Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 1(22) Author Data Daoud Attayi Dates of Test August 31- October 27, 2015 Report No **RTS-6066-1511-05** L6ARHT180LW # Annex B: Probe and dipole descriptions and calibration certificates **B.2** Dipole calibration certificate # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 2(22) Author Data Daoud Attayi Dates of Test August 31- October 27, 2015 Report No RTS-6066-1511-05 FCC ID L6ARHT180LW Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 | CALIBRATION | CERTIFICAT | E | | |--|---|--|--| | Object | CD835V3 - SN: | 1011 | | | Calibration procedure(s) | QA CAL-20.v6
Calibration proce | edure for dipoles in air | | | Calibration date: | November 12, 2 | 013 | | | Calibration Equipment used (Mil
Primary Standards | ID # GB37480704 | Cal Date (Certificate No.)
09-Oct-13 (No. 217-01827) | Scheduled Calibration Oct-14 | | Power meter EPM-442A | | 이 프리아이를 하는 아니지 아무슨이 지어가지 않아? | 2000 | | | | 09-Oct-13 (No. 217-01827) | | | | US37292783 | TOTA - TANK NOT AN OF THE PROPERTY PROP | Oct-14 | | Power sensor HP 8481A | MY41092317 | 09-Oct-13 (No. 217-01828) | Oct-14 | | Power sensor HP 8481A
Reference 10 dB Attenuator | MY41092317
SN: 5047.2 (10g) | 09-Oct-13 (No. 217-01828)
04-Apr-13 (No. 217-01731) | Oct-14
Apr-14 | | Power sensor HP 8481A
Reference 10 dB Attenuator
Probe ER3DV6 | MY41092317
SN: 5047.2 (10g)
SN: 2336 | 09-Oct-13 (No. 217-01828)
04-Apr-13 (No. 217-01731)
28-Dec-12 (No. ER3-2336_Dec12) | Oct-14
Apr-14
Dec-13 | | Power sensor HP 8481A Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 | MY41092317
SN: 5047.2 (10g)
SN: 2336
SN: 6065 | 09-Oct-13 (No. 217-01828)
04-Apr-13 (No. 217-01731)
28-Dec-12 (No. ER3-2336_Dec12)
28-Dec-12 (No. H3-6065_Dec12) | Oct-14
Apr-14
Dec-13
Dec-13 | | Power sensor HP 8481A
Reference 10 dB Attenuator
Probe ER3DV6
Probe H3DV6 | MY41092317
SN: 5047.2 (10g)
SN: 2336 | 09-Oct-13 (No. 217-01828)
04-Apr-13 (No. 217-01731)
28-Dec-12 (No. ER3-2336_Dec12) | Oct-14
Apr-14
Dec-13 | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards | MY41092317
SN: 5047.2 (10g)
SN: 2336
SN: 6065
SN: 781 | 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (in house) | Oct-14
Apr-14
Dec-13
Dec-13
Sep-14
Scheduled Check | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilient 4419B | MY41092317
SN: 5047.2 (10g)
SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191 | 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ERS-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (in house) 09-Oct-09 (in house check Oct-13) | Oct-14 Apr-14 Dec-13 Dec-13 Sep-14 Scheduled Check In house check: Oct-15 | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilton 4419B Power sensor HP E4412A | MY41092317
SN: 5047.2 (10g)
SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277 | 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ERS-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (in house) 09-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) | Oct-14 Apr-14 Dec-13 Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agitori 4419B Power sensor HP E4412A Power sensor HP 8482A | MY41092317
SN: 5047.2 (10g)
SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295597 | 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (In house) 09-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 09-Oct-09 (in house check Oct-13) | Oct-14 Apr-14 Dec-13 Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agitem 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E | MY41092317
SN: 5047.2 (10g)
SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37296597
US37390585 | 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (in house) 09-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 18-Oct-09 (in house check Oct-13) | Oct-14 Apr-14 Dec-13 Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agitem 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E | MY41092317
SN: 5047.2 (10g)
SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295597 | 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (In house) 09-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 09-Oct-09 (in house check Oct-13) | Oct-14 Apr-14 Dec-13 Dec-13 Sep-14 Scheduled Check In house check: Oct-15 | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agitem 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E | MY41092317
SN: 5047.2 (10g)
SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37296597
US37390585
SN: 832283/011 | 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ERS-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (in house) 09-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) 27-Aug-12 (in house check Oct-13) | Oct-14 Apr-14 Dec-13 Dec-13 Sep-14 Scheduled Check In house check: Oct-15 | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilient 4419B | MY41092317
SN: 5047.2 (10g)
SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37296597
US37390585
SN: 832283/011 | 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No.
