DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 3 of 4 **Motorola Solutions Inc. EME Test Laboratory** Motorola Solutions Malaysia Sdn Bhd Plot 2A, Medan Bayan Lepas, Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia. 10/19/2021 **Date of Report:** **Report Revision:** **Responsible Engineer:** Puteri Alifah Ilyana Binti Nor Rahim (EME Engineer) **Report Author:** Puteri Alifah Ilyana Binti Nor Rahim (EME Engineer) Date/s Tested: 8/27/2021-9/19/2021, 10/06/2021-10/07/2021, 10/16/2021-10/17/2021 Manufacturer: Motorola Solutions Inc. Handheld Portable -**DUT Descriptions:** > MOTOTRBO R7 136-174M 5W TIA NKP BT WIFI GPS ENABLED GOB MOTOTRBO R7 136-174M 5W TIA FKP BT WIFI GPS ENABLED GOB Test TX mode(s): CW (PTT), Bluetooth, WLAN 2.4GHz and WLAN 5.0GHz Max. Power output: Refer Table 3 **Nominal Power:** Refer Table 3 Refer Table 3 Tx Frequency Bands: Signaling type: FM, FHSS (Bluetooth), WLAN 2.4GHz and WLAN 5.0GHz Model(s) Tested: AAH06JDC9RA1AN (PMUD3492ABA) / PMUD3492ABA; AAH06JDN9RA1AN (PMUD3491ABB) / PMUD3491ABB Model(s) Certified: Refer Appendix-A P2N0XN05UF, P2N0XN05UH, 865TXP0443, 865TXP0517, P2N0XN05UV, Serial Number(s): 865TXP0453 Occupational/Controlled **Classification: Applicant Name:** Motorola Solutions Inc. **Applicant Address:** 8000 West Sunrise Boulevard, Fort Lauderdale, Florida 33322 FCC ID: AZ489FT7144: LMR 150.8-173.4 MHz, Bluetooth 2.402-2.480 GHz. WLAN 2.412-2.462 GHz (802.11 b/g/n) & 5180 – 5825GHz (802.11a/n/ac) This report contains results that are immaterial for FCC equipment approval, which are clearly identified. 109U-89FT7144; LMR 138-174MHz, Bluetooth 2.402-2.480 GHz, WLAN 2.412-IC: 2.462 GHz (802.11 b/g/n) & 5180 – 5825GHz (802.11a/n/ac) This report contains results that are immaterial for ISED equipment approval, Which are clearly identified. **ISED Test Site registration:** 24843 **FCC Test Firm Registration** 823256 Number: The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5). Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report (no deviation from standard methods). This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated. Saw Sun Hock (Approved Signatory) Approval Date: 10/19/2021 Motorola Solutions Inc. EME Form-SAR-Rpt-Rev.13.28 Page 1 of 44 FCC ID: AZ489FT7144 / IC: 109U-89FT7144 Report ID: P22640-EME-00094/00095 ## Appendix C Dipole Calibration Certificates FCC ID: AZ489FT7144 / IC: 109U-89FT7144 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Motorola Solutions MY Certificate No: CLA150-4010_Jan20 ## **CALIBRATION CERTIFICATE** Object CLA150 - SN: 4010 Calibration procedure(s) **QA CAL-15.v9** Calibration Procedure for SAR Validation Sources below 700 MHz Calibration date: January 17, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5277 (20x) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 3877 | 31-Dec-19 (No. EX3-3877_Dec19) | Dec-20 | | DAE4 | SN: 654 | 27-Jun-19 (No. DAE4-654_Jun19) | Jun-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | M.Welser | | Approved by: | Katja Pokovic | Technical Manager | me | Issued: January 20, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: CLA150-4010_Jan20 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CLA150-4010_Jan20 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.3 | |----------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | EUT Positioning | Touch Position | | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 150 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 52.3 | 0.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 50.7 ± 6 % | 0.78 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR measured | 1 W input power | 3.70 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 3.60 W/kg ± 18.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|------------------|--------------------------| | SAR measured | 1 W input power | 2.48 W/kg | | SAR for nominal Head TSL parameters |
normalized to 1W | 2.42 W/kg ± 18.0 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 61.9 | 0.80 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 63.4 ± 6 % | 0.82 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|------------------|--------------------------| | SAR measured | 1 W input power | 3.74 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 3.69 W/kg ± 18.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|------------------|--------------------------| | SAR measured | 1 W input power | 2.52 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 2.48 W/kg ± 18.0 % (k=2) | Certificate No: CLA150-4010_Jan20 FCC ID: AZ489FT7144 / IC: 109U-89FT7144 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.3 Ω - 4.5]Ω | |--------------------------------------|-----------------| | Return Loss | - 26.7 dB | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 53.0 Ω - 5.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.9 dB | #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: CLA150-4010_Jan20 #### DASY5 Validation Report for Head TSL Date: 17.01.