19.87	2.23	80.0	± 9.6 %
	16-QAM, UL Subframe=2,3,4,7,8,9)							
	16-QAM, UL Subframe=2,3,4,7,8,9)	Y	5.02	72.46	18.72		80.0	
		Z	5.07	74.04	18.72 19.23		80.0 80.0	
10505-	16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Z X	5.07 5.49	74.04 74.47	19.23 19.66	2.23		± 9.6 %
10505-	LTE-TDD (SC-FDMA, 100% RB, 5 MHz.	Z X Y	5.07 5.49 5.07	74.04 74.47 72.10	19.23 19.66 18.60	2.23	80.0	± 9.6 %
10505- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Z X Y Z	5.07 5.49 5.07 5.08	74.04 74.47 72.10 73.60	19.23 19.66 18.60 19.06	2.23	80.0 80.0	± 9.6 %
10505- AAC 10506-	LTE-TDD (SC-FDMA, 100% RB, 5 MHz.	Z X Y Z X	5.07 5.49 5.07 5.08 7.81	74.04 74.47 72.10 73.60 81.23	19.23 19.66 18.60 19.06 22.00	2.23	80.0 80.0 80.0	± 9.6 %
10505- AAC 10506-	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10	Z X Y Z X Y	5.07 5.49 5.07 5.08 7.81 6.35	74.04 74.47 72.10 73.60 81.23 76.76	19.23 19.66 18.60 19.06 22.00 20.18		80.0 80.0 80.0 80.0	
10505- AAC 10506- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Z X Y Z X Y Z	5.07 5.49 5.07 5.08 7.81 6.35 6.62	74.04 74.47 72.10 73.60 81.23 76.76 78.99	19.23 19.66 18.60 19.06 22.00		80.0 80.0 80.0 80.0 80.0 80.0	
10505- AAC 10506-	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL	Z X Y Z X Y	5.07 5.49 5.07 5.08 7.81 6.35	74.04 74.47 72.10 73.60 81.23 76.76	19.23 19.66 18.60 19.06 22.00 20.18		80.0 80.0 80.0 80.0 80.0 80.0 80.0	
10505- AAC 10506- AAC 10507-	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10	Z X Y Z X Y Z	5.07 5.49 5.07 5.08 7.81 6.35 6.62	74.04 74.47 72.10 73.60 81.23 76.76 78.99	19.23 19.66 18.60 19.06 22.00 20.18 21.19	2.23	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	± 9.6 %

、

10508- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.55	73.01	19.36	2.23	80.0	±9.6 %
		Y	5.33	71.35	18.55		80.0	<u> </u>
		Z	5.19	72.24	18.95		80.0	
10509- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.03	77.40	20.60	2.23	80.0	± 9.6 %
		Y	6.25	74.54	19.35		80.0	
		Z	6.27	75.89	20.05		80.0	
10510- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.86	72.49	19.18	2.23	80.0	± 9.6 %
		Y	5.70	71.14	18.49		80.0	
		Z	5.51	71.73	18.83		80.0	
10511- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.83	72.01	19.03	2.23	80.0	± 9.6 %
		Y	5.71	70.79	18.40		80.0	
		Z	5.52	71.35	18.71		80.0	
10512- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	8.18	80.50	21.58	2.23	80.0	± 9.6 %
		Y_	6.82	76.59	19.98		80.0	
		Z	6.97	78.23	20.79		80.0	
10513- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.86	73.15	19.44	2.23	80.0	± 9.6 %
		Y	5.65	71.64	18.67		80.0	
		Z	5.45	72.18	19.02		80.0	
10514- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5. 75	72.41	19.20	2.23	80.0	±9.6 %
		Y	5.60	71.07	18.51		80.0	
		Z	5.40	71.58	18.82		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	1.06	65.76	16.90	0.00	150.0	±9.6 %
		Y	<u>1</u> .00	63.51	14.99		150.0	
40540		Z	1.02	64.32	15.55		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	5.87	117.81	35.86	0.00	150.0	± 9.6 %
		Y	0.66	71.85	18.17		150.0	
40547		Z	0.94	79.02	21.78		150.0	
10517- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	1.03	70.61	19.18	0.00	150.0	± 9.6 %
		Y	0.86	65.67	15.75	-	150.0	
10518- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	Z X	0.90 4.67	67.08 67.45	16.71 16.69	0.00	150.0 150.0	± 9.6 %
<u> </u>		Y	4.67	66.94	16.33		150.0	
		z	4.52	67.23	16.44	<u> </u>	150.0	
10519- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.87	67.70	16.81	0.00	150.0	± 9.6 %
		Y	4.88	67.22	16.46		150.0	
		Z	4.69	67.43	16.54		150.0	
10520- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.72	67.70	16.76	0.00	150.0	± 9.6 %
		Y	4.73	67.19	16.39		150.0	
		Z	4.54	67.39	16.47		150.0	
10521- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.66	67.72	16.76	0.00	150.0	±9.6 %
		Y	4.66	67.20	16.38		150.0	
40500		Z	4.48	67.38	16.46		150.0	
10522- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.71	67.76	16.82	0.00	150.0	± 9.6 %
		Y	4.71	67.20	16.42		150.0	
	<u> </u>	Z	4.54	67.51	16.56		150.0	