DAE4-781_Sep13) Check Date (in house) 09-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 09-Oct-09 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) 27-Aug-12 (in house check Oct-13) | Oct-14 Apr-14 Doc-13 Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-14 In house check: Oct-14 In house check: Oct-14 | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agillent 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E RF generator R&S SMT-06 | MY41092317
SN: 5047.2 (10g)
SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37296597
US37390585
SN: 832283/011 | 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ERS-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (in house) 09-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) 27-Aug-12 (in house check Oct-13) | Oct-14 Apr-14 Doc-13 Doc-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 In house check: Oct-14 In house check: Oct-14 | Certificate No: CD835V3-1011_Nov13 Page 1 of 5 # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 3(22) Author Data Daoud Attayi Dates of Test August 31- October 27, 2015 Report No RTS-6066-1511-05 FCC ID L6ARHT180LW Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any electricists. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD835V3-1011_Nov13 # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 4(22) Author Data Daoud Attayi Dates of Test August 31- October 27, 2015 Report No **RTS-6066-1511-05** FCC ID L6ARHT180LW ### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.8.7 | |---------------------------------------|-----------------|---------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe
Center | 15mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | #### Maximum Field values at 835 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|----------------------------| | Maximum measured above high end | 100 mW input power | 110.1 V / m | | Maximum measured above low end | 100 mW input power | 104.5 V / m | | Averaged maximum above arm | 100 mW input power | 107.3 V / m ± 12.8 % (k=2) | ## Appendix #### **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------------------| | 800 MHz | 16.3 dB | 42.8 Ω - 12.4 jΩ | | 835 MHz | 29.4 dB | $51.5 \Omega + 3.1 j\Omega$ | | 900 MHz | 16.3 dB | 55.5 Ω - 15.3 jΩ | | 950 MHz | 19.6 dB | 44.2 Ω + 8.1 jΩ | | 960 MHz | 16.2 dB | 50.8 Ω + 15.7 jΩ | ## 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD835V3-1011_Nov13 Page 3 of 5 Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 5(22) Author Data Daoud Attayi Dates of Test **August 31- October 27, 2015** RTS-6066-1511-05 Report No FCC ID L6ARHT180LW Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 6(22) Author Data Daoud Attayi Dates of Test August 31- October 27, 2015 RTS-6066-1511-05 Report No FCC ID L6ARHT180LW # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 7(22) Author Data Daoud Attayi Dates of Test August 31- October 27, 2015 RTS-6066-1511-05 Report No FCC ID L6ARHT180LW Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Client Blackberry Waterloo Certificate No: CD1880V3-1008 Nov13 | Object | CD1880V3 - SN | : 1008 | | |--|---|--|---| | Calibration procedure(s) | QA CAL-20.v6
Calibration proof | edure for dipoles in air | | | Calibration date: | November 12, 2 | 013 | | | The measurements and the unc | ertainties with confidence
particles in the closed laborate | tional standards, which realize the physical units probability are given on the following pages and ony facility: environment temperature (22 \pm 3)°C i | are part of the certificate. | | Primary Standards | (D # | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter EPM-442A | GB37480704 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | US37292783 | 09-Oct-13 (No. 217-01827) | Oct-14 | | | | 09-Oct-13 (No. 217-01828) | Oct-14 | | | MY41092317 | | | | Reference 10 dB Attenuator | SN: 5047.2 (10q) | 04-Apr-13 (No. 217-01731) | Apr-14 | | Reference 10 dB Attenuator
Proba ER3DV6 | SN: 5047.2 (10q)