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4010 Communication System: UID 0 - CW; Frequency: 150 MHz Medium parameters used: f = 150 MHz; $\sigma = 0.78 \text{ S/m}$; $\epsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3877; ConvF(12.45, 12.45, 12.45) @ 150 MHz; Calibrated: 31.12.2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 27.06.2019 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ## CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 5.15 W/kg ## CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 80.09 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 6.79 W/kg SAR(1 g) = 3.7 W/kg; SAR(10 g) = 2.48 W/kg Ratio of SAR at M2 to SAR at M1 = 81.8% Maximum value of SAR (measured) = 5.12 W/kg 0 dB = 5.15 W/kg = 7.12 dBW/kg Certificate No: CLA150-4010_Jan20 Page 5 of 8 ## Impedance Measurement Plot for Head TSL # DASY5 Validation Report for Body TSL FCC ID: AZ489FT7144 / IC: 109U-89FT7144 Date: 17.01.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4010 Communication System: UID 0 - CW; Frequency: 150 MHz Medium parameters used: f = 150 MHz; $\sigma = 0.82 \text{ S/m}$; $\varepsilon_r = 63.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3877; ConvF(11.51, 11.51, 11.51) @ 150 MHz; Calibrated: 31.12.2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 27.06.2019 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ## CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 5.23 W/kg ## CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.88 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 6.83 W/kg SAR(1 g) = 3.74 W/kg; SAR(10 g) = 2.52 W/kg Ratio of SAR at M2 to SAR at M1 = 81.9% Maximum value of SAR (measured) = 5.18 W/kg 0 dB = 5.23 W/kg = 7.19 dBW/kg Certificate No: CLA150-4010_Jan20 Page 7 of 8 ## Impedance Measurement Plot for Body TSL Certificate No: CLA150-4010_Jan20 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Motorola Solutions MY Certificate No: D2450V2-703_Oct18 | Object | D2450V2 - SN:70 | 03 | | |--|--|--|---| | Calibration procedure(s) | QA CAL-05.v10 | | | | | | edure for dipole validation kits abo | ove 700 MHz | | | | | | | Calibration date: | October 16, 2018 | 8 | | | | | | | | | | ional standards, which realize the physical un | | | he measurements and the uncert | ainties with confidence p | probability are given on the following pages an | id are part of the certificate. | | All calibrations have been conduct | ad in the closed laborate | ry facility: environment temperature (22 ± 3)°0 | C and humidity < 70% | | a calcidions have been conducti | ou er and Group'd mountio | y many, armoration temperature (ee 2 o) (| a min manifest of a sec | | Calibration Equipment used (M&TE | E critical for calibration) | | | | estate account and additional account for some | | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | ower meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Power sensor NRP-Z91 | | | | | | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k)
SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683) | Apr-19
Apr-19 | | Reference 20 dB Attenuator
Type-N mismatch combination | TOTAL CONTRACTOR | 기가 있는 가수 가게 가지 않는데 가게 되었다. | 100000000 | | Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4 | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 5047.2 / 06327
SN: 7349 | 04-Apr-18 (No. 217-02683)
30-Dec-17 (No. EX3-7349_Dec17) | Apr-19
Dec-18 | | Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4
DAE4 | SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02683)
30-Dec-17 (No. EX3-7349_Dec17)
04-Oct-18 (No. DAE4-601_Oct18) | Apr-19
Dec-18
Oct-19
Scheduled Check | | Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4
DAE4
Secondary Standards | SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02683)
30-Dec-17 (No. EX3-7348_Dec17)
04-Oct-18 (No. DAE4-601_Oct18)
Check Date (in house) | Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704 | 04-Apr-18 (No. 217-02683)
30-Dec-17 (No. EX3-7349_Dec17)
04-Oct-18 (No. DAE4-601_Oct18)
Check Date (in house)
07-Oct-15 (in house check Oct-18) | Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783 | 04-Apr-18 (No. 217-02683)
30-Dec-17 (No. EX3-7349_Dec17)
04-Oct-18 (No. DAE4-601_Oct18)
Check Date (in house)
07-Oct-15 (in house check Oct-18)
07-Oct-15 (in house check Oct-18) | Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | 04-Apr-18 (No. 217-02683)
30-Dec-17 (No. EX3-7349_Dec17)
04-Oct-18 (No. DAE4-601_Oct18)
Check Date (in house)
07-Oct-15 (in house check Oct-18)
07-Oct-15 (in house check Oct-18)
07-Oct-15 (in house check Oct-18) | Apr-19 Dec-18
Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972 | 04-Apr-18 (No. 217-02683)
30-Dec-17 (No. EX3-7349_Dec17)
04-Oct-18 (No. DAE4-601_Oct18)
Check Date (in house)
07-Oct-15 (in house check Oct-18)
07-Oct-15 (in house check Oct-18)
07-Oct-15 (in house check Oct-18)
15-Jun-15 (in house check Oct-18) | Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 Signature | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Aglient E8358A | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 Signature | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477
Name | 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 Signature | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Aglient E8358A | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477
Name | 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 Signature | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Aglient E8358A Calibrated by: | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: WY41092317
SN: 100972
SN: US41080477
Name