10523-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48	X	4.59	67.65	16.68	0.00	150.0	± 9.6 %
AAA	Mbps, 99pc duty cycle)							0.0 /0
		Y	4.58	67.09	16.28		150.0	
		Z	4.43	67.41	16.42		150.0	
10524- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.66	67.69	16.79	0.00	150.0	± 9.6 %
		Y	4.66	67.15	16.40	1	150.0	
		Z	4.48	67.43	16.53		150.0	-
10525- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	x	4.63	66.73	16.38	0.00	150.0	± 9.6 %
		Y	4.62	66.18	15.99		150.0	
		Z	4.49	66.49	16.12		150.0	
10526- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.82	67.13	16.53	0.00	150.0	± 9.6 %
		Y	4.82	66.58	16.14		150.0	
10527-		Z	4.64	66.83	16.26		150.0	
AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.74	67.11	16.49	0.00	150.0	± 9.6 %
		Y	4.73	66.55	16.09		150.0	
40500		Z	4.57	66.80	16.20		150.0	
10528- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.76	67.13	16.52	0.00	150.0	± 9.6 %
		Y	4.75	66.57	16.12		150.0	<u> </u>
40500		Z	4.58	66.81	16.23		150.0	
10529- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.76	67.13	16.52	0.00	150.0	± 9.6 %
		Y	4.75	66.57	16.12		150.0	
		Z	4.58	66.81	16.23		150.0	· · · · · · · · · · · · · · · · · · ·
10531- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.77	67.27	16.55	0.00	150.0	± 9.6 %
		Y	4.76	66.71	16.15		150.0	
		Z	4,56	66.89	16.24		150.0	
10532- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.62	67.15	16.50	0.00	150.0	± 9.6 %
		Y	4.61	66.57	16.09		150.0	
		Z	4.43	66.75	16.17		150.0	
10533- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.77	67.17	16.50	0.00	150.0	±9.6 %
		Y	4.76	66.59	16.10		150.0	
	s	Z	4.59	66.88	16.23		150.0	
10534- * AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.27	67.15	16.50	0.00	150.0	±9.6 %
		Y	5.27	66.72	16.17		150.0	
		Z	5.12	66.84	16.26		150.0	
10535- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.34	67.31	16.57	0.00	150.0	± 9.6 %
		Y	5.34	66.86	16.23		150.0	
40500		Z	5.19	67.03	16.35		150.0	
10536- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.22	67.31	16.55	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.21	66.84	16.21		150.0	
		Z	5.06	66.99	16.32		150.0	
10537- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.27	67.26	16.52	0.00	150.0	± 9.6 %
	<u> </u>	Y	5.28	66.82	16.20		150.0	
10520		Z	5.12	66.94	16.29		150.0	
10538- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.37	67.28	16.57	0.00	150.0	± 9.6 %
		Y	5.39	66.89	16.27		150.0	
10540		Z	5.20	66.94	16.33		150.0	
10540- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.29	67.28	16.59	0.00	150.0	±9.6 %
		Y	5.29	66.84	16.26		150.0	
		Z						

×

λ.

