| Spectrun                  | Γ         |         |                   |           |           |              |      |         |                                                  |
|---------------------------|-----------|---------|-------------------|-----------|-----------|--------------|------|---------|--------------------------------------------------|
| Ref Level<br>Att          | 10.00 dBm | 0.UT 11 |                   | VIMHz     |           |              |      |         |                                                  |
| All<br>1Pk View           | 30 dB     | SW1 11. | 4 μs 🥌 <b>VBV</b> | VIMHZ     | Mode Auto | FFI          |      |         |                                                  |
| 0 dBm                     |           |         |                   |           |           | 1[1]<br>1[1] |      |         | -4.04 dB<br>3.0000 MHz<br>19.06 dBm<br>20000 GHz |
| -10 dBm—                  |           |         |                   |           |           |              |      |         | -                                                |
|                           | 00000000  | maaaa   |                   | 200000000 | A A       |              |      |         | 23                                               |
|                           |           | 0.5 11  | () <u>(35.</u> 66 |           |           | A LANDAR     | mm   | m       | m                                                |
| <sub>7</sub> 30 dBm—      |           |         |                   |           |           |              |      |         |                                                  |
| -40 dBm                   |           |         |                   |           |           |              |      |         |                                                  |
|                           |           |         |                   |           |           |              |      |         |                                                  |
| / <mark>-</mark> 50 dBm—— |           |         |                   |           |           |              |      |         | 34.44                                            |
| -60 dBm                   |           |         |                   |           |           |              |      |         |                                                  |
| -70 dBm—                  |           |         |                   |           |           |              |      |         |                                                  |
| -80 dBm                   |           |         |                   |           |           |              |      |         |                                                  |
|                           |           |         |                   |           |           |              |      |         |                                                  |
| Start 2.4 G               | GHz       | I       | I                 | 1001      | pts       | l            | I    | Stop 2. | .4835 GHz                                        |
|                           |           |         |                   |           |           | ) Measuri    | ng 🔳 |         |                                                  |

# 7 Average Time of Occupancy

#### 7.1 Test Instruments

Refer to Sec. 1.2 Test Instruments.

# 7.2 Test Arrangement and Procedure



- 1. The transmitter output was connected to a sp ectrum analyzer (through an atten uator, if it's necessary).
- 2. First, measure the number of pulses per 5 second, the RBW is set to 100 kHz and VBW is set to 100 kHz. Sweep is set to 5 sec. Span 0 Hz.
- 3. Second, measure the Pulse width, the RBW is set to 1MHz and VBW is set to 1MHz. Sweep is adjusted to appropriate time to show a complete pulse. Span 0 Hz.

# 7.3 Limit (§ 15.247(a)(1)(iii))

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

#### 7.4 Test Result

#### Compliance.

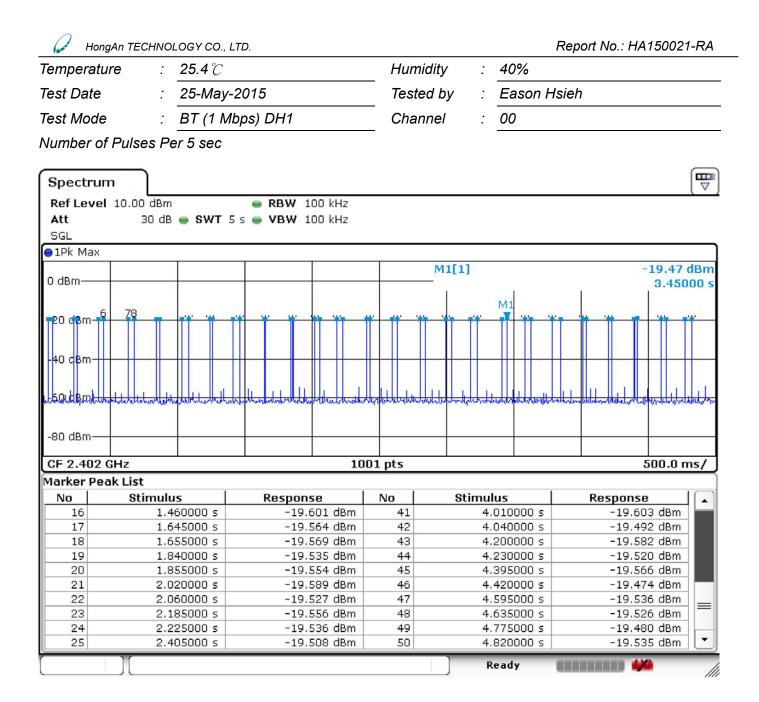
The final test data are shown on the following page(s).

HongAn TECHNOLOGY CO., LTD.

#### Bluetooth (1 Mbps) Channel <u>00</u>

| DH     | Number of Hopping | Number of Pulses | Pulse Width | AV time of      | Limit |
|--------|-------------------|------------------|-------------|-----------------|-------|
| Packet | channels          | per 5 sec        | (sec)       | Occupancy (sec) | (sec) |
| DH1    | 79                | 50               | 0.00043188  | 0.136474        | 0.4   |
| DH3    | 79                | 26               | 0.0017      | 0.279344        | 0.4   |
| DH5    | 79                | 17               | 0.00294638  | 0.316559        | 0.4   |

| Bluetooth | Bluetooth (1 Mbps) Channel <u>39</u> |                  |             |                 |       |  |  |  |  |  |
|-----------|--------------------------------------|------------------|-------------|-----------------|-------|--|--|--|--|--|
| DH        | Number of Hopping                    | Number of Pulses | Pulse Width | AV time of      | Limit |  |  |  |  |  |
| Packet    | channels                             | per 5 sec        | (sec)       | Occupancy (sec) | (sec) |  |  |  |  |  |
| DH1       | 79                                   | 49               | 0.00043478  | 0.134642        | 0.4   |  |  |  |  |  |
| DH3       | 79                                   | 23               | 0.0017      | 0.247112        | 0.4   |  |  |  |  |  |
| DH5       | 79                                   | 19               | 0.00294348  | 0.353453        | 0.4   |  |  |  |  |  |