Michael Weber | 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function Laboratory Technician | Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 | Certificate No: D2450V2-703_Oct18 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL ConvF tissue simulating liquid ConvF sensiti N/A not ap sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-703_Oct18 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 1.85 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 2777 | **** | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** he following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.2 ± 6 % | 2.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | **** | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.7 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 49.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.91 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.3 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-703_Oct18 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $54.5 \Omega + 2.9 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 25.8 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.3 Ω + 6.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.3 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.146 ns | |----------------------------------
----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|----------------|--| | Manufactured on | March 22, 2001 | | #### **DASY5 Validation Report for Head TSL** Date: 16.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:703 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.24 W/kgMaximum value of SAR (measured) = 22.3 W/kg 0 dB = 22.3 W/kg = 13.48 dBW/kg Certificate No: D2450V2-703_Oct18 ## Impedance Measurement Plot for Head TSL ## DASY5 Validation Report for Body TSL Date: 16.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:703 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ S/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.9 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 25.7 W/kg SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.91 W/kg Maximum value of SAR (measured) = 20.9 W/kg 0 dB = 20.9 W/kg = 13.20 dBW/kg ## Impedance Measurement Plot for Body TSL #### Report ID: P22640-EME-00094/00095 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates **Motorola Solutions MY** Client Certificate No: D2450V2-782 Feb20 ## CALIBRATION CERTIFICATE Object D2450V2 - SN:782 QA CAL-05.v11 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: February 20, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|---|--| | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | SN: 7349 | 31-Dec-19 (No. EX3-7349_Dec19) | Dec-20 | | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | ID# | Check Date (in house) | Scheduled Check | | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | Name | Function | Signature | | Leif Klysner | Laboratory Technician | Seef Dyn | | Katja Pokovic | Technical Manager | auc | | | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Leif Klysner | SN: 104778 03-Apr-19 (No. 217-02892/02893) SN: 103244 03-Apr-19 (No. 217-02892) SN: 103245 03-Apr-19 (No. 217-02893) SN: 5058 (20k) 04-Apr-19 (No. 217-02894) SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) SN: 7349 31-Dec-19 (No. EX3-7349_Dec19) SN: 601 27-Dec-19 (No. DAE4-601_Dec19) ID # Check Date (in house) SN: GB39512475 30-Oct-14 (in house check Feb-19) SN: US37292783 07-Oct-15 (in house check Oct-18) SN: MY41092317 07-Oct-15 (in house check Oct-18) SN: 100972 15-Jun-15 (in house check Oct-18) SN: US41080477 31-Mar-14 (in house check Oct-19) Name Function Leif Klysner Laboratory Technician | Issued: February 20, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-782_Feb20 #### FCC ID: AZ489FT7144 / IC: 109U-89FT7144 #### Report ID: P22640-EME-00094/00095 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No:
D2450V2-782_Feb20 #### FCC ID: AZ489FT7144 / IC: 109U-89FT7144 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.4 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | North | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.9 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 54.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.3 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.4 ± 6 % | 2.03 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | **** | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 51.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.5 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-782_Feb20 Page 3 of 8 FCC ID: AZ489FT7144 / IC: 109U-89FT7144 Report ID: P22640-EME-00094/00095 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.2 Ω + 3.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.3 dB | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.6 Ω + 5.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.6 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.153 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2450V2-782_Feb20 ## DASY5 Validation Report for Head TSL Date: 20.02.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:782 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 38.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(7.98, 7.98, 7.98) @ 2450 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 120.1 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.7 W/kg ## SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.41 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50% Maximum value of SAR (measured) = 23.0 W/kg ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 20.02.2020 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:782 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 51.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.02, 8.02, 8.02) @ 2450 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.9 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 25.6 W/kg #### SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.21 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 52.9% Maximum value of SAR (measured) = 21.6 W/kg 0 dB = 21.6 W/kg = 13.34 dBW/kg ## Impedance Measurement Plot for Body TSL Certificate No: D2450V2-782_Feb20 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | CALIBRATION C | INTITIOATE | | | |---|---|--|--| | Object | D5GHzV2 - SN:1 | 027 | | | Calibration procedure(s) | QA CAL-22.v4