10541- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.26	67.15	16.52	0.00	150.0	± 9.6 %
		Y	5.27	66.70	10.00		450.0	
· _		Z		66.73	16.20		150.0	
10542-	IEEE 802.11ac WiFi (40MHz, MCS8,		5.11	66.82	16.27		150.0	
AAA	99pc duty cycle)	X	5.42	67.19	16.55	0.00	150.0	± 9.6 %
		Y	5.42	66.79	16.25		150.0	
		Z	5.26	66.90	16.33		150.0	
10543- 	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.49	67.21	16.57	0.00	150.0	±9.6 %
		Y	5.51	66.80	16.27		150.0	
		Z	5.32	66.91	16.36		150.0	
10544- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.57	67.22	16.46	0.00	150.0	±9.6 %
		Y	5.56	66.82	16.16		150.0	
		Z	5.45	66.92	16.24		150.0	
10545- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	×	5.77	67.65	16.61	0.00	150.0	± 9.6 %
		Y	5.78	67.25	16.32		150.0	· · _
		Z	5.64	67.38	16.42	1	150.0	
10546- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.65	67.48	16.55	0.00	150.0	± 9.6 %
		Y	5.65	67.10	16.26	1	150.0	
		Ż	5.50	67.09	16.30	<u> </u>	150.0	
10547- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	×	5.73	67.53	16.56	0.00	150.0	± 9.6 %
		Y	5.74	67.18	16.29		150.0	
		Ż	5.57	67.16	16.32		150.0	
10548- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	6.02	68.59	17.06	0.00	150.0	± 9.6 %
		Y	6.08	68.34	16.83		150.0	
		z	5.80	68.04	16.74	·	150.0	
10550- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.67	67.46	16.54	0.00	150.0	± 9.6 %
		Y	5.67	67.06	16.25		150.0	
		Z	5.54	67.19	16.25		150.0	
10551- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.68	67.19	16.53	0.00	150.0 150.0	± 9.6 %
/////		Y	5.69	07.40	40.05		450.0	
				67.13	16.25		150.0	
10552-		Z	5.53	67.15	16.30		150.0	
AAA	HEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.59	67.30	16.44	0.00	150.0	± 9.6 %
		Y	5.59	66.90	16.14		150.0	
10550		Z	5.46	67.00	16.23		150.0	
10553- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.68	67.34	16.48	0.00	150.0	± 9.6 %
		Y	5.68	66.95	16.20		150.0	
		Z	5.53	67.00	16.26		150.0	
10554- AAB	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.97	67.57	16.52	0.00	150.0	±9.6 %
		Y	5.97	67.21	16.26		150.0	
		Z	<u>5.</u> 86	67.27	_16.32		150.0	
10555- AAB	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.11	67.88	16.66	0.00	150.0	± 9.6 %
		Y	6.11	67.54	16.39		150.0	
		Z	5.98	67.57	16.45		150.0	
10556- AAB	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.13	67.93	16.67	0.00	150.0	±9.6 %
		Y	6.13	67.56	16.40		150.0	
		Z	6.01	67.63	16.48		150.0	
10557- AAB	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.10	67.85	16.65	0.00	150.0	±9.6 %
		Y	6.11	67.51	16.40	<u>+</u>	150.0	
		Z	5.97	67.50	16.43		150.0	
			0.01	1 01.00	10.43		100.0	

.

September 18, 2017

``

10558- AAB	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.16	68.03	16.76	0.00	150.0	± 9.6 %
		Υ	6.17	67.70	16.50		150.0	┾───
	+	z	6.01				150.0	
10560-	IEEE 802.11ac WiFi (160MHz, MCS6,			67.66	16.53		150.0	L
AAB	99pc duty cycle)	X	6.15	67.86	16.71	0.00	150.0	± 9.6 %
		Y	6.16	67.52	16.45		150.0	
		Z	6.00	67.50	16.49	Î.	150.0	
10561- AAB	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	6.06	67.83	16.73	0.00	150.0	± 9.6 %
		Y	6.07	67.48	16.47		150.0	
		Z	5.94	67.50	16.52		150.0	
10562- AAB	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.21	68.28	16.96	0.00	150.0	± 9.6 %
		Y	6.23	67.97	16.72		150.0	<u> </u>
		Z	6.03	67.79	16.67		150.0	<u> </u>
10563- AAB	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.55	68.85	17.19	0.00	150.0	± 9.6 %
		Y	6.59	68.58	16.96		150.0	<u> </u>
		Ż	6.12	67.71	16.59		150.0	<u> </u>
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	×	4.99	67.50	16.82	0.46	150.0	± 9.6 %
		Y	5.01	67.06	16.50		150.0	<u> </u>
		Ż	4.85	67.32	16.61		150.0	<u> </u>
10565-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	5.24	67.95	17.13	0.40		
AAA	OFDM, 12 Mbps, 99pc duty cycle)	Y	5.24	67.54	16.83	0.46	150.0	± 9.6 %
							150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	Z X	5.06 5.07	67.72 67.84	<u>16.90</u> 16.98	0.46	<u>150.0</u> 150.0	± 9.6 %
		Y	5.10	67.41	16.66		150 0	<u> </u>
		z z	4.90				150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	$\frac{z}{x}$	<u>4.90</u> 5.11	67.58 68.24	16.73 17.33	0.46	150.0 150.0	± 9.6 %
		ŤΥ	5.13	67.80	47.04		450 0	
	······································	† <mark>'</mark>	4.93		17.01		150.0	
10568-	IEEE 802.11g WiFi 2.4 GHz (DSSS-			67.94	17.07		150.0	
<u>AAA</u>	OFDM, 36 Mbps, 99pc duty cycle)	X	4.99	67.61	16.75	0.46	150.0	±9.6 %
		Y	5.01	67.15	16.42		150.0	
	·	Z	4.83	67.42	16.55		150.0	
10569- * AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	5.06	68.33	17.39	0.46	150.0	± 9.6 %
		Y	5.07	67.85	17.05		150.0	
		Z	4.91	68.11	17.17	_	150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	5.09	68.14	17.31	0.46	150.0	± 9.6 %
		Y	5.11	67.68	16.98		150.0	
		Ζ	4.92	67.93	17.09		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.50	68.95	18.38	0.46	130.0	±9.6 %
		Y	1.40	66.38	16.51		130.0	
		Z	1.40	67.23	17.09		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.55	69.98	18.93	0.46	130.0	± 9.6 %
		Y	1.43	67.06	16.91		130.0	
40		Z	1.44	67.99	17.53		130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	100.00	153.35	41.94	0.46	130.0	± 9.6 %
		Y	5.15	96.81	26.53		130.0	
<u> </u>		Z	50.11	136.49	37.17		130.0	
10574-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	2.59	83.81	24.92	0.46	130.0	± 9.6 %
AAA	wippa, appe duty cycle)							
AAA		Y	1.75	74.27	20.26		130.0	

