Page 1 of 18 Report No.: 190326007EMC-1 # **FCC TEST REPORT** Product Name: Mobile Phone Trade Mark: BLU Model No.: U851 Report Number: 190326007EMC-1 Test Standards: FCC 47 CFR Part 15 Subpart B FCC ID: YHLBLUU851 Test Result: PASS Date of Issue: April 26, 2019 Prepared for: BLU Products, Inc. 10814 NW 33rd St # 100 Doral, FL 33172 ,USA Prepared by: Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China > TEL: +86-755-2823 0888 FAX: +86-755-2823 0886 Tested by: Henry Lu **Technical Director** Reviewed by: Kevin Liang Assistant Manager Approved by: Date: April 26, 2019 **Version** | Version No. Date | | Description | | |------------------|----------------|-------------|--| | V1.0 | April 26, 2019 | Original | | # **CONTENTS** | 1. | GEN | ERAL INFORMATION | 4 | |----------|------------|---|------| | | 1.1
1.2 | CLIENT INFORMATIONEUT INFORMATION | 4 | | | | 1.2.1 GENERAL DESCRIPTION OF EUT | | | | | 1.2.2 DESCRIPTION OF ACCESSORIES | | | | 1.3 | DESCRIPTION OF SUPPORT UNITS | | | | 1.4 | TEST LOCATION | | | | 1.5 | TEST FACILITY | | | | 1.6
1.7 | DEVIATION FROM STANDARDS | | | | 1.7 | OTHER INFORMATION REQUESTED BY THE CUSTOMER | | | | 1.9 | MEASUREMENT UNCERTAINTY | | | _ | _ | | | | 2. | | SUMMARY | | | 3.
4. | | PMENT LIST | | | 4. | | | | | | 4.1 | ENVIRONMENTAL CONDITIONS FOR TESTING | 9 | | | | 4.1.1 NORMAL OR EXTREME TEST CONDITIONS | | | | 4.2 | 4.1.2 RECORD OF NORMAL ENVIRONMENT | | | | 4.2 | TEST WODES | _ | | | 7.5 | 4.3.1 FOR RADIATED EMISSIONS TEST SETUP | | | | | 4.3.2 FOR CONDUCTED EMISSIONS TEST SETUP | | | | 4.4 | SYSTEM TEST CONFIGURATION | 11 | | 5. | RFF | ERENCE DOCUMENTS FOR TESTING | 12 | | 6. | | REQUIREMENTS SPECIFICATION | | | | | RADIATED EMISSION | | | | 6.1
6.2 | CONDUCTED EMISSION | 12 | | | | | _ | | | | X 1 PHOTOS OF TEST SETUP | | | AP | PEND | IX 2 PHOTOS OF FUT CONSTRUCTIONAL DETAILS | _ 18 | Page 4 of 18 Report No.: 190326007EMC-1 # 1. GENERAL INFORMATION 1.1 CLIENT INFORMATION | Applicant: BLU Products, Inc. | | |---|---| | Address of Applicant: 10814 NW 33rd St # 100 Doral, FL 33172 ,USA | | | Manufacturer: | BLU Products, Inc. | | Address of Manufacturer | 10814 NW 33rd St # 100 Doral FL 33172 USA | #### 1.2 EUT INFORMATION ## 1.2.1 General Description of EUT | 211 - Gonorai 2000 i pilon di 201 | | | | |------------------------------------|--|--|--| | Product Name: | Mobile Phone | | | | Model No.: | U851 | | | | Trade Mark: | BLU | | | | DUT Stage: | Identical Prototype | | | | Power Supply: | 100-240V~50/60 Hz or/and 3.8 V Battery | | | | Classification of digital devices: | Class B | | | | Highest Internal Frequency: | 2480 MHz | | | | Sample Received Date: | March 26, 2019 | | | | Sample Tested Date: | March 26, 2019 to April 17, 2019 | | | 1.2.2 Description of Accessories | Adapter | | | | | |------------|--|--|--|--| | Model No.: | US-BB-2000 | | | | | Input: | 100-240 V~50/60 Hz 0.3 A | | | | | Output: | 5.0 V == 2000 mA | | | | | DC Cable: | 1.05 Meter, Unshielded without ferrite | | | | | Battery | | | | | | |-------------------------|----------------------------------|--|--|--|--| | Model No.: | C825444300L | | | | | | Battery Type: | Lithium-ion Rechargeable Battery | | | | | | Rated Voltage: | 3.8 Vdc | | | | | | Limited Charge Voltage: | 4.35 Vdc | | | | | | Rated Capacity: | 3000 mAh | | | | | | Cable | | | | | | |--------------|--|----------|--|--|--| | Description: | Description: USB Micro-B Plug Cable | | | | | | Cable Type: | Cable Type: Unshielded without ferrite | | | | | | Length: | | 1.0Meter | | | | Page 5 of 18 Report No.: 190326007EMC-1 #### 1.3 DESCRIPTION OF SUPPORT UNITS The EUT has been tested with associated equipment below. 