| Bluetooth (1 Mbps) Channel <u>78</u> |                   |                  |             |                 |       |  |  |  |  |
|--------------------------------------|-------------------|------------------|-------------|-----------------|-------|--|--|--|--|
| DH                                   | Number of Hopping | Number of Pulses | Pulse Width | AV time of      | Limit |  |  |  |  |
| Packet                               | channels          | per 5 sec        | (sec)       | Occupancy (sec) | (sec) |  |  |  |  |
| DH1                                  | 79                | 49               | 0.00043188  | 0.133745        | 0.4   |  |  |  |  |
| DH3                                  | 79                | 27               | 0.00170725  | 0.291325        | 0.4   |  |  |  |  |
| DH5                                  | 79                | 17               | 0.00294348  | 0.316247        | 0.4   |  |  |  |  |
| Remark <sup>.</sup>                  |                   |                  |             |                 |       |  |  |  |  |

Remark:

AV time of Occupancy (sec) = 79 (number of hopping channels) \* 0.4 (sec) \* Number of Pulses per 5 sec/

5 \* Pulse Width (sec)

Note : 1. The EUT does not support AFH mode.



|                      |       | 2.7 |                            |                               |              |                                       |             |  |  |  |
|----------------------|-------|-----|----------------------------|-------------------------------|--------------|---------------------------------------|-------------|--|--|--|
| D2                   | M1    | 1   | 1.25217 ms                 | 1.38 dB                       |              |                                       |             |  |  |  |
| D1                   | M1    |     | 431.88 µs                  | -6.95 dB                      |              |                                       |             |  |  |  |
| M1                   |       | 1   | 104.35 µs                  |                               |              |                                       |             |  |  |  |
| Type                 | Ref   | Trc | Stimulus                   | Response                      | Function     | Functi                                | ion Result  |  |  |  |
| arker                |       |     |                            | •                             |              |                                       |             |  |  |  |
| F 2.4                | 02 GF | lz  | I                          | 691 pt                        | s            | I                                     | 200.0 µs,   |  |  |  |
|                      |       |     |                            |                               |              |                                       |             |  |  |  |
| 70 dBm               | ₀+    |     |                            |                               |              |                                       |             |  |  |  |
|                      |       |     |                            |                               |              |                                       |             |  |  |  |
| i0 dBm               |       |     |                            |                               |              |                                       |             |  |  |  |
| i0 dBr               | n-+-  |     | - <b>A</b> Lo n Mán o Alti | <u>a a altavili a dvillad</u> | 100 00 00 00 |                                       | a diversion |  |  |  |
| U.S. M. I            |       |     | - MARA AND                 | manulurani                    | Milanter Mar | · · · · · · · · · · · · · · · · · · · | wy www.     |  |  |  |
| 4 Quatern            | n     |     |                            | uniterring                    | NUM          | MAD                                   |             |  |  |  |
| 30 dBn               | n     |     |                            |                               |              |                                       |             |  |  |  |
|                      |       |     |                            |                               |              |                                       |             |  |  |  |
| 20 dB <mark>r</mark> | n     |     |                            |                               |              |                                       |             |  |  |  |
|                      | "     |     |                            |                               |              |                                       |             |  |  |  |
|                      |       |     |                            |                               |              |                                       |             |  |  |  |
| dBm—                 |       |     |                            |                               |              |                                       | 104.55      |  |  |  |
|                      |       |     |                            |                               | M1[1]        | -42.92 d<br>104.33                    |             |  |  |  |
| 0 dBm                |       |     |                            |                               |              |                                       |             |  |  |  |

D1[1]

🔵 RBW 1 MHz

VBW 1 MHz

| Gard | HongAn TECHNOLOGY CO., LTD. |
|------|-----------------------------|
| Spec | trum                        |

40 dB 🥃 SWT 2 ms

Ref Level 20.00 dBm

Att

SGL IPk Clrw



Report No.: HA150021-RA

-6.95 dB

| 🖌 Hor     | ngAn TECHNOLOGY CO.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LTD.                                |                      |                                             | Report No.: HA150021-RA |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------|---------------------------------------------|-------------------------|
| Test Mode | e : BT (1 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ibps) DH3                           | Chann                | el : 00                                     |                         |
| Number o  | f Pulses Per 5 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                      |                                             |                         |
| Spectru   | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                      |                                             |                         |
| Ref Leve  | l 10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 🔵 RBW 100 kHz                       |                      |                                             |                         |
| Att       | 30 dB 🖷 SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 s 👄 <b>VBW</b> 100 kHz            |                      |                                             |                         |
| SGL       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                      |                                             |                         |
| ⊖1Pk Max  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                      |                                             |                         |
| 0 dBm     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                      | M1[1]                                       | -19.48 dBm              |
| 0 aBm—    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                      |                                             | 1.74500 s               |
| 10 0      | E 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M 12                                | 13                   | 16 17 18                                    |                         |
| -20 dBm   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | -                    | 16 17 18                                    | <u></u>                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                      |                                             |                         |
| -40 dBm   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                      |                                             |                         |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                      |                                             |                         |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                      |                                             |                         |
|           | all all and the second of the second s | mbrahilitetherhalmahilitethereadean | or hall all a second | was marked with the with the set of the set | manumanitation          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                      |                                             |                         |
| -80 dBm—  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                      |                                             |                         |
| CF 2.402  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                  | 01 pts               |                                             | 500.0 ms/               |
| Marker Pe |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                  | or prs               |                                             | 300.0 ms/               |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dechence                            | No                   | Otimoulus                                   | Basmansa I              |
| No 4      | Stimulus<br>390.000000 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -19.518 dBm                         | No 17                | Stimulus<br>3.565000 s                      | -19.543 dBm             |
| 5         | 555.000000 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -19.545 dBm                         | 18                   | 3.705000 s                                  | -19.561 dBm             |
| 6         | 970.000000 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -19.529 dBm                         | 19                   | 3.905000 s                                  | -19.595 dBm             |
| 7         | 1.145000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -19.548 dBm                         | 20                   | 3.965000 s                                  | -19.508 dBm             |
| 8         | 1.170000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -19.547 dBm                         | 21                   | 4.105000 s                                  | -19.552 dBm             |
| 9         | 1.555000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -19.572 dBm                         | 22                   | 4.130000 s                                  | -19.516 dBm 🗮           |
| 10        | 1.605000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -19.540 dBm                         | 23                   | 4.355000 s                                  | -19.520 dBm             |
| 11        | 1.745000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -19.484 dBm                         | 24                   | 4.720000 s                                  | -19.588 dBm             |
| 12        | 1.970000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -19.542 dBm                         | 25                   | 4.745000 s                                  | -19.501 dBm             |
| 13        | 2.575000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -19.517 dBm                         | 26                   | 4.905000 s                                  | -19.533 dBm             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                      | Ready                                       |                         |