~

`

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.81	67.37	16.92	0.46	130.0	± 9.6 %
AAA	OFDM, 6 Mbps, 90pc duty cycle)							_ 0.0 /0
		Y	4.84	66.96	16.62		130.0	
10576-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	ZX	4.68	67.23	16.73		130.0	
AAA	OFDM, 9 Mbps, 90pc duty cycle)		4.84	67.54	16.99	0.46	130.0	±9.6 %
		Y Z	4.86	67.12	16.68		130.0	
10577-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	<u>4.71</u> 5.05	67.40	16.79	0.40	130.0	
AAA	OFDM, 12 Mbps, 90pc duty cycle)	Y Y	5.09	67.83	17.14	0.46	130.0	± 9.6 %
		Z	4.89	67.44 67.64	16.86 16.94		130.0 130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	4.96	68.04	17.27	0.46	130.0	±9.6 %
		Y	4.99	67.62	16.97		130.0	
		Z	4.79	67.80	17.04		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.73	67.38	16.62	0.46	130.0	±9.6 %
	<u> </u>	Y	4.76	66.96	16.31		130.0	
40500		Z	4.57	67.14	16.40		130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4.77	67.37	16.62	0.46	130.0	± 9.6 %
		Y	4.80	66.94	16.31		130.0	
10581-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	4.61	67.21	16.43		130.0	
AAA	OFDM, 48 Mbps, 90pc duty cycle)	X	4.86	68.14	17.25	0.46	130.0	± 9.6 %
	<u> </u>	Y	4.89	67.70	16.92		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	Z X	4.70	67.90 67.12	17. <u>02</u> 16.41	0.46	130.0 130.0	±9.6 %
		Y	4.71	66.71	16.10		130.0	
		Z	4.51	66.92	16.20		130.0	
10583- AAA_	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.81	67.37	16.92	0.46	130.0	± 9.6 %
		Y	4.84	66.96	16.62		130.0	
		Z	4.68	67.23	16.73		130.0	
10584- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.84	67.54	16.99	0.46	130.0	±9.6 %
		Y	4.86	67.12	16.68		130.0	
		Z	4.71	67.40	16.79		130.0	
10585- AAA	HEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	5.05	67.83	17.14	0.46	130.0	± 9.6 %
		Y	5.09	67.44	16.86		130.0	
10586- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.89 4.96	67.64 68.04	16.94 17.27	0.46	130.0 130.0	± 9.6 %
		Y	4.99	67.62	16.97		130.0	
		z	4.79	67.80	17.04		130.0	
10587- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.73	67.38	16.62	0.46	130.0	± 9.6 %
		Y	4.76	66.96	16.31		130.0	
		Z	4.57	67.14	16.40		130.0	
10588- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.77	67.37	16.62	0.46	130.0	± 9.6 %
		Y	4.80	66.94	16.31		130.0	
10589-		Z	4.61	67.21	16.43	0.10	130.0	
10589- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.86	68.14	17.25	0.46	130.0	± 9.6 %
		Y Z	<u>4.89</u> 4.70	67.70	16.92		130.0	·
		14	4.70	67.90	17.02		130.0	
10590-	IFFE 802 11a/b W/IE) 5 GHz (OEDM 54				16 / 4	0 40	420.0	+000
10590- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X Y	4.67	67.12 66.71	16.41 16.10	0.46	130.0 130.0	±9.6 %