SN: 2336 | 04-Apr-13 (No. 217-01731)
28-Dec-12 (No. ER3-2336 Dec12) | Dec-13 | | Reference 10 dB Attenuator
Probe ER3DV6
Probe H3DV6 | SN: 5047.2 (10q) | 04-Apr-13 (No. 217-01731) | | | Power sensor HP 8481A
Reference 10 dB Attenuator
Probe ER3DV6
Probe H3DV6
DAE4
Secondary Standards | SN: 5047.2 (10q)
SN: 2336
SN: 8065 | 04-Apr-13 (No. 217-01731)
28-Dec-12 (No. ER3-2336 Dec12)
28-Dec-12 (No. H3-6065_Dec12) | Dec-13
Dec-13 | | Reference 10 dB Attenuator
Probe ER3DV6
Probe H3DV6
DAE4
Secondary Standards
Power meter Agillerk 44198 | SN: 5047.2 (10g)
SN: 2336
SN: 8085
SN: 781
ID #
SN: 3842420191 | D4-Apr-13 (No. 217-01731)
28-Dec-12 (No. ER3-2396 Dec12)
28-Dec-12 (No. H3-6065 Dec12)
13-Sep-13 (No. DAE4-781 Sep-13)
Check Date (in house)
03-Oct-09 (in house check Oct-13) | Dec-13 Dec-13 Sep-14 Scheduled Check In house check: Oct-15 | | Reference 10 dB Attenuator
Probe ER3DV6
Probe H3DV6
DAE4
Secondary Standards
Power meter Agilert 44198
Power sensor HP E4412A | SN: 5047.2 (10g)
SN: 2336
SN: 8085
SN: 781
ID #
SN: 0842420191
SN: MY41486277 | 04-Apr-13 (No. 217-01731)
28-Dec-12 (No. ER3-2396 Dec12)
28-Dec-12 (No. H3-6065_Dec12)
13-Sep-13 (No. DAE4-781_Sep13)
Check Date (in house)
03-Oct-09 (in house check Oct-13)
01-Apr-08 (in house check Oct-13) | Dec-13 Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 | | Reference 10 dB Attenuator
Probe ER3DV6
Probe H3DV6
DAE4
Secondary Standards
Power moter Agilors 44198
Power sensor HP E4412A
Power sensor HP E4412A | SN: 5047.2 (10q)
SN: 2336
SN: 8065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295997 | 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2396 Dec12) 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (in house) 09-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 09-Oct-09 (in house check Oct-13) | Dec-13 Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 | | Reference 10 dB Attenuator
Probe ER3DV6
Probe H3DV6
DAE4
Secondary Standards
Power meter Agilent 44198
Power sensor HP E4412A
Power sensor HP 8482A
Network Analyzer HP 8753E | SN: 5047.2 (10q)
SN: 2338
SN: 8065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295897
US37390565 | 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2396 Dec12) 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (in house) 09-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) | Dec-13 Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 | | Reference 10 dB Attenuator
Probe ER3DV6
Probe H3DV6
DAE4
Secondary Standards
Power meter Agilent 44198
Power sensor HP E4412A
Power sensor HP 8482A
Network Analyzer HP 8753E | SN: 5047.2 (10q)
SN: 2336
SN: 8065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295997 | 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2396 Dec12) 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (in house) 09-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 09-Oct-09 (in house check Oct-13) | Dec-13 Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 | | Reference 10 dB Attenuator
Probe ER3DV6
Probe H3DV6
DAE4
Secondary Standards
Power meter Agilent 44198
Power sensor HP E4412A
Power sensor HP 8482A
Network Analyzer HP 8753E | SN: 5047.2 (10q)
SN: 2338
SN: 8065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295897
US37390565 | 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2396 Dec12) 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (in house) 09-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) | Dec-13 Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 | | Reference 10 dB Attenuator
Probe ER30V8
Probe H30V6
DAE4
Secondary Standards
Power meter Agillerit 44198
Power sensor HP E4412A
Power sensor HP E482A
Network Analyzer HP 8753E
RF generator R&S SMT-05 | SN: 5047.2 (10g)
SN: 2336
SN: 8085
SN: 781
ID #
SN: 3842420191
SN: MY41495277
SN: US37295597
US37390565