| Spect      | rum           |              |              |         |                       |      |         |      |      |           |                        |
|------------|---------------|--------------|--------------|---------|-----------------------|------|---------|------|------|-----------|------------------------|
|            | vel 2         | 0.00 dB      |              |         | W 1 MHz               |      |         |      |      |           |                        |
| Att<br>SGL |               | 40 c         | IB 🥌 SWT 5 n | ns VB   | W 1 MHz               |      |         |      |      |           |                        |
| oller      | rw            |              |              |         |                       |      |         |      |      |           |                        |
|            |               |              |              |         |                       | D    | 1[1]    |      |      |           | -5.35 dB<br>1.70000 ms |
| 10 dBm·    |               |              |              |         |                       | M    | 1[1]    |      |      |           | -40.26 dBm             |
| 0 dBm—     |               |              |              |         |                       |      |         |      |      | 1         | 853.62 µs              |
| -10 dBm    | r             | (            |              |         |                       |      |         | -    |      |           |                        |
| -20 dBm    | <u>ا</u> _ر   |              |              |         |                       |      |         |      |      |           |                        |
| -30 dBm    | ۱ <u> </u>    |              |              |         |                       |      |         |      |      |           |                        |
| -40 dBm    | <u></u>       | Ma<br>Marine |              |         |                       | a    | a land  | Re - |      |           |                        |
| -50 dBm    | rwy/w         | www          | _            |         |                       |      | 1. ANNO |      |      |           |                        |
| -60 dBm    | <u>ا</u> ــــ |              |              |         |                       |      |         |      |      |           |                        |
| -70 dBm    | -             |              |              |         |                       |      |         |      |      |           |                        |
|            |               |              |              |         |                       |      |         |      |      |           |                        |
| CF 2.4     | 02 GH         | lz           |              |         | 691                   | pts  |         |      |      |           | 500.0 µs/              |
| Marker     |               |              |              |         |                       |      |         |      |      |           |                        |
| Type       | Ref           |              | Stimulus     |         | Response<br>-40.26 dB | Func | tion    |      | Fund | tion Resu | lt                     |
| M1<br>D1   | M1            | 1            |              | 1.62 μs | -40.26 dE<br>-5.35 i  |      |         |      |      |           |                        |
| D2         | M1            | 1            |              | 355 ms  | -0.96                 |      |         |      |      |           |                        |

Ready

///

|            | An TECHNOLOGY CO., I                                                                                           |                                    |                | · · · · ·                                | ort No.: HA150021-RA                       |
|------------|----------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|------------------------------------------|--------------------------------------------|
| est Mode   | : BT (1 M                                                                                                      | bps) DH5                           | Chann          | el : <u>00</u>                           |                                            |
| lumber of  | Pulses Per 5 sec                                                                                               |                                    |                |                                          |                                            |
|            |                                                                                                                |                                    |                |                                          | Ē                                          |
| Spectrum   | י                                                                                                              |                                    |                |                                          |                                            |
| Ref Level  | 10.00 dBm                                                                                                      | 🔵 RBW 100 kHz                      |                |                                          |                                            |
| Att        | 30 dB 🥌 SWT 🤱                                                                                                  | 5 s 👄 <b>VBW</b> 100 kHz           |                |                                          |                                            |
| SGL        |                                                                                                                |                                    |                |                                          |                                            |
| ⊖1Pk Max   |                                                                                                                |                                    |                |                                          |                                            |
|            |                                                                                                                |                                    |                | M1[1]                                    | -19.52 dBm                                 |
| 0 dBm      |                                                                                                                |                                    |                |                                          | 3.63000 9                                  |
| -10 dBm    |                                                                                                                |                                    |                | M1                                       |                                            |
| 20 dBm -   | 4 5                                                                                                            | 6 7 8                              |                | 9 10 11                                  | 14                                         |
| -30 dBm    |                                                                                                                |                                    |                |                                          |                                            |
|            |                                                                                                                |                                    |                |                                          |                                            |
| -40 dBm    |                                                                                                                |                                    |                |                                          |                                            |
| -50 dBm    |                                                                                                                |                                    |                |                                          | 2                                          |
| 69.dBmth   | Halpman marken when a hard when a hard when when a hard when a | under man with the plan on the all | addent frament | mautiner marked to marked and the second | and and appel for the of a down in the has |
| -70 dBm    |                                                                                                                |                                    |                |                                          |                                            |
| -80 dBm    |                                                                                                                |                                    |                |                                          |                                            |
| -00 ubiii  |                                                                                                                |                                    |                |                                          |                                            |
| CF 2.402 G | Hz                                                                                                             | 100                                | )1 pts         |                                          | 500.0 ms/                                  |
| Marker Pea | k List                                                                                                         |                                    |                |                                          |                                            |
| No         | Stimulus                                                                                                       | Response                           | No             | Stimulus                                 | Response                                   |
| 1          | 5.000000 ms                                                                                                    | -19.659 dBm                        | 10             | 3.195000 s                               | -19.618 dBm                                |
| 2          | 60.000000 ms                                                                                                   | -19.611 dBm                        | 11             | 3.370000 s                               | -19.552 dBm                                |
| 3          | 420.000000 ms                                                                                                  | -19.579 dBm                        | 12             | 3.575000 s                               | -19.623 dBm                                |
| 4          | 600.000000 ms<br>1.010000 s                                                                                    | -19.650 dBm<br>-19.573 dBm         | 13             | 3.630000 s<br>4.405000 s                 | -19.521 dBm<br>-19.579 dBm                 |
| 6          | 1.425000 s                                                                                                     | -19.602 dBm                        | 15             | 4.565000 s                               | -19.609 dBm                                |
| 7          | 1.625000 s                                                                                                     | -19.608 dBm                        | 16             | 4.610000 s                               | -19.656 dBm                                |
|            |                                                                                                                | an an i                            | 17             |                                          | -10 504 dBm                                |
| 8          | 2.420000 s                                                                                                     | -19.624 dBm                        | 17             | 4.970000 s                               | -19.584 dBm                                |