,

10591- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	4.95	67.39	16.99	0.46	130.0	± 9.6 %
		Y	4.98	67.01	16.71		130.0	<u> </u>
		Z .	4.83	67.26	16.81		130.0	
10592- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.12	67.74	17.12	0.46	130.0	± 9.6 %
		Y	5.15	67.35	16.84		130.0	<u> </u>
		Z	4.97	67.58	16.94		130.0	<u> </u>
1059 3- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	5.04	67.68	17.02	0.46	130.0	± 9.6 %
		Y	5.08	67.30	16.74	·	130.0	<u> </u>
		Z	4.89	67.49	16.82		130.0	<u> </u>
10594- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	5.10	67.84	17.17	0.46	130.0	± 9.6 %
		Y	5.14	67.45	16.88		130.0	
		Z	4.94	67.65	16.97		130.0	
10595- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	5.07	67.81	17.07	0.46	130.0	± 9.6 %
		Ý	5.11	67.42	16.78		130.0	
		Z	4.91	67.63	16.88		130.0	<u> </u>
10596- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	5.01	67.82	17.09	0.46	130.0	± 9.6 %
		Y	5.05	67.42	16.79		130.0	<u> </u>
		Z	4.85	67.64	16.90		130.0	t
10597- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.96	67.75	16.98	0.46	130.0	± 9.6 %
		Y	5.00	67.35	16.69		130.0	
		Z	4.80	67.53	16.77		130.0	<u> </u>
10598- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	Х	4.95	68.01	17.26	0.46	130.0	± 9.6 %
		Y	4.98	67.61	16.96		130.0	
		Z	4.78	67.73	17.01		130.0	
10599- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.60	67.86	17.12	0.46	130.0	± 9.6 %
		Y	5.66	67.61	16.91		130.0	
		_ Z	5.48	67.70	16.99		130.0	
10600- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.78	68.39	17.36	0.46	130.0	± 9.6 %
		Y	5.85	68.19	17.17		130.0	
		Z	5.62	68.16	17.20		130.0	·
10601- 🥍 AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.65	68.09	17.22	0.46	130.0	± 9.6 %
		Y	5.71	67.83	17.01		130.0	
		Z	5.51	67.89	17.08		130.0	<u> </u>
10602- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.73	68.07	17.13	0.46	130.0	± 9.6 %
	<u> </u>	Y	5.79	67.82	16.93		130.0	
10602		<u>Z</u>	5.63	68.04	17.07		130.0	
10603- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.82	68.41	17.43	0.46	130.0	±9.6 %
	·	Y	5.87	68.11	17.19		130.0	
10604-		<u>Z</u>	5.69	68.27	17.32		130.0	
AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.61	67.82	17.13	0.46	130.0	±9.6 %
		Y	5.66	67.56	16.91		130.0	
10605- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	Z X	<u>5.56</u> 5.73	<u>67.91</u> 68.17	17.12 17.30	0.46	130.0 130.0	± 9.6 %
		Y	5.77	67 07	17.07		400 -	
			5.62	67.87	17.07		130.0	
10606-	IEEE 802.11n (HT Mixed, 40MHz,	- <u> 2</u> X		68.08	17.21		130.0	
AAA	MCS7, 90pc duty cycle)	Y	5.50	67.62	16.90	0.46	130.0	±9.6 %
		- <u>Y</u>	5.53	67.31	16.65	<u> </u>	130.0	
			5.35	67.34	16.70		130.0	