SN: 832283-011 | 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2396 Dec12) 28-Dec-12 (No. H3-6065 Dec12) 13-Sep-13 (No. DAE4-781 Sep-13) Check Date (in house) 09-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 09-Oct-09 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) 27-Aug-12 (in house check Oct-13) | Dec-13 Dec-13 Sep-14 Scheduled Gheck In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 In house check: Oct-14 In house check: Oct-14 | | Reference 10 dB Attenuator
Probe ER3DV6
Probe H3DV6
DAE4 | SN: 5047.2 (10g)
SN: 2336
SN: 8085
SN: 781
ID #
SN: 0842420191
SN: MY41485277
SN: US37296897
US37390665
SN: 832263/011 | 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2396 Dec12) 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep-13) Check Date (in house) 09-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) 27-Aug-12 (in house check Oct-13) | Dec-13 Dec-13 Sep-14 Scheduled Gheck In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 In house check: Oct-14 In house check: Oct-14 | Certificate No: CD1880V3-1008_Nov13 Page 1 of 5 # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 8(22) Author Data Daoud Attavi Dates of Test August 31- October 27, 2015 Report No RTS-6066-1511-05 FCC ID L6ARHT180LW Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlacher Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References [1] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. ### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top
of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallellity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Cartificate No: CD1880V3-1008 Nov13 # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 9(22) Author Data Daoud Attavi Dates of Test August 31- October 27, 2015 Report No **RTS-6066-1511-05** FCC ID L6ARHT180LW #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |---------------------------------------|-----------------|---------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe
Center | 15mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | ### Maximum Field values at 835 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|----------------------------| | Maximum measured above high end | 100 mW input power | 110.1 V / m | | Maximum measured above low end | 100 mW input power | 104.5 V / m | | Averaged maximum above arm | 100 mW input power | 107.3 V / m ± 12.8 % (k=2) | # Appendix ## **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------------------| | 800 MHz | 16.3 dB | 42.8 Ω - 12.4 jΩ | | 835 MHz | 29.4 dB | $51.5 \Omega + 3.1 j\Omega$ | | 900 MHz | 16.3 dB | 55.5 Ω - 15.3 jΩ | | 950 MHz | 19.6 dB | $44.2 \Omega + 8.1 j\Omega$ | | 960 MHz | 16.2 dB | 50.8 Ω + 15.7 jΩ | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD835V3-1011_Nov13 Page 3 of 5 Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 10(22) Author Data Daoud Attayi Dates of Test August 31- October 27, 2015 Report No **RTS-6066-1511-05** FCC ID L6ARHT180LW # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 11(22) Author Data Daoud Attavi Dates of Test August 31- October 27, 2015 RTS-6066-1511-05 Report No FCC ID L6ARHT180LW ### DASY5 E-field Result Date: 12.11.2013 Test Laboratory: SPEAG Lab2 ### DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1011 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 28.12.2012; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn781; Calibrated: 13.09.2013 - . Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ### Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 111.2 V/m; Power Drift = 0.01 dB PMR not calibrated. PMF = 1.000 is applied. E-field emissions = 110.1 V/m Near-field category: M4 (AWF 0 dB) #### PMF scaled E-field | Charles Control of Charles | Grid 2 M4
104.5 V/m | 14-14-00 DOM: 100-01 | |----------------------------|------------------------|------------------------| | | Grid 5 M4
62.75 V/m | Grid 6 M4
61.79 V/m | | | Grid 8 M4