Calibration Proce | edure for SAR Validation Sources | between 3-6 GHz | | Calibration date: | January 31, 2020 | | | | All calibrations have been conducte | | ry facility: environment temperature (22 ± 3)°C | C and humidity < 70%. | | Santration Edulation asset (nex) | | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards Power meter NRP | ID #
SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 | ID #
SN: 104778
SN: 103244 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892) | Арг-20
Арг-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 | ID #
SN: 104778
SN: 103244
SN: 103245 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893) | Apr-20
Apr-20
Apr-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator | ID #
SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k) | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894) | Apr-20
Apr-20
Apr-20
Apr-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | ID.#
SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895) | Apr-20
Apr-20
Apr-20
Apr-20
Apr-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch
combination Reference Probe EX3DV4 | ID.#
SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
31-Dec-19 (No. EX3-3503_Dec19) | Apr-20
Apr-20
Apr-20
Apr-20
Apr-20
Dec-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | ID.#
SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895) | Apr-20
Apr-20
Apr-20
Apr-20
Apr-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID.#
SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
31-Dec-19 (No. EX3-3503_Dec19) | Apr-20
Apr-20
Apr-20
Apr-20
Apr-20
Dec-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID.# SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
31-Dec-19 (No. EX3-3503_Dec19)
27-Dec-19 (No. DAE4-601_Dec19) | Apr-20
Apr-20
Apr-20
Apr-20
Apr-20
Dec-20
Dec-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
31-Dec-19 (No. EX3-3503_Dec19)
27-Dec-19 (No. DAE4-601_Dec19) | Apr-20
Apr-20
Apr-20
Apr-20
Apr-20
Dec-20
Dec-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5056 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
31-Dec-19 (No. EX3-3503_Dec19)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house)
30-Oct-14 (in house check Feb-19) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
31-Dec-19 (No. EX3-3503_Dec19)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house)
30-Oct-14 (in house check Feb-19)
07-Oct-15 (in house check Oct-18) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
31-Dec-19 (No. EX3-3503_Dec19)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house)
30-Oct-14 (in house check Feb-19)
07-Oct-15 (in house check Oct-18) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
31-Dec-19 (No. EX3-3503_Dec19)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house)
30-Oct-14 (in house check Feb-19)
07-Oct-15 (in house check Oct-18)
15-Jun-15 (in house check Oct-18) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-3503_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 | Certificate No: D5GHzV2-1027_Jan20 Page 1 of 16 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1027_Jan20 Page 2 of 16 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.3 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5000 MHz ± 1 MHz
5250 MHz ± 1 MHz
5500 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | ## Head TSL parameters at 5000 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity |
---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.2 | 4.45 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.6 ± 6 % | 4.29 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5000 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 74.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.4 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | The tonoving parameters and second | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.3 ± 6 % | 4.54 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.0 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 4.79 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.3 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | To to to the same of | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 5.05 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | #### Body TSL parameters at 5000 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.3 | 5.07 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.6 ± 6 % | 5.16 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5000 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.05 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 70.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 1.98 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.6 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.1 ± 6 % | 5.49 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.55 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.10 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.8 W/kg ± 19.5 % (k=2) | #### Body TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.6 ± 6 % | 5.83 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm ³ (1