| Spect    | um       |          |            |                    |           |     |      |      |   |      |              |                         |
|----------|----------|----------|------------|--------------------|-----------|-----|------|------|---|------|--------------|-------------------------|
| Ref Le   | vel 2    | 0.00 d   | Bm         | 😑 RE               | 3W 1 MHz  |     |      |      |   |      |              |                         |
| Att      |          | 40       | dB 🔵 SWT 5 | ims VE             | BW 1 MHz  |     |      |      |   |      |              |                         |
| SGL      |          |          |            |                    |           |     |      |      |   |      |              |                         |
| ●1Pk Cl  | W.       |          |            |                    |           |     |      |      |   |      |              |                         |
|          |          |          |            |                    |           |     | D    | 1[1] |   |      |              | -4.24 dB                |
| 10 dBm-  |          |          |            |                    |           |     |      | 1111 |   |      |              | 2.94638 ms              |
|          |          |          |            |                    |           |     | M    | 1[1] |   |      |              | -39.51 dBm<br>926.09 μs |
| 0 dBm—   |          |          |            |                    |           |     |      |      |   |      | 1            | 920.09 µ3               |
|          |          |          |            |                    |           |     |      |      | 8 |      |              |                         |
| -10 dBm  |          |          |            |                    |           |     |      |      |   |      |              |                         |
| -20 dBm  |          |          | 2          |                    |           |     |      |      |   |      |              |                         |
|          |          |          |            |                    |           |     |      |      |   |      |              |                         |
| -30 dBm  |          |          |            |                    |           |     |      |      |   | -    |              |                         |
|          |          |          | MI         |                    |           |     |      |      |   |      |              |                         |
| -40 dBm  | Jud      | ب الالله | HH .       |                    |           |     |      |      |   | 41   | hally        |                         |
| -50 dBm  | Marco    | PTW      |            |                    |           |     |      |      |   |      | nandrand     | urve.                   |
| 00 00    |          |          |            |                    |           |     |      |      |   |      |              |                         |
| -60 dBm  |          |          |            | -                  |           |     |      |      |   |      |              |                         |
|          |          |          |            |                    |           |     |      |      |   |      |              |                         |
| -70 dBm  |          |          |            |                    |           |     |      |      |   |      |              |                         |
|          |          |          |            |                    |           |     |      |      |   |      |              |                         |
| CF 2.40  | )2 GH    | z        |            |                    | 691       | pts |      |      |   |      |              | 500.0 µs/               |
| Marker   |          |          |            |                    |           |     |      |      |   |      |              |                         |
| Туре     | Ref      |          | Stimul     |                    | Response  |     | Func | tion |   | Fund | ction Result | <u> </u>                |
| M1       | 644      | 1        |            | 26.09 µs           | -39.51 di |     |      |      |   |      |              |                         |
| D1<br>D2 | M1<br>M1 | 1        |            | 4638 ms<br>4493 ms | -4.24     |     |      |      |   |      |              |                         |
|          | INIT     | 1        | 3.7        | 211 5677           | -1,00     | ub  |      |      |   |      |              | ]                       |

Report No.: HA150021-RA

///

Ready

B

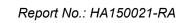
| 🖌 HongAn         | TECHNOLOGY CO.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LTD.                       |         |                  |                  | Report No.: HA150021          | I-RA       |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|------------------|------------------|-------------------------------|------------|
| Test Mode        | : BT(1 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lbps) DH1                  | Cha     | nnel :           | 39               |                               |            |
| Number of Pu     | Ises Per 5 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |         |                  |                  |                               |            |
| Spectrum         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |         |                  |                  |                               |            |
| Ref Level 10     | 1.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 🔵 RBW 100 kHz              |         |                  |                  |                               | ( .        |
| Att              | 30 dB 🥃 SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 s 🔵 <b>VBW</b> 100 kHz   |         |                  |                  |                               |            |
| SGL              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |         |                  |                  |                               |            |
| ●1Pk Max         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |         |                  |                  |                               |            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |         | M1[1]            |                  | -20.13 (                      | dBm        |
| 0 dBm            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |         |                  |                  | 25.00                         | ) ms       |
| 11               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |         |                  |                  |                               |            |
| 20 <b>=</b> Bm - | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | **      | <del>y 4 4</del> | * * *            | <del>r whe we we have a</del> | 49         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |         |                  |                  |                               |            |
| -40 dBm          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |         | 11 . 11          | i ii ii          |                               | ii.        |
| -80 dBm          | na an tha an the second s |                            |         |                  | ugunaniju zananj |                               |            |
| CF 2.441 GHz     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                         | 001 pts |                  |                  | 500.0 m                       | <u>15/</u> |
| Marker Peak L    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P                          | 1       |                  |                  |                               | $\sim$     |
| No<br>16         | Stimulus<br>1.630000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Response<br>-20.185 dBm    | No 41   | Stim             | 4.150000 s       | -20.244 dBm                   |            |
| 17               | 1.785000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20.279 dBm                | 42      |                  | 4.205000 s       | -20.223 dBm                   |            |
| 18               | 1.815000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20.173 dBm                | 43      |                  | 4.350000 s       | -20.263 dBm                   |            |
| 19               | 1.965000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20.232 dBm                | 44      |                  | 4.375000 s       | -20.181 dBm                   |            |
| 20               | 2.040000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20.239 dBm                | 45      |                  | 4.530000 s       | -20.287 dBm                   |            |
| 21               | 2.170000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20.152 dBm                | 46      |                  | 4.580000 s       | -20.145 dBm                   |            |
| 22               | 2.210000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20.231 dBm                | 47      |                  | 4.765000 s       | -20.248 dBm                   |            |
| 23               | 2.385000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20.201 dBm                | 48      |                  | 4.795000 s       | -20.196 dBm                   |            |
| 24<br>25         | 2.430000 s<br>2.595000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -20.227 dBm<br>-20.270 dBm | 49      |                  | 4.950000 s       | -20.198 dBm                   | -          |
|                  | 2.393000 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20,270 UBM                |         |                  | _                |                               |            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |         |                  | Ready            |                               | //         |