110.1 V/m | | 0 dB = 110.1 V/m = 40.84 dBV/m Certificate No: CD835V3-1011_Nov13 Page 5 of 5 Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 12(22) Author Data Daoud Attayi Dates of Test August 31- October 27, 2015 Report No **RTS-6066-1511-05** FCC ID L6ARHT180LW Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurloh, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Blackberry Waterloo Accreditation No.: SCS 108 Certificate No: CD1880V3-1008_Nov13 | | CERTIFICAT | | | |---|---|--|---| | Object | CD1880V3 - SN | : 1008 | | | Calibration procedure(s) | QA CAL-20.v6
Calibration proce | edure for dipoles in air | | | Calibration date: | November 12, 2 | 013 | | | The measurements and the uno | ertainties with confidence | from all standards, which realize the physical units probability are given on the following pages and cory facility: environment temperature (22 \pm 3) $^{\circ}$ C a | are part of the certificate. | | Primary Standards | 1D# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter EPM-442A | GB37480704 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | US37292783 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | MY41092317 | 09-Oct-13 (No. 217-01828) | Oct-14 | | | SN: 5047.2 (10q) | 04-Apr-13 (No. 217-01731) | Apr-14 | | Reference 10 dB Attenuator | | | | | | SN: 2336 | 28-Dec-12 (No. ER3-2336, Dec12) | Dec-13 | | Probe ER3DV6 | SN: 2336
SN: 6065 | 28-Dec-12 (No. ER3-2336, Dec12)
28-Dec-12 (No. H3-6065_Dec12) | Dec-13
Dec-13 | | Probe ER3DV6
Probe H3DV6 | | | | | Probe ER3DV6
Probe H3DV6
DAE4 | SN: 6065 | 28-Dec-12 (No. H3-6065_Dec12) | Dec-13 | | Probe ERSDV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agillent 44198 | SN: 8085
SN: 781
ID #
SN: GB42420191 | 28-Dec-12 (No. H3-6065_Dec12)
13-Sep-13 (No. DAE4-781_Sep13)
Check Date (In house)
03-Oct-09 (In house check Oct-13) | Dec-13
Sep-14
Scheduled Check
In house check: Oct-15 | | Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agillent 44198 Power sensor HP E4412A | SN: 8085
SN: 781
ID #
SN: GB42420191
SN: MY41495277 | 28-Dec-12 (No. H3-6065_Dec12)
13-Sep-13 (No. DAE4-781_Sep13)
Check Date (In house)
09-Oct-09 (in house check Oct-13)
01-Apr-08 (in house check Oct-13) | Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 | | Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agillert 44198 Power sensor HP E4412A Power sensor HP 8482A | SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295597 | 28-Dec-12 (No. H3-6065_Dec12)
13-Sep-13 (No. DAE4-781_Sep13)
Check Date (in house)
09-Oct-09 (in house check Oct-13)
01-Apr-08 (in house check Oct-13)
09-Oct-09 (in house check Oct-13) | Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 | | Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agillent 44198 Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E | SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295597
US37390585 | 28-Dec-12 (No. H3-6065_Dec12)
13-Sep-13 (No. DAE4-781_Sep13)
Check Date (In house)
09-Oct-09 (in house check Oct-13)
01-Apr-08 (in house check Oct-13)
09-Oct-09 (in house check Oct-13)
18-Oct-01 (in house check Oct-13) | Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 In house check: Oct-14 | | Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 44198 Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E | SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295597 | 28-Dec-12 (No. H3-6065_Dec12)
13-Sep-13 (No. DAE4-781_Sep13)
Check Date (in house)
09-Oct-09 (in house check Oct-13)
01-Apr-08 (in house check Oct-13)
09-Oct-09 (in house check Oct-13) | Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 | | Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agillent 44198 Power sensor HP E4412A Power sensor HP B482A Notwork Analyzer HP 8753E RF generator R&S SMT-06 | SN: 8065
SN: 781
ID #
SN:
GB42420191
SN: MY41495277
SN: US37295597
US37390585
SN: 832283/011 | 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (In house) 03-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 09-Oct-09 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) 27-Aug-12 (in house check Oct-13) | Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 In house check: Oct-14 | | Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agillent 44198 Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E RF generator R&S SMT-06 Calibrated by: | SN: 8085
