Application Note: Data Storage and Evaluation ## **Data Storage** The DASY3 software stores the assessed data from the data acquisition electronics are as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA3". The Software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. To avoid unintentional parameter changes or data manipulations, the parameters in measured files are locked. In the administrator access mode of the software, the parameters can be unlocked by selecting the "modify"-switch in the "file"-pull down menu. After changing the parameters, the measured scans must be reevaluated by selecting them and using the "evaluate"-option in the "scan"-pull down menu. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a lossless media will always be zero. Raw datacan also be exported to perform the evaluation with other software packages. ### Data Evaluation The DASY3 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: | Probe parameters: | - Sensitivity | Norm _i , a _{i0} , a _{i1} , a _{i2} | |--------------------|---------------------------|---| | | - Conversion factor | ConvFi | | | - Diode compression point | Dcpi | | Device parameters: | - Frequency | f | | | - Crest factor | cf | | Media parameters: | - Conductivity | σ | | | - Density | ρ | These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY3 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signalmust be known to correctly compensate for peak power. The formula for each channel can be given as: $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$ H-field probes: $H_i = \sqrt{Vi} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ with V_i = compensated signal of channel i (i = x, y, z) $Norm_i$ = sensor sensitivity of channel i (i = x, y, z) $\mu V/(V/m)^2$ for E-field Probes ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^{-2} \cdot \frac{\sigma}{\rho \cdot 1000}$$ with SAR = local specific absorption rate in mW/g Etot = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³ Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field. $$P_{pive} = \frac{E_{tot}^{2}}{3770} \qquad \text{or} \qquad P_{pive} = H_{tot}^{2} \cdot 37.7$$ with P_{pwe} = equivalent power density of a plane wave in mW/cm² E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m ## 2 Validation procedure ### 2.1 Preparation The conductivity should be measured before the validation and the measured liquid parameters must be entered in the software. If the measured values differ from targeted values in the dipole document, the liquid composition should be adjusted. If the validation is performed with slightly different (measured) liquid parameters, the expected SAR will also be different. See the application note about SAR sensitivities for an estimate of possible SAR deviations. Note that the liquid parameters are temperature dependent with approximately -0.5% decrease in permittivity and +1% increase in conductivity for a temperature increase of 1° C. The dipole must be placed beneath the flat phantom section of the Generic Twin Phantom with the correct distance holder in place. The distance holder should touch the phantom surface with a light pressure at the reference marking (little hole) and be oriented parallel to the long side of the phantom. Accurate positioning is not necessary, since the system will search for the peak SAR location, except that the dipole arms should be parallel to the surface. The device holder for mobile phones can be left in place but should be rotated away from the dipole. The forward power into the dipole at the dipole SMA connector should be determined as accurately as possible. See section 4 for a description of the recommended setup to measure the dipole input power. The actual dipole input power level can be between 20mW and several watts. The resultcan later be normalized to any power level. It is strongly recommended to note the actually used power level in the "comment"-window of the measurement file; otherwise you loose this crucial information for later reference. #### 2.2 Validation The DASY3 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks, so you must save the finished validation under a different name. The validation document requires the Generic Twin Phantom, so this phantom must be properly installed in your system. (You can create your own measurement procedures by opening a new document or editing an existing document file). Before you start the validation, you just have to tell the system with which components (probe, medium, and device) you are performing the validation; the system will take care of all parameters. After the validation, which will take about 20 minutes, the results of each taskare displayed in the document window. Selecting all measured tasks and opening the predefined "validation" graphic format displays all necessary information for validation. A description of the different measurement tasks in the predefined document is given below, together with the information that can be deduced from their results: The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the amplifier output power. If it is too high (above ± 0.1dB) the validation should be repeated; some amplifiers have very high drift during warm-up. A stable amplifier gives drift results in the DASY3 system below ± 0.02 dB. - The "surface check" measurement tests the optical surface detection system of the DASY3 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above± 0.1mm). In that case it is better to abort the validation and stir the liquid. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within± 30°.) However, varying breaking indices of different liquid compositions might also influence the distance. If the indicated difference varies from the actual setting, the probe parameter "optical surface distance" should be changed in the probe settings (see manual). For more information see the application note about SAR evaluation. - The "coarse scan" measures the SAR above the dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The proposed scan uses large grid spacing for faster measurement, due to the symmetric field the peak detection is reliable. If a finer graphicis desired, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. - The two "cube 5x5x7" scans measure the field in a volume around the peak SAR value assessed in the previous "coarse" scan (for more information see the application note on SAR evaluation). Between the two cube scans the probe is rotated 90° around its axis. This allows checking and compensation of the probe isotropy error. In the document, the evaluated peak 1g and 10g averaged SAR valuesare shown. In the graphic, the mean values and the relative differences between the two cube scansare given for the extrapolated peak value and the 1g and 10g spatial peak values. If the difference between the cubes is larger than the expected isotropy from the probe document (and the power drift measurement is OK), there may be a problem with the parameter settings of the probe (e.g. wrong probe selected) or with the probe itself. The penetration depthis assessed from an exponential curve fitting on the z-axis in the center of the cube. Since the decay is not purely exponential, the values in parentheses give the decay near the surface and further inside the phantom. If these values differ greatly from the values in the dipole document, either the dipole distance or the actual liquid parameters are different to the ones used in the document. If the validation measurements give reasonable results, the peak 1g and 10g spatial SAR values averaged between the two cubes and normalized to 1W dipole input power give the reference data for comparisons. The next section analyzes the expected uncertainties of these values. Section 6 describes some additional checks for further information or troubleshooting.