# HongAn TECHNOLOGY CO., LTD.

Att 40 dB 🥌 SWT 2 ms VBW 1 MHz SGL ●1Pk Clrw D1[1] -4.21 dB 434.78 µs 10 dBm· M1[1] -42.06 dBm 191.30 µs 0 dBm--10 dBm--20 dBm--30 dBm-DP -40 dBm h. Bolopolus and Araba Araba Araba and Araban hulph Soldem -60 dBm--70 dBm-200.0 µs/ CF 2.441 GHz 691 pts Marker Type | Ref | Trc Stimulus Response Function **Function Result** 191.3 µs Μ1 1 -42.06 dBm D1 Μ1 434.78 µs -4.21 dB 1 1.25507 ms 3.03 dB D2 M1 1 120 Ready **EXTERNET** ///

RBW 1 MHz




Spectrum

Ref Level 20.00 dBm

| 🖌 Hon         | ngAn TECHNOLOGY CO.,           | LTD.                       |               |                    |                    | Report No.: HA150021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I-RA     |
|---------------|--------------------------------|----------------------------|---------------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Test Mode     | e : BT(1 M                     | Ibps) DH3                  | Char          | nnel :             | 39                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Number o      | f Pulses Per 5 sec             |                            |               | -                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Spectru       | m                              |                            |               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₽        |
| -             | L 10.00 dBm                    | 🔵 RBW 100 kHz              |               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (*)      |
| Att           |                                | 5 s 曼 <b>VBW</b> 100 kHz   |               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| SGL           |                                |                            |               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ●1Pk Max      |                                |                            |               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|               |                                |                            |               | M1[1]              |                    | -20.26 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dBm      |
| 0 dBm         |                                |                            |               | — .                |                    | 135.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) ms     |
| M1            |                                |                            |               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| - <b>1</b> dB |                                | 9 12 -                     | 15 16         | 17 18              | 21                 | <u>-22 23</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
|               |                                |                            |               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -40 dBm-      |                                |                            |               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|               |                                |                            |               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|               |                                |                            |               |                    | 10.00              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - isl    |
| LOGOLO RID    | mandeter and a find the second | Helendon John Martin South | uthe hat went | uter aluma har and | mathicket          | with the work from the work of | Anna     |
|               |                                |                            |               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -80 dBm—      |                                |                            |               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| CF 2.441      | GHz                            | 10                         | )01 pts       |                    |                    | 500.0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| Marker Pe     |                                |                            | or pes        |                    |                    | 0001011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u> |
| No            | Stimulus                       | Response                   | No            | Stimulu            | 5                  | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 3             | 305.000000 ms                  | -20.258 dBm                | 15            |                    | 85000 s            | -20.324 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 4             | 360.000000 ms                  | -20.268 dBm                | 16            | 2.6                | 65000 s            | -20.326 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 5             | 530.000000 ms                  | -20.283 dBm                | 17            | 2.8                | 70000 s            | -20.359 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 6             | 725.000000 ms                  | -20.345 dBm                | 18            |                    | 55000 s            | -20.270 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 7             | 920.000000 ms                  | -20.308 dBm                | 19            |                    | 70000 s            | -20.338 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _        |
| 8             | 1.115000 s<br>1.540000 s       | -20.361 dBm<br>-20.387 dBm | 20            |                    | 20000 s<br>70000 s | -20.304 dBm<br>-20.310 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| 10            | 1.860000 s                     | -20.387 dBm                | 21            |                    | 90000 s            | -20.310 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 11            | 1.910000 s                     | -20.426 dBm                | 23            |                    | 00000 s            | -20.350 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 12            | 2.080000 s                     | -20.409 dBm                |               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
|               | Υ                              |                            |               | De                 | ady                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|               |                                |                            |               | Ke                 | ,                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11       |

| dBm             | 🔵 RBW 1 MHz  |       |
|-----------------|--------------|-------|
| 10 dB 🥃 SWT 5 r | ms VBW 1 MHz |       |
|                 |              |       |
|                 |              |       |
|                 |              | D1[1] |
|                 |              |       |
|                 |              | M1[1] |
|                 |              |       |
|                 |              |       |