1) Support Equipment | Description | Manufacturer | Model No. | Serial Number | Supplied by | |-------------|--------------|-----------|---------------|-------------| | Notebook | Lenovo | E450 | SL10G10780 | UnionTrust | | Mouse | DELL | MS111 | CN-011D3V-738 | UnionTrust | | Earphone | N/A | QTER01JY | N/A | UnionTrust | #### 2) Support Cable | Cable No. | Description | Connector | Length | Supplied by | |-----------|-------------|-----------|--------|-------------| | | - | - | 1 | 1 | # 1.4 TEST LOCATION #### Shenzhen UnionTrust Quality and Technology Co., Ltd. Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886 #### 1.5 TEST FACILITY The test facility is recognized, certified, or accredited by the following organizations: #### CNAS-Lab Code: L9069 The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories. #### IC-Registration No.: 21600-1 The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1. #### A2LA-Lab Certificate No.: 4312.01 Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. #### FCC Accredited Lab. Designation Number: CN1194 Test Firm Registration Number: 259480 #### 1.6 DEVIATION FROM STANDARDS None. Page 6 of 18 Report No.: 190326007EMC-1 # 1.7 ABNORMALITIES FROM STANDARD CONDITIONS None. ## 1.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER None. #### 1.9 MEASUREMENT UNCERTAINTY Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. | No. | Item | Measurement Uncertainty | |-----|---------------------------------|-------------------------| | 1 | Conducted emission 9KHz-150KHz | ±3.8 dB | | 2 | Conducted emission 150KHz-30MHz | ±3.4 dB | | 3 | Radiated emission 9KHz-30MHz | ±4.9 dB | | 4 | Radiated emission 30MHz-1GHz | ±4.7 dB | | 5 | Radiated emission 1GHz-18GHz | ±5.1 dB | | 6 | Radiated emission 18GHz-26GHz | ±5.2 dB | | 7 | Radiated emission 26GHz-40GHz | ±5.2 dB | # 2. TEST SUMMARY | FCC 47 CFR Part 15 Subpart B Test Cases | | | | | | |---|------------------------|-----------------|------|--|--| | Test Item Test Requirement Test Method Result | | | | | | | Conducted Emission | FCC 47 CFR Part 15.107 | ANSI C63.4-2014 | PASS | | | | Radiated Emission FCC 47 CFR Part 15.109 ANSI C63.4-2014 PASS | | | | | | Report No.: 190326007EMC-1 # 3. EQUIPMENT LIST | | Radiated Emission Test Equipment List | | | | | | | | |-------------|---------------------------------------|--------------|----------------|----------------------------|----------------------------|--------------------------------|--|--| | Used | Equipment | Manufacturer | Model No. | Serial
Number | Cal. date
(mm dd, yyyy) | Cal. Due date
(mm dd, yyyy) | | | | \boxtimes | 3M Chamber & Accessory Equipment | ETS-LINDGREN | 3M | N/A | Dec. 03, 2018 | Dec. 03, 2021 | | | | \boxtimes | Receiver | R&S | ESIB26 | 100114 | Nov. 24, 2018 | Nov. 24, 2019 | | | | \boxtimes | Broadband Antenna | ETS-LINDGREN | 3142E | 00201566 | Dec. 08, 2018 | Dec. 08, 2019 | | | | \boxtimes | 6dB Attenuator | Talent | RA6A5-N-
18 | 18103001 | Dec. 08, 2018 | Dec. 08, 2019 | | | | \boxtimes | Preamplifier | HP | 8447F | 2805A02960 | Nov. 24, 2018 | Nov. 24, 2019 | | | | \boxtimes | Horn Antenna
(Pre-amplifier) | ETS-LINDGREN | 3117-PA | 00201874 | May 22, 2018 | May 22, 2019 | | | | \boxtimes | Multi device
Controller | ETS-LINDGREN | 7006-001 | 00160105 | N/A | N/A | | | | \boxtimes | Test Software | Audix | e3 | Software Version: 9.160333 | | 0333 | | | | | Conducted Emission Test Equipment List | | | | | | |-------------|--|--------------|-----------|----------------------------|----------------------------|--------------------------------| | Used | Equipment | Manufacturer | Model No. | Serial