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295597
US37390565
SN: 832283/011 | 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (In house) 03-Oct-08 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 09-Oct-09 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) 27-Aug-12 (in house check Oct-13) | Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 In house check: Oct-14 In house check: Oct-14 Segmetare | | Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agillent 44198 Power sensor HP E4412A Power sensor HP B482A Network Analyzer HP B753E RF generator R&S SMT-06 | SN: 8065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295597
US37390585
SN: 832283/011 | 28-Dec-12 (No. H3-6065_Dec12) 13-Sep-13 (No. DAE4-781_Sep13) Check Date (In house) 03-Oct-09 (in house check Oct-13) 01-Apr-08 (in house check Oct-13) 09-Oct-09 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) 27-Aug-12 (in house check Oct-13) | Dec-13 Sep-14 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 In house check: Oct-14 In house check: Oct-14 | Certificate No: CD1880V3-1008_Nov13 Page 1 of 5 # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 13(22) Author Data Daoud Attavi Dates of Test August 31- October 27, 2015 RTS-6066-1511-05 Report No FCC ID L6ARHT180LW Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlacher Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. ### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD1880V3-1008_Nov13 # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 14(22) Author Data Daoud Attavi Dates of Test August 31- October 27, 2015 Report No RTS-6066-1511-05 FCC ID L6ARHT180LW Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlscher Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. ### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the
measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD1880V3-1008_Nov13 # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 15(22) ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |---------------------------------------|------------------|---------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe
Center | 15mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 1880 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | ### Maximum Field values at 1880 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|---------------------------| | Maximum measured above high end | 100 mW input power | 90.8 V / m | | Maximum measured above low end | 100 mW input power | 87.3 V / m | | Averaged maximum above arm | 100 mW input power | 89.0 V / m ± 12.8 % (k=2) | ### Appendix ### **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------| | 1730 MHz | 27.3 dB | 52.4 Ω + 3.7 jΩ | | 1880 MHz | 20.3 dB | 50.2 Ω + 9.7 jΩ | | 1900 MHz | 20.8 dB | 52.5 Ω + 9.0 jΩ | | 1950 MHz | 28.5 dB | 52.5 Ω + 2.9 jΩ | | 2000 MHz | 18.5 dB | 43.0 Ω + 8.7 jΩ | ## 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD1880V3-1008_Nov13 Page 3 of 5 Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 16(22) Author Data Daoud Attayi Dates of Test August 31- October 27, 2015 RTS-6066-1511-05 Report No FCC ID L6ARHT180LW ## Impedance Measurement Plot Cortificate No: CD1880V3-1008_Nov13 Page 4 of 5 # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 17(22) Author Data Daoud Attavi Dates of Test August 31- October 27, 2015 RTS-6066-1511-05 Report No FCC ID L6ARHT180LW ## **DASY5 E-field Result** Date: 12.11,2013 Test Laboratory: SPEAG Lab2 DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1008 Communication System: UTD 0 - CW; Frequency: 1880 MHz/ Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY52 Configuration: - Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 28.12.2012; - · Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn781; Calibrated: 13.09.2013 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 149.9 V/m: Power Drift = 0.00 dB PMR not calibrated. PMF = 1.000 is applied. E-field emissions = 90.79 V/m Near-field entegory: M3 (AWF 0 dB) ### PMF scaled E-field | Grid 2 M3