,

`

10607- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.80	66.75	16.64	0.46	130.0	± 9.6 %
		Y	4.81	66.30	16.32		130.0	<u> </u>
		Z	4.67	66.60	16.45		130.0	
10608- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	5.00	67.18	16.81	0.46	130.0	± 9.6 %
		Y	5.02	66.72	16.48		130.0	
		Z	4.84	66.98	16.61		130.0	
10609- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.89	67.06	16.67	0.46	130.0	± 9.6 %
		Y	4.91	66.60	16.34		130.0	
(2242		Z	4.73	66.84	16.45		130.0	
10610- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.94	67.21	16.82	0.46	130.0	± 9.6 %
		- Y	4.96	66.76	16.50		130.0	
10611-		Z	4.78	66.99	16.61		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	4.86	67.03	16.68	0.46	130.0	± 9.6 %
		Y	4.89	66.59	16.36		130.0	
10010		Z	4.70	66.81	16.46		130.0	
10612- AAA	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	4.88	67.21	16.74	0.46	130.0	±9.6 %
		- Y	4.90	66.74	16.40		130.0	
10613-	IEEE 802.11ac WiFi (20MHz, MCS6,	Z	4.71	66.99	16.53	0.10	130.0	
AAA	90pc duty cycle)	_ X	4.89	67.11	16.63	0.46	130.0	±9.6 %
		Y	4.91	66.65	16.30		130.0	
10614-	IEEE 802.11ac WiFi (20MHz, MCS7,	Z X	4.71	66.83	16.39	0.40	130.0	
AAA	90pc duty cycle)		4.83	67.31	16.87	0.46	130.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	4.85	66.84	16.53		130.0	
10615-	IEEE 802.11ac WiFi (20MHz, MCS8,	Z	4.66	67.02	16.61		130.0	
AAA	90pc duty cycle)	X	4.86	66.85	16.46	0.46	130.0	± 9.6 %
		Ý	4.89	66.40	16.13		130.0	
10616- AAA	IEEE 802.11ac WiFi (40MHz, MCS0,	Z X	<u>4.70</u> 5.44	66.67 67.18	16.26 16.77	0.46	130.0 130.0	± 9.6 %
AAA	90pc duty cycle)		- 4 7					
		Y	5.47	66.84	16.51		130.0	
10617-	JEEE 802.11ac WiFi (40MHz, MCS1,	Z	5.30	66.94	16.59		130.0	
	90pc duty cycle)	X	5.50	67.33	16.81	0.46	130.0	± 9.6 %
		Y	5.52	66.94	16.53		130.0	
10618- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.38 5.40	67.17 67.39	16.68 16.87	0.46	130.0 130.0	± 9.6 %
		Y	5.42	67.02	16.59		130.0	
		Z	5.27	67.18	16.70		130.0	· ·
10619- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.42	67.21	16.71	0.46	130.0	± 9.6 %
		Y	5.44	66.85	16.44		130.0	<u> </u>
		Z	5.28	66.96	16.53		130.0	
10620- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.51	67.25	16.78	0.46	130.0	±9.6 %
		Y	5.56	66.94	16.53		130.0	
		Z	5.36	66.98	16.59		130.0	
10621- AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	x	5.50	67.33	16.93	0.46	130.0	±9.6%
		Y	5.53	67.00	16.68		130.0	
		Z	5.36	67.10	16.76		130.0	
10622- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.51	67.50	17.01	0.46	130.0	±9.6 %
		Y	5.53	67.13	16.73		130.0	
		Z	5.38	67.30	16.85		130.0	

J.

10623- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	5.39	67.03	16.66	0.46	130.0	± 9.6 %
		Y -	5.41	66.69	16.40	<u> </u>	130.0	+
		Z	5.25	66.80	16.48	<u> </u>	130.0	<u> </u>
10624- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	x	5.58	67.21	16.80	0.46	130.0	± 9.6 %
		Y	5.61	66.88	16.56		130.0	
		Z	5.44	66.99	16.64		130.0	+
10625- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	x	5.99	68.31	17.39	0.46	130.0	± 9.6 %
		Y	6.04	68.02	17.17		130.0	<u>+</u>
		Z	5.71	67.69	17.04		130.0	<u> </u>
10626- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.71	67.19	16.69	0.46	130.0	± 9.6 %
		Y	5.72	66.86	16.44		130.0	
		Z	5.61	66.97	16.54		130.0	
10627- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	×	5.96	67.77	16.93	0.46	130.0	± 9.6 %
		Y	5.99	67.46	16.69		130.0	
400000		Z	5.86	67.59	16.81		130.0	
10628- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.76	67.34	16.66	0.46	130.0	± 9.6 %
		Y	5.79	67.03	16.42		130.0	
40000		Z	5.63	67.03	16.47		130.0	
10629- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	×	5.85	67.42	16.69	0.46	130.0	± 9.6 %
		Y	5.87	67.09	16.44		130.0	
40000		Z	5.71	67.12	16.51		130.0	
10630- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	×	6.37	69.15	17.55	0.46	130.0	±9.6 %
		Y	<u>6.4</u> 8	69.04	17.41		130.0	
		Z	6.10	68.51	17.21		130.0	
10631- AAA	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.23	68.84	17.58	0.46	130.0	± 9.6 %
		Y	6.30	68.64	17.40		130.0	
40000		Z	6.00	68.26	17.26		130.0	
10632- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.93	67.81	17.09	0.46	130.0	± 9.6 %
		Y	5.96	67.50	16.85		130.0	
10000		Z	5.82	67.64	16.97		130.0	
10633- * AAA	iEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.83	67.50	16.76	0.46	130.0	± 9.6 %
		Y	5.88	67.25	16.56		130.0	
10004		Z	5.69	67.21	16.59		130.0	
10634- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.81	67.52	16.84	0.46	130.0	± 9.6 %
		Y	5.85	67.23	16.61		130.0	
1000-		<u>Z</u>	5.67	67.21	16.64		130.0	
10635- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.70	66.87	16.25	0.46	130.0	± 9.6 %
	<u> </u>	Y	5.74	66.58	16.02		130.0	
10000		Z	5.55	66.58	16.07		130.0	
10636- AAB	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.12	67.55	16.76	0.46	130.0	± 9.6 %
		Y	6.14	67.26	16.54		130.0	
10607		Z	6.03	67.32	16.61		130.0	
10637- AAB	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.28	67.94	16.93	0.46	130.0	±9.6 %
		Y	6.31	67.65	16.72		130.0	
10000		Z	6.19	67.72	16.79		130.0	
10638- AAB	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	x	6.28	67.91	16.90	0.46	130.0	± 9.6 %
		Y	6.31	67.62	16.68		400 0	
		Z	6.18	02	10.06 1		130.0	