Number | Cal. date
(mm dd, yyyy) | Cal. Due date
(mm dd, yyyy) | | | Receiver | R&S | ESR7 | 1316.3003K07
-101181-K3 | Nov. 24, 2018 | Nov. 24, 2019 | | | Pulse Limiter | R&S | ESH3-Z2 | 0357.8810.54 | Nov. 24, 2018 | Nov. 24, 2019 | | | LISN | R&S | ESH2-Z5 | 860014/024 | Nov. 24, 2018 | Nov. 24, 2019 | | \boxtimes | Test Software | Audix | e3 | Software Version: 9.160323 | | | # 4. TEST CONFIGURATION ## 4.1 ENVIRONMENTAL CONDITIONS FOR TESTING #### 4.1.1 Normal or Extreme Test Conditions | Environment Parameter | Selected Values During Tests | | | | |---|------------------------------|---|-----------------------|--| | Test Condition | Ambient | | | | | rest Condition | Temperature (°C) | Voltage (V) | Relative Humidity (%) | | | NT/NV | +15 to +35 | 120V~60 Hz/240V~50
Hz or/and 3.8 V Battery | 20 to 75 | | | Remark: 1) NV: Normal Voltage; NT: Normal Temperature | | | | | #### 4.1.2 Record of Normal Environment | Test Item | Temperature
(°C) | Relative Humidity (%) | Pressure
(Kpa) | Tested by | |--------------------|---------------------|-----------------------|-------------------|-----------| | Conducted Emission | 24.2 | 52 | 99.80 | Tony Kang | | Radiated Emission | 25.2 | 52 | 99.96 | Fire Huo | ## **4.2TEST MODES** | Test Item | EMI Test Modes | | | |---|--|--|--| | | Mode 1: Charging from 120 Vac + MP4 playing (With TF Card) + Earphone | | | | | Mode 2: Charging from 120 Vac + FM (With Earphone) + Camera (Front)+ With TF | | | | Radiated Emission | Card | | | | Nadiated Effission | Mode 3: Charging from 120 Vac + Camera (Rear) + With TF Card | | | | | Mode 4: Charging from 240 Vac + Worse from mode 1~3 + GPS on | | | | | Mode 5: USB Cable (data transfer with notebook) + With TF Card | | | | | Mode 1: Charging from 120 Vac + MP4 playing (With TF Card) + Earphone | | | | | Mode 2: Charging from 120 Vac + FM (With Earphone) + Camera (Front)+ | | | | Conducted Emission | With TF Card | | | | | Mode 3: Charging from 120 Vac + Camera (Rear) + With TF Card | | | | | Mode 4: Charging from 240 Vac + Worse from mode 1~3 + GPS on | | | | Remark: The above test modes in boldface were the worst cases, only the test data of these modes were reported. | | | | ## **4.3 TEST SETUP** # 4.3.1 For Radiated Emissions test setup 4.3.2 For Conducted Emissions test setup #### 4.4 SYSTEM TEST CONFIGURATION All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1 MHz or greater for frequencies above 1000MHz. The spurious emissions more than 20 dB below the permissible value are not reported. Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic (according to KDB 896810 D02 SDoC FAQ v01r02) of the highest fundamental frequency or to 40 GHz, whichever is lower. ## 5. REFERENCE DOCUMENTS FOR TESTING | No. | Identity | Document Title | |-----|---|---| | 1 | FCC 47 CFR Part15 Subpart B | Unintentional Radiators | | 2 | ANSI C63.4-2014 | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz | | 3 | KDB 174176 D01 Line
Conducted FAQ v01r01 | AC power-line conducted emission frequency asked questions | | 4 | KDB 896810 D02 SDoC FAQ
v01r02 | Supplier's Declaration of Conformity frequency asked questions | Report No.: 190326007EMC-1 # 6. EMC REQUIREMENTS SPECIFICATION 6.1 RADIATED EMISSION Test Requirement: FCC 47 CFR Part 15.109 Test Method: ANSI C63.4-2014 **Receiver Setup:** | Frequency: (f) | Detector type | Measurement receiver bandwidth | | | |----------------|---------------|--------------------------------|---------|--| | (MHz) | Detector type | RBW | VBW | | | 30 ≤ f ≤ 1 000 | Quasi Peak | 120 kHz | 300 kHz | | | f≥1000 | Peak | 1 MHz | 3 MHz | | | 1 ≥ 1000 | Average | 1 MHz | 3 