|          |               |    |     |          |                 |   |                      |     | D1    | [1] |       |    |      |        |        |       | .75 dB<br>00 ms |
|----------|---------------|----|-----|----------|-----------------|---|----------------------|-----|-------|-----|-------|----|------|--------|--------|-------|-----------------|
| 10 dBm   | +             |    |     |          |                 | + |                      |     | M     | [1] |       |    |      |        |        | -40.8 | 2 dBm           |
| 0 dBm—   |               |    |     |          |                 |   |                      |     |       |     |       |    |      |        |        | 1.933 | 333 ms          |
| -10 dBm  | י <b>-</b> ר  |    |     |          |                 |   | 4                    |     |       |     |       |    |      | _      |        | ſ     |                 |
| -20 dBm  | n             |    |     |          |                 |   |                      |     |       |     |       | _  |      |        |        |       |                 |
| -30 dBm  | <u>ا</u> ــــ |    |     |          |                 | 4 |                      |     |       |     |       |    |      |        |        |       |                 |
| -40 dBm  | -             |    |     | No. K.Lu |                 | M |                      |     |       |     |       | D1 |      |        | 1      | £     |                 |
| -50 dBm  | η             |    | սիթ | ~v \⊮    | Munh            | 8 |                      |     |       |     |       | 4  | when | vilmuv | wind.  |       |                 |
| -60 dBm  | <u> </u>      |    | _   |          |                 | _ |                      |     |       |     |       |    |      | _      |        | _     |                 |
| -70 dBm  | 2             |    |     |          |                 | _ |                      |     |       |     |       |    |      | _      |        |       |                 |
| CF 2.4   | 41 GH         | Iz |     |          |                 |   | 691                  | pts |       |     |       |    |      |        |        | 500.  | 0 µs/           |
| Marker   |               |    |     |          |                 |   |                      |     |       |     |       |    |      |        |        |       |                 |
| Туре     | Ref           |    | Sti | mulus    |                 | R | esponse              |     | Funct | ion |       |    | Fur  | octio  | n Resi | ılt   |                 |
| M1<br>D1 | M1            | 1  |     |          | 33 ms<br>1.7 ms |   | -40.82 dB<br>-4.75 ( |     |       |     |       |    |      |        |        |       |                 |
| D1<br>D2 | M1            | 1  |     |          | 55 ms           |   | 0.51                 |     |       |     |       |    |      |        |        |       |                 |
|          |               | )[ |     |          |                 |   |                      |     |       |     | Ready | ,  |      | 111    |        | -     |                 |



٦

| 🖌 Hong     | An TECHNOLOGY CO., L           | TD.                                 |        |                   | Repor                 | t No.: HA150021-RA         |
|------------|--------------------------------|-------------------------------------|--------|-------------------|-----------------------|----------------------------|
| Test Mode  | : BT (1 Mb                     | ops) DH5                            | Channe | el : 39           |                       |                            |
| Number of  | Pulses Per 5 sec               |                                     |        |                   |                       |                            |
| Spectrum   | r )                            |                                     |        |                   |                       |                            |
| Ref Level  | 10.00 dBm                      | 🔵 RBW 100 kHz                       |        |                   |                       |                            |
| Att        | 30 dB 🥃 SWT 5                  | s 🔵 <b>VBW</b> 100 kHz              |        |                   |                       |                            |
| SGL        |                                |                                     |        |                   |                       |                            |
| ⊖1Pk Max   |                                |                                     |        |                   |                       |                            |
| 0 dBm      |                                |                                     | 1      | M1[1]             |                       | -20.19 dBm<br>2.56000 s    |
|            |                                |                                     | M1     | 1 1               |                       |                            |
| 1-20 dBn34 | 5 67 8 9                       | 10 11 12                            | 13 14  | 15                | 18                    | 19                         |
| -40 dBm    |                                |                                     |        |                   |                       |                            |
|            | water all a barrent and a      | and and a state with a state of the |        | mal warden warden | Statute of the second | and the start of the start |
| -80 dBm    |                                |                                     |        |                   |                       |                            |
| CF 2.441 G |                                | 100                                 | 1 pts  |                   |                       | 500.0 ms/                  |
| Marker Pea |                                |                                     |        |                   |                       |                            |
| No         | Stimulus                       | Response                            | No     | Stimulus          |                       | Response                   |
| 1          | 25.000000 ms                   | -20.258 dBm                         | 11     |                   | '0000 s               | -20.247 dBm                |
| 2          | 150.000000 ms<br>350.000000 ms | -20.292 dBm<br>-20.245 dBm          | 12     |                   | 25000 s               | -20.204 dBm<br>-20.192 dBm |
| 4          | 400.000000 ms                  | -20.245 dBm                         | 13     |                   | 0000 s                | -20.192 dBm                |
| 5          | 765.000000 ms                  | -20.267 dBm                         | 15     |                   | 5000 s                | -20.300 dBm                |
| 6          | 955.000000 ms                  | -20.267 dBm                         | 16     |                   | .0000 s               | -20.235 dBm                |
| 7          | 1.015000 s                     | -20.228 dBm                         | 17     |                   | 0000 s                | -20.219 dBm                |
| 8          | 1.180000 s                     | -20.278 dBm                         | 18     | 3.92              | 25000 s               | -20.284 dBm                |
| 9          | 1.370000 s                     | -20.251 dBm                         | 19     | 4.57              | '5000 s               | -20.255 dBm                |
| 10         | 1.575000 s                     | -20.286 dBm                         |        |                   |                       |                            |
|            |                                |                                     |        | Ready             |                       |                            |

| Ref Level 20.00 dBm         RBW 1 MHz           Att         40 dB         SWT 5 ms         VBW 1 MHz           SGL         11 MHz         11 MHz         11 MHz | D1[1] -4.80 dE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SGL                                                                                                                                                             | D1[1] -4.90 dg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                 | D1[1] -4.90 dg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A 1Dk Clew                                                                                                                                                      | D1[1] -4.90 dg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                 | D1[1] _4 90 do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 dBm                                                                                                                                                          | 2.94348 ms<br>M1[1] -40.16 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                 | 730.43 µ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0 dBm                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -10 dBm                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -20 dBm                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -30 dBm                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -40 dBm                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NAWAMANAM                                                                                                                                                       | Charlen and an and a second a sec |
| -50 dBm                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -60 dBm                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -70 dBm                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CF 2.441 GHz 691                                                                                                                                                | L pts 500.0 μs/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Marker                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Type Ref Trc Stimulus Response                                                                                                                                  | Function Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| M1 1 730.43 µs -40.16 d8                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D1         M1         1         2.94348 ms         -4.80           D2         M1         1         3.75217 ms         -0.28                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