90.79 V/m | | |----------------------------|---| |
Grid 5 M3
70.42 V/m | 111111111111111111111111111111111111111 | | Grid 8 M3
87.31 V/m | | 0 dB = 90.79 V/m = 39.16 dBV/m Certificate No: CD1880V3-1008_Nov13 Page 5 of 5 # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 18(22) Author Data Daoud Attayi Dates of Test August 31- October 27, 2015 Report No **RTS-6066-1511-05** FCC ID L6ARHT180LW Calib Taion Laboratory of Schmaid & Partner Englineering AG Zeughar Strasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredif ed by the Swiss Accreditation Service (SAS) The Swill straceditation Service is one of the signatories to the EA Multilat entry Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **Blackberry Waterloo** Certificate No: CD2450V3-1011_Mar15 | Object | CD2450V3 - SN: 1011 | | | |--|---|---|--| | Calibration procedure(s) | QA CAL-20.v6
Calibration proce | dure for dipoles in air | | | Calibration date: | March 11, 2015 | | | | The measurements and the unc | ertainties with confidence p
ucted in the closed laborato | onal standards, which realize the physical unit
robability are given on the following pages and
ry facility: environment temperature (22 ± 3) °C | d are part of the certificate. | | | | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards Power mater EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 10 dB Attenuator Probe ERSDV6 Probe H3DV6 DAE4 | ID #
GB37480704
US37292783
MY41092317
SN: 5047.2 / 06327
SN: 2336
SN: 6065
SN: 781 | Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-02021) 31-Dec-14 (No. ER3-2336_Dec14) 31-Dec-14 (No. H3-0065_Dec14) 12-Sep-14 (No. DAE4-781_Sep14) | Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Dec-15 Dec-15 Sep-15 | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 10 dB Attenuator Probe ERSDV6 Probe HSDV6 DAE4 | GB37480704
US37292783
MY41092317
SN: 5047.2 / 06327
SN: 2336
SN: 6065 | 07-Oct-14 (No. 217-02020)
07-Oct-14 (No. 217-02020)
07-Oct-14 (No. 217-02021)
03-Apr-14 (No. 217-02021)
31-Dec-14 (No. ER3-2336_Dec14)
31-Dec-14 (No. H3-6085_Dec14)
12-Sep-14 (No. DAE4-781_Sep14) | Oct-15
Oct-15
Oct-15
Apr-15
Dec-15
Dec-15 | | Power mater EPM-442A
Power sensor HP 8481A
Power sensor HP 8481A
Reference 10 dB Attenuator
Probe ERSDV6
Probe H3DV6 | GB37480704
US37292783
MY41092317
SN: 5047.2 / 06327
SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: US38485102
SN: US38485102
SN: US37390585
SN: 832283/011 | 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01921) 31-Dec-14 (No. ER3-2336_Dec14) 31-Dec-14 (No. H3-6065_Dec14) 12-Sep-14 (No. DAE4-781_Sep14) Check Date (in house) 09-Oct-09 (in house check Sep-14) 09-Oct-09 (in house check Sep-14) 18-Oct-01 (in house check Sep-14) 18-Oct-01 (in house check Oct-14) 27-Aug-12 (in house check Oct-13) | Oct-15 Oct-15 Oct-15 Oct-15 Apr-15 Dec-15 Dec-15 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16 In house check: Oct-15 In house check: Oct-15 In house check: Oct-16 | | Power mater EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 10 dB Attenuator Probe ERSDV6 Probe HSDV6 DAE4 Secondary Standards Power mater Aglierst 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E | GB37480704
US37292783
MY41092317
SN: 5047.2 / 06327
SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: US36485102
SN: US37295597
US37390585 | 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-02021) 31-Dec-14 (No. ER3-2336_Dec14) 31-Dec-14 (No. H3-6085_Dec14) 12-Sep-14 (No. DAE4-781_Sep14) 12-Sep-14 (No. DAE4-781_Sep14) Check Date (in house) 09-Oct-09 (in house check Sep-14) 09-Oct-09 (in house check Sep-14) 18-Oct-01 (in house check Sep-14) | Oct-15 Oct-15 Oct-15 Oct-15 Apr-15 Dec-15 Dec-15 Sep-15 Scheduled Check In house check: Sep-16 In house check: Sep-16 In house check: Sep-16 In house check: Sep-16 | Certificate No: CD2450V3-1011_Mar15 Page 1 of 5 This calbration certificate shall not be reproduced except in full without written approval of the laboratory. # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 19(22) Author Data Daoud Attavi Dates of Test August 31- October 27, 2015