i i i

10639-	IEEE 802.11ac WiFi (160MHz, MCS3,	X	6.27	67.88	16.93	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)					0.10		= 0.0 /0
		Y	6.30	67.62	16.73		130.0	
		Z	6.15	67.59	16.75		130.0	
10640- AAB	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.29	67.93	16.90	0.46	130.0	± 9.6 %
		Y	6.33	67.70	16.71		130.0	
		Z	6.15	67.62	16.71		130.0	
10641- AAB	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.30	67.74	16.81	0.46	130.0	±9.6 %
		Y	6.32	67.44	16.59		130.0	
		Z	6.22	67.59	16.72		130.0	
10642- AAB	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty_cycle)	X	6.36	68.03	17.13	0.46	130.0	± 9.6 %
		Y	6.39	67.76	16.92	-	130.0	
		Z	6.23	67.75	16.95		130.0	
10643- AAB	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.19	67.72	16.88	0.46	130.0	± 9.6 %
		Y	6.22	67.45	16.67		130.0	
		Z	6.09	67.50	16.74		130.0	
10644- AAB	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.39	68.34	17.21	0.46	130.0	± 9.6 %
		Y	6.45	68.14	17.04		130.0	
		Z	6.20	67.86	16.93		130.0	
10645- AAB	IEEE 802.11ac WIFi (160MHz, MCS9, 90pc duty cycle)	X	6.86	69.27	17.61	0.46	130.0	± 9.6 %
		Y	6.87	68.89	17.35		130.0	
		Z	6.34	<u>67.9</u> 3	16.93		130.0	
10646- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	58.91	128.47	41.72	9.30	60.0	± 9.6 %
	ч	Y	22.23	103.66	34.19		60.0	
		Z	97.77	144.05	46.65		60.0	
10647- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	62.96	130.94	42.54	9.30	60.0	± 9.6 %
		Y	22.84	105.02	34.74		60.0	
		Z	100.00	145.78	47.28		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	1.21	71.90	15.83	0.00	150.0	± 9.6 %
		Y	0.81	64.89	12.16		150.0	
		Z	0.74	65.22	11.47		150.0	
10652- AAB	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	4.72	70.40	18.28	2.23	80.0	± 9.6 %
		Y	4.59	69.04	17.59		80.0	
		<u>Z</u>	4.50	69.96	17.82		80.0	
10653- AAB	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	5.05	69.01	18.05	2.23	80.0	± 9.6 %
		Y	5.03	68.18	17.58		80.0	
		Z	4.88	68.67	17.76		80.0	
10654- AAB	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	4.97	68.58	18.01	2.23	80.0	± 9.6 %
		Y	4.96	67.84	17.57		80.0	
		Z	4.83	68.24	17.75		80.0	
10655- AAB	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	5.02	68.56	18.04	2.23	80.0	± 9.6 %
		Y	5.02	67.86	17.60		80.0	
		Z	4,89	68.17	17.77		80.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

2017

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: EX3-7410_Jul17

<u>Calie</u>	BRATION	CERTIFIC	ATE

EX3DV4 - SN:7410

July 17, 2017

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

	Name	. ,	Function	Signature
Calibrated by:	Jeton Kastrati		Laboratory Technician C	q=0-
Approved by:	Kalja Pokovic		Technical Manager	Relly
This calibration certificat	e shall not be reoroduced exc	cept in full without	it written approval of the labor:	Issued: July 17, 2017