///

Ready

| 🖌 Hong     | An TECHNOLOGY CO.,                          | LTD.                                                                                                             |                |                    |                                  | Report No.: HA150021                               | -RA   |
|------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------|--------------------|----------------------------------|----------------------------------------------------|-------|
| Test Mode  | : BT (1 N                                   | lbps) DH1                                                                                                        | Cha            | nnel               | : 78                             |                                                    |       |
| Number of  | Pulses Per 5 sec                            |                                                                                                                  |                |                    |                                  |                                                    |       |
| Spectrum   |                                             |                                                                                                                  |                |                    |                                  |                                                    |       |
|            | 10.00 dBm                                   | 🔵 RBW 100 kHz                                                                                                    |                |                    |                                  |                                                    | ( * ) |
| Att        |                                             | 5 s 🖷 VBW 100 kHz                                                                                                |                |                    |                                  |                                                    |       |
| SGL        |                                             |                                                                                                                  |                |                    |                                  |                                                    |       |
| 1Pk Max    |                                             |                                                                                                                  |                |                    |                                  |                                                    |       |
|            |                                             |                                                                                                                  |                | M1[1]              | 6                                | -23.91 (                                           | dBm   |
| 0 dBm      |                                             |                                                                                                                  |                | - Charles          |                                  | 2.575                                              | 1.000 |
|            |                                             |                                                                                                                  |                | 1                  | 1                                |                                                    |       |
| 1-20 dBm45 |                                             |                                                                                                                  | M1             |                    |                                  | 10                                                 |       |
|            | ΤΙΪΪ                                        |                                                                                                                  | T T            | li II I            | Ϋͳͳ                              | ז ז חחו ז ו                                        | Ĩ     |
| -40 Bm     |                                             |                                                                                                                  |                |                    |                                  |                                                    |       |
|            |                                             |                                                                                                                  |                |                    |                                  |                                                    |       |
| HEALDBORN  | abutron the rest of the month of the second | and a superior of the second | Million Mindow | - And Martin Could | m - Haller and an and a star and | any market war | anne  |
|            |                                             |                                                                                                                  |                |                    |                                  |                                                    |       |
| -80 dBm    |                                             |                                                                                                                  |                |                    |                                  |                                                    |       |
| -80 UBIII  |                                             |                                                                                                                  |                |                    |                                  |                                                    |       |
| CF 2.48 GF | lz                                          | 1                                                                                                                | 001 pts        | I                  | 1                                | 500.0 n                                            | ns/   |
| Marker Pea | k List                                      |                                                                                                                  | -              |                    |                                  |                                                    |       |
| No         | Stimulus                                    | Response                                                                                                         | No             | St                 | imulus                           | Response                                           |       |
| 16         | 1.605000 s                                  | -24.003 dBm                                                                                                      | 41             |                    | 4.010000 s                       | -24.043 dBm                                        |       |
| 17         | 1.635000 s                                  | -24.030 dBm                                                                                                      | 42             |                    | 4.160000 s                       | -24.101 dBm                                        |       |
| 18         | 1.800000 s                                  | -24.077 dBm                                                                                                      | 43             |                    | 4.210000 s                       | -24.077 dBm                                        |       |
| 19         | 1.850000 s                                  | -24.074 dBm                                                                                                      | 44             |                    | 4.340000 s                       | -24.085 dBm                                        |       |
| 20         | 1.970000 s                                  | -24.032 dBm                                                                                                      | 45             |                    | 4.385000 s                       | -24.122 dBm                                        |       |
| 21         | 2.020000 s<br>2.175000 s                    | -23.995 dBm<br>-24.052 dBm                                                                                       | 46             |                    | 4.570000 s<br>4.770000 s         | -24.070 dBm<br>-24.087 dBm                         |       |
| 23         | 2.225000 s                                  | -23.962 dBm                                                                                                      | 48             |                    | 4.810000 s                       | -24.018 dBm                                        |       |
| 24         | 2.400000 s                                  | -24.033 dBm                                                                                                      | 49             |                    | 4.960000 s                       | -24.014 dBm                                        |       |
| 25         | 2.425000 s                                  | -23.993 dBm                                                                                                      |                |                    |                                  |                                                    | -     |
| 1          | Υ                                           |                                                                                                                  |                |                    | Deadu                            |                                                    |       |
|            |                                             |                                                                                                                  |                |                    | Ready                            |                                                    | 11    |