g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.96 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 79.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.19 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.7 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.5 ± 6 % | 5.97 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.87 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 78.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.17 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.5 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.2 ± 6 % | 6.17 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.52 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.10 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.8 W/kg ± 19.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL at 5000 MHz | Impedance, transformed to feed point | 49.4 Ω - 9.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.0 dB | #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 49.6 Ω - 1.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 37.3 dB | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 47.8 Ω + 1.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 31.7 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 53.7 Ω + 4.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.4 dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 53.7 Ω + 6.8 μΩ | |--------------------------------------|-----------------| | Return Loss | - 22.5 dB | ## Antenna Parameters with Body TSL at 5000 MHz | Impedance, transformed to feed point | 48.6 Ω - 9.0 jΩ | | | | |--------------------------------------|-----------------|--|--|--| | Return Loss | - 20.7 dB | | | | #### Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | $48.9 \Omega + 0.9 j\Omega$ | | | | |--------------------------------------|-----------------------------|--|--|--| | Return Loss | - 36.9 dB | | | | ## Antenna Parameters with Body TSL at 5500 MHz | Impedance, transformed to feed point | 47.4 Ω + 3.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.6 dB | ## Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 53.8 Ω + 6.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.1 dB | ## Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | $55.6 \Omega + 7.9 jΩ$ | |--------------------------------------|------------------------| | Return Loss | - 20.8 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.191 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | | | |
 | |-----------------|--|-------|------| | Manufactured by | | SPEAG | - 1 | | | | | | #### DASY5 Validation Report for Head TSL Date: 31.01.2020 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1027 Communication System: UID 0 - CW; Frequency: 5000 MHz, Frequency: 5250 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5000 MHz; $\sigma = 4.29$ S/m; $\varepsilon_r = 35.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5250 MHz; $\sigma = 4.54 \text{ S/m}$; $\varepsilon_r = 35.3$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5500 MHz; $\sigma = 4.79 \text{ S/m}$; $\varepsilon_r = 34.9$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5600 MHz; $\sigma = 4.89 \text{ S/m}$; $\varepsilon_r = 34.8$; $\rho = 1000 \text{ kg/m}^3$. Medium parameters used: f = 5750 MHz; $\sigma = 5.05 \text{ S/m}$; $\varepsilon_r = 34.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(6.23, 6.23, 6.23) @ 5000 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5000 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.01 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 24.6 W/kg ## SAR(1 g) = 7.43 W/kg; SAR(10 g) = 2.16 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 72% Maximum value of SAR (measured) = 16.4 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.14 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 28.0 W/kg #### SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.9% Maximum value of SAR (measured) = 18.3 W/kg Certificate No: D5GHzV2-1027_Jan20 Page 11 of 16 ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.87 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 8.37 W/kg; SAR(10 g) = 2.35 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.2% Maximum value of SAR (measured) = 20.1 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.95 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 31.2 W/kg #### SAR(1 g) = 8.41 W/kg; SAR(10 g) = 2.39 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 68.2% Maximum value of SAR (measured) = 19.9 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.21 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 31.3 W/kg #### SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.27 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 66.7% Maximum value of SAR (measured) = 19.1 W/kg 0 dB = 20.1 W/kg = 13.03 dBW/kg ## Impedance Measurement Plot for Head TSL FCC ID: AZ489FT7144 / IC: 109U-89FT7144 Report ID: P22640-EME-00094/00095 ## **DASY5 Validation Report for Body TSL** Date: 31.01.2020 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1027 Communication System: UID 0 - CW; Frequency: 5000 MHz, Frequency: 5250 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz,