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:TSLtissue simulating liquidNORMx,y,zsensitivity in free spaceConvFsensitivity in TSL / NORMx,y,zDCPdiode compression point

CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
•	i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:7410

Calibrated:

Manufactured: November 24, 2015 July 17, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7410

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
<u>Norm (μV/(V/m)²)</u> ^A	0.40	0.46	0.43	± 10.1 %
DCP (mV) ^B	95.4	94.7	91.2	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	с	D	VR	Unc ^E
			dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	130.7	±3.5 %
		Y	0.0	0.0	1.0		146.7	
		Z	0.0	0.0	1.0		132.5	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
X	41.43	313.6	36.54	8.525	0.381	5.024	0.000	0.467	1.003
Y	<u>41.67</u>	315.5	36.57	10.32	0.000	5.055	0.334	0.426	1.004
Z	51.58	393.9	37.05	11.42	0.427	5.066	0.000	0.561	1.006

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7410

		T:								
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)		
750	41.9	0.89	10.60	10.60	10.60	0.53	0.80	± 12.0 %		
835	41.5	0.90	10.08	10.08	10.08	0.41	0.98	± 12.0 %		
1750	40.1	1.37	8.66	8.66	8.66	0.41	0.82	± 12.0 %		
1900	40.0	1.40	8.37	8.37	8.37	0.28	1.19	± 12.0 %		
2300	39.5	1.67	8.02	8.02	8.02	0.35	0.80	± 12.0 %		
2450	39.2	1.80	7.68	7.68	7.68	0.33	0.89	± 12.0 %		
2600	39.0	1.96	7.42	7.42	7.42	0.40	0.80	± 12.0 %		

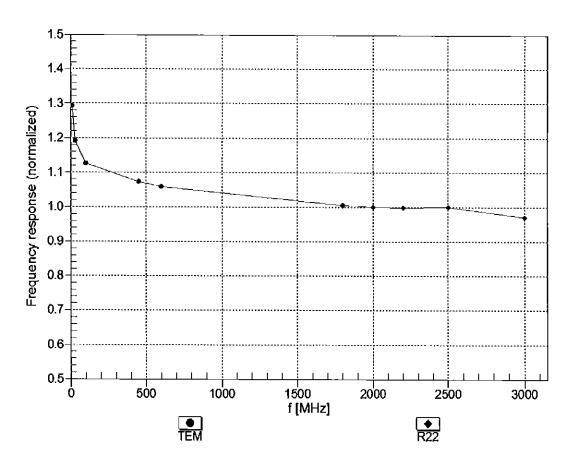
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

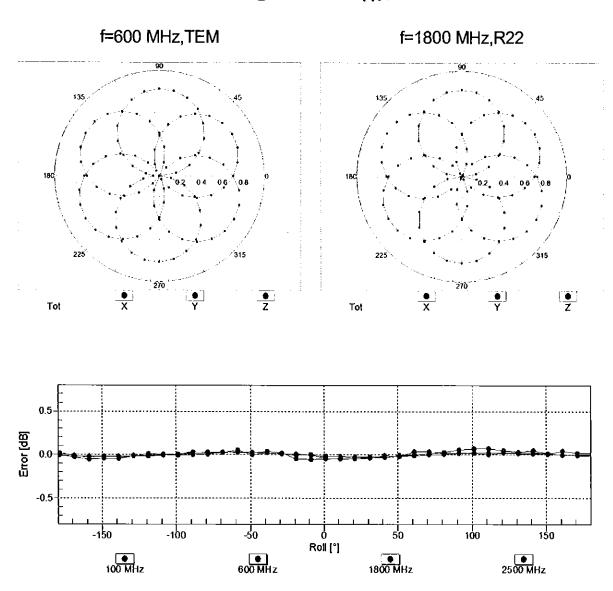
always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7410


f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.19	10.19	10.19	0.33	1.02	± 12.0 %
835	55.2	0.97	9.95	9.95	9.95	0.50	0.80	± 12.0 %
<u>17</u> 50	<u>53</u> .4	1.49	8.32	8.32	8.32	0.39	0.86	± 12.0 %
1900	53.3	1.52	7.98	7.98	7.98	0.44	0.86	± 12.0 %
2300	52.9	1.81	7.85	7.85	7.85	0.44	0.84	± 12.0 %
2450	52.7	1.95	7.69	7.69	7.69	0.37	0.89	± 12.0 %
2600	52.5	2.16	7.43	7.43	7.43	0.28	0.99	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


⁶ At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)