| Spect                                    | rum                                        |          |             |        |       |                 |       |            |          |                |         |         |           |        |       |
|------------------------------------------|--------------------------------------------|----------|-------------|--------|-------|-----------------|-------|------------|----------|----------------|---------|---------|-----------|--------|-------|
| Ref Le                                   | vel 2                                      | 0.00 dBm | 1           | e R    | BW    | 1 MHz           |       |            |          |                |         |         |           |        |       |
| Att                                      |                                            | 40 dB    | 8 🔵 SWT 2 n | ns VI  | BW    | 1 MHz           |       |            |          |                |         |         |           |        |       |
| SGL                                      |                                            |          |             |        |       |                 |       |            |          |                |         |         |           |        |       |
| ⊖1Pk Cl                                  | rw                                         |          |             |        |       |                 |       |            |          |                |         |         |           |        | 1     |
|                                          |                                            |          |             |        |       |                 |       | D          | [1]      |                |         |         |           | -13.7  |       |
| 10 dBm                                   |                                            |          |             |        |       |                 |       |            |          |                |         |         |           | 431.8  |       |
| 10 abiii                                 |                                            |          |             |        |       |                 |       | M          | 1[1]     |                |         |         |           | -37.69 |       |
| 0 dBm-                                   |                                            |          |             | 1 11 1 |       |                 |       |            |          |                |         | X       | - Andreas | 281.1  | .6 µs |
|                                          |                                            |          |             |        |       |                 |       |            |          |                |         | F       |           |        |       |
| -10 dBm                                  | י                                          | -        | -           |        |       |                 |       |            |          |                |         |         |           |        |       |
|                                          |                                            |          |             |        |       |                 |       |            |          |                |         |         |           |        |       |
| -20 dBm                                  | +-י                                        |          |             |        |       |                 |       |            |          |                |         |         |           |        |       |
|                                          |                                            |          |             |        |       |                 |       |            |          |                |         |         |           |        |       |
| -30 dBm                                  |                                            | M1       |             |        |       |                 |       |            |          |                |         |         |           |        |       |
| -40 dBm                                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    | 140      |             |        |       |                 |       |            |          |                | Northal | P       |           |        |       |
| 20 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b |          |             | I.     | 1 Jah | ntun aluppuu    | I. N  | an Pilal   | data di  | land           | πN      | <u></u> |           |        | No.   |
| <mark>իկի</mark> ////<br>J-50 dBm        | 0°W                                        |          |             | l      | Pol   | I A A A A A A A | าบเงข | hable of a | เงิดการ  | <u>Illa. N</u> | W       |         |           |        | 1 IV  |
| C (2)                                    |                                            |          |             |        | 2     |                 |       |            | 5        |                |         |         |           |        |       |
| -60 dBm                                  | <u>۱</u>                                   |          |             |        |       |                 |       |            |          |                |         |         |           |        | _     |
|                                          |                                            |          |             |        |       |                 |       |            |          |                |         |         |           |        |       |
| -70 dBm                                  | 2                                          |          |             |        |       |                 |       | 1          |          |                |         |         |           |        |       |
|                                          |                                            |          |             |        |       |                 |       |            |          |                |         |         |           |        |       |
| CF 2.4                                   | 8 GHz                                      |          |             |        |       | 691             | pts   |            |          |                |         |         |           | 200.0  | µs/   |
| Marker                                   |                                            |          |             |        |       |                 |       |            |          |                |         |         |           |        |       |
| Туре                                     | Ref                                        | Trc      | Stimulus    |        |       | Response        |       | Func       | tion     |                |         | Funct   | ion Res   | ult    |       |
| M1                                       | 21212                                      | 1        |             | .16 µs |       | -37.69 dB       |       |            |          |                |         |         |           |        |       |
| D1                                       | M1                                         | 1        |             | 88 µs  |       | -13.71 c        |       |            |          |                |         |         |           |        |       |
| D2                                       | M1                                         | 1        | 1.252       | 217 ms |       | -2.14 c         | IR    |            | <u>`</u> |                |         | _       |           |        |       |
|                                          |                                            | Л        |             |        |       |                 |       |            | ]        | Read           | У       |         |           | 4/4    | //    |

| 🖌 Hon                       | gAn TECHNOLOGY CO.,                    | LTD.                                       |             |                                               | Report No.: HA150021-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -RA       |
|-----------------------------|----------------------------------------|--------------------------------------------|-------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Test Mode                   | e : BT(1 M                             | 1bps) DH3                                  | Chan        | nel : 78                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Number o                    | f Pulses Per 5 sec                     |                                            | _           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Spectru                     | m                                      |                                            |             |                                               | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| Ref Leve                    | 10.00 dBm                              | 🔵 RBW 100 kHz                              |             |                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| Att                         | 30 dB 🥃 SWT                            | 5 s 🔵 <b>VBW</b> 100 kHz                   |             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| SGL                         |                                        |                                            |             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _         |
| ●1Pk Max                    |                                        |                                            |             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 0 dBm                       |                                        |                                            |             | M1[1]                                         | -23.93 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| о авт——                     |                                        |                                            |             |                                               | 4.1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )0 s      |
|                             |                                        |                                            |             |                                               | DAT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 1-202dBm3-                  | 6 7 8                                  | 9 10 .                                     | 13 14       | 15 18 19                                      | 22 23 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -27       |
|                             |                                        |                                            |             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| -40 dBm                     |                                        |                                            |             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -+        |
|                             |                                        |                                            |             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 160 dBm                     | an and a part of a second              | a was we are to                            |             |                                               | w w in a loss gene ingen i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| with our deriver the second | an and the second second second second | net we have a second second and the second | mountermout | anneal an | and a stand of the stand of the stand of the state of the | William - |
|                             |                                        |                                            |             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| -80 dBm—                    |                                        |                                            |             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\neg$    |
| CF 2.48 G                   | iHz                                    | 10                                         | 01 pts      |                                               | 500.0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s/        |
| Marker Pe                   | ak List                                |                                            |             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\neg$    |
| No                          | Stimulus                               | Response                                   | No          | Stimulus                                      | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| 5                           | 605.000000 ms                          | -23.988 dBm                                | 19          | 3.545000 s                                    | -23.963 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 6                           | 830.000000 ms                          | -23.967 dBm                                | 20          | 3.950000 s                                    | -23.985 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 7                           | 1.035000 s                             | -23.966 dBm                                | 21          | 3.970000 s                                    | -24.060 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 8                           | 1.205000 s                             | -24.015 dBm                                | 22          | 4.170000 s                                    | -23.928 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 9<br>10                     | 1.580000 s<br>2.005000 s               | -24.030 dBm<br>-24.043 dBm                 | 23<br>24    | 4.330000 s<br>4.535000 s                      | -24.049 dBm<br>-24.038 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 10                          | 2.365000 s                             | -23.966 dBm                                | 24          | 4.535000 s                                    | -24.038 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 12                          | 2.440000 s                             | -24.014 dBm                                | 