Frequency: 5750 MHz Medium parameters used: f = 5000 MHz; $\sigma = 5.16 \text{ S/m}$; $\epsilon_r = 47.6$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5250 MHz; $\sigma = 5.49 \text{ S/m}$; $\epsilon_r = 47.1$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5500 MHz; $\sigma = 5.83 \text{ S/m}$; $\epsilon_r = 46.6$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5600 MHz; $\sigma = 5.97 \text{ S/m}$; $\varepsilon_r = 46.5$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5750 MHz; $\sigma = 6.17 \text{ S/m}$; $\varepsilon_r = 46.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.93, 5.93, 5.93) @ 5000 MHz, ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.84, 4.84, 4.84) @ 5500 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66) @ 5750 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5000 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.77 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 26.0 W/kg SAR(1 g) = 7.05 W/kg; SAR(10 g) = 1.98 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 68.5% Maximum value of SAR (measured) = 15.9 W/kg ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.19 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 7.55 W/kg; SAR(10 g) = 2.1 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 66.6% Maximum value of SAR (measured) = 17.4 W/kg Certificate No: D5GHzV2-1027_Jan20 Page 14 of 16 ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.94 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 33.5 W/kg SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.19 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.3% Maximum value of SAR (measured) = 19.0 W/kg ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.71 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 34.2 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.17 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.2% Maximum value of SAR (measured) = 19.0 W/kg ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.38 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.10 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 61.8% Maximum value of SAR (measured) = 18.2 W/kg 0 dB = 19.0 W/kg = 12.79 dBW/kg Certificate No: D5GHzV2-1027_Jan20 Page 15 of 16 ## Impedance Measurement Plot for Body TSL ## **Dipole Data** The table below includes dipole impedance and return loss measurement data measured by Motorola Solutions' EME lab. The results meet the requirements stated in KDB 865664. | Dipole 150-4010 | | Hea | d | Body | | | | |------------------------|-----------|------------|--------------------|-----------|------------|--------------------|--| | Dipole 150-4010 | Impedance | | Return Loss | Impedance | | Return Loss | | | Date Measured | real
Ω | imag
jΩ | dB | real
Ω | imag
jΩ | dB | | | 04/13/20 | 46.78 | 8.93 | -20.21 | 48.73 | 5.98 | -24.19 | | | 04/27/21 | 47.63 | 6.69 | -22.52 | 50.72 | 4.17 | -23.25 | | | Dipole 2450-703 | | Head | | | Body | | | |------------------------|-----------|------------|--------------------|-----------|----------------|--------------------|--| | Dipole 2450-705 | Impedance | | Return Loss | Impedance | | Return Loss | | | Date Measured | real
Ω | imag
jΩ | dB | real
Ω | imag $j\Omega$ | dB | | | 12/20/18 | 49.44 | 3.73 | -28.42 | 48.61 | 5.62 | -24.65 | | | 11/11/19 | 51.11 | 3.82 | -28.38 | 48.94 | 3.93 | -28.04 | | | 11/01/20 | 54.03 | 4.42 | -25.06 | 51.08 | 5.05 | -25.76 | | | Dipole 2450-782 | | Hea | Head | | Body | | | | |------------------------|-----------|------------|--------------------|-----------|------------|--------------------|--|--| | Dipole 2450-762 | Impedance | | Return Loss | Impedance | | Return Loss | | | | Date Measured | real
Ω | imag
jΩ | dB | real
Ω | imag
jΩ | dB | | | | 04/13/20 | 52.88 | 5.04 | -24.71 | 46.60 | 4.69 | -24.53 | | | | 04/23/21 | 50.90 | 3.21 | -29.40 | 48.13 | 3.70 | -25.41 | | | | Dipole | Head | | | Body | | | |---------------|-----------|------|-------------|-----------|------|--------------------| | 5GHzV2-1027 | | | | | | | | (5250GHz) | Impedance | | Return Loss | Impedance | | Return Loss | | Date Measured | real | imag | dB | real | imag | dB | | Date Weasured | Ω | jΩ | ub | Ω | jΩ | uD | | 04/20/20 | 48.17 | 0.69 | -33.63 | 48.91 | 1.04 | -37.37 | | 04/25/21 | 47.73 | 5.32 | -33.98 | 49.37 | 0.60 | -43.15 | | Dipole | Head | | | Body | | | |--------------------------|-----------|------------|-------------|-----------|------------|-------------| | 5GHzV2-1027
(5600GHz) | Impedance | | Return Loss | Impedance | | Return Loss | | Date Measured | real
Ω | imag
jΩ | dB | real
Ω | imag
jΩ | dB | | 04/20/20 | 45.70 | 2.12 | -25.81 | 45.70 | 2.46 | -25.61 | | 04/25/21 | 42.74 | 5.81 | -23.29 | 46.38 | 2.60 | -26.77 | ## Report ID: P22640-EME-00094/00095 | Dipole | Head | | | Body | | | |---------------|-----------|------|-------------|-------|------|-----------| | 5GHzV2-1027 | | | | | | | | (5750GHz) | Impedance | | Return Loss | | | Impedance | | Date Measured | real | imag | Date | real | imag | Date | | | Ω | jΩ | Measured | Ω | jΩ | Measured | | 04/20/20 | 56.62 | 5.26 | 04/20/20 | 56.62 | 5.26 | 04/20/20 | | 04/25/21 | 55.15 | 6.14 | 04/25/21 | 55.15 | 6.14 | 04/25/21 |