Report No RTS-6066-1511-05 FCC ID L6ARHT180LW Calib Pition Laboratory of Schmid & Partner Engineering AG Zeugha Ustrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredit ^{QC} by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Mutitiat ^{QC} Agreement for the recognition of calibration certificates #### References ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna impunted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-fleid distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. | The reported unco | ertainty of measureme | ent is stated as the | standard uncerta | linty of measureme | nt multiplied by the | |-------------------|-----------------------|----------------------|------------------|----------------------|----------------------| | coverage factor k | =2, which for a norma | distribution corres | ponds to a cover | age probability of a | pproximately 95%. | Certificate No: CD2450V3-1011_Mar15 # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 20(22) Author Data Daoud Attayi Dates of Test August 31- October 27, 2015 Report No **RTS-6066-1511-05** FCC ID L6ARHT180LW # Mea ≤urement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.8.8 | |------------------------------------|------------------|---------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | # Maximum Field values at 2450 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|-------------------|------------------------| | Maximum measured above high end | 100mW input power | 88.6V/m = 38.94 dBV/m | | Maximum measured above low end | 100mW input power | 84.4V/m = 38.52 dBV/m | | Averaged maximum above arm | 100mW input power | 86.5V/m ± 12.8 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------------------| | 2250 MHz | 17.2 dB | 54.5 Ω + 13.9 jΩ | | 2350 MHz | 29.4 dB | $53.4 \Omega + 0.7 j\Omega$ | | 2450 MHz | 28.1 dB | $52.9 \Omega + 2.8 j\Omega$ | | 2550 MHz | 36.3 dB | 51.5 Ω - 0.4 jΩ | | 2650 MHz | 18.0 dB | $61.5 \Omega + 8.0 j\Omega$ | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD2450V3-1011_Mar15 Page 3 of 5 Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 21(22) Author Data Daoud Attayi Dates of Test August 31- October 27, 2015 RTS-6066-1511-05 Report No FCC ID L6ARHT180LW # Imperiance Measurement Plot Certificate No: CD2450V3-1011_Mar15 Page 4 of 5 # Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RHT181LW (STV100-2) Page 22(22) Author Data Daoud Attavi Dates of Test August 31- October 27, 2015 RTS-6066-1511-05 Report No FCC ID L6ARHT180LW ## DASY 5E-field Result Date: 11.03.2015 Test Las bratory: SPEAG Lab2 ### DUT: #4C Dipole 2450 MHz; Type: CD2450V3; Serial: CD2450V3 - SN: 1011 Commt¹⁰cation System: UID 0 - CW; Frequency: 2450 MHz Mediur¹¹ karameters used: σ = 0 S/m, ε_t = 1; ρ = 1000 kg/m³ Phantof¹⁰ tection: RF Section Measur Chent Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52Configuration: - Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 31.12.2014; - Sensor-Surface: (Fix Surface) - flectronics: DAE4 Sn781; Calibrated: 12.09.2014 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - BASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) #### Dipole E-Field measurement @ 2450MHz/E-Scan - 2450MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 79.66 V/m; Power Drift = -0.00 dB Applied MIF = 0.00 dB RF audio interference level = 38.94 dBV/m Emission category: M2 #### MIF scaled E-field | Grid 1 M2 | Grid 2 M2 | Grid 3 M2 | |-------------|-------------------------|-------------| | 38.23 dBV/m | 38.52 d8V/m | 38.45 dBV/m | | Grid 4 M2 | COMPANIES OF THE PARTY. | Grid 6 M2 | | 38.15 dBV/m | 38.44 dBV/m | 38.4 dBV/m | | Grid 7 M2 | Grid 8 M2 | Grid 9 M2 | | 38.7 dBV/m | 38.94 dBV/m | 38.87 dBV/m | 0 dB = 88.55 V/m = 38.94 dBV/m Certificate No: CD2450V3-1011_Mar15 Page 5 of 5