MHz | | #### Measured frequency range | Highest frequency generated or used in the device or on which the device operates or tunes (MHz) | Upper frequency of measurement range (MHz) | |--|--| | Below 1.705 | 30. | | 1.705-108 | 1000. | | 108-500 | 2000. | | 500-1000 | 5000. | | Above 1000 | 5th harmonic of the highest frequency or 40 GHz, whichever is lower. | #### Limits: Limits for Class B devices | Fraguency (MUT) | limits at 3m (dBµV/m) | | | | |-----------------|-----------------------|-------------|-------------|--| | Frequency (MHz) | QP Detector | PK Detector | AV Detector | | | 30-88 | 40.0 | | | | | 88-216 | 43.5 | | | | | 216-960 | 46.0 | | | | | 960 to 1000 | 54.0 | | | | | Above 1000 | | 74.0 | 54.0 | | #### Remark: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level $(dB\mu V/m) = 20 \log Emission level (\mu V/m)$. - 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation. **Test Setup:** Refer to section 4.3.1 for details. #### **Test Procedures:** 1. From 30 MHz to 1GHz test procedure as below: # Shenzhen UnionTrust Quality and Technology Co., Ltd. - 1) The Product was placed on the non-conductive turntable 0.8 m above the ground at a chamber. - 2) Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees. - 3) For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value. - 2. Above 1GHz test procedure as below: - 1) The Product was placed on the non-conductive turntable 0.8 m above the ground at a chamber. - 2) Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees. - 3) For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value. **Equipment Used:** Refer to section 3 for details. Test Result: Pass The measurement data as follows: #### Remark: - 1. All possible modes of operation were investigated. Only the worst case emissions reported. - 2. Correct Factor = Antenna Factor + Cable Loss + Amplifier, the value was added to Original Receiver Reading by the software automatically. - 3. Result = Reading + Correct Factor. - 4. Margin = Result Limit - 5. For Radiated Emission above 1GHz, there was not any unwanted emission detected. Page 15 of 18 Report No.: 190326007EMC-1 #### **6.2 CONDUCTED EMISSION** Test Requirement: FCC 47 CFR Part 15.107 Test Method: ANSI C63.4-2014 Limits: Limits for Class B devices | Frequency range | Limits (dB(μV) | | | |-----------------|----------------|----------|--| | (MHz) | Quasi-peak | Average | | | 0,15 to 0,50 | 66 to 56 | 56 to 46 | | | 0,50 to 5 | 56 | 46 | | | 5 to 30 | 60 | 50 | | #### Remark: 1. The lower limit shall apply at the transition frequencies. 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz. **Test Setup:** Refer to section 4.3.2 for details. #### **Test Procedures:** 1) The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N). 2) The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record. **Equipment Used:** Refer to section 3 for details. Test Result: Pass The measurement data as follows: **Quasi Peak and Average:** Mode 2 #### Remark: - 1. Correct Factor = LISN Factor + Cable Loss + Pulse Limiter Factor, the value was added to Original Receiver Reading by the software automatically. - 2. Result = Reading + Correct Factor. - 3. Margin = Result Limit. - 4. An initial pre-scan was performed on the Phase and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected. - 5. All possible modes of operation were investigated. Only the worst case emissions reported. #### APPENDIX 1 PHOTOS OF TEST SETUP See test photos attached in Appendix 1 for the actual connections between Product and support equipment. Report No.: 190326007EMC-1 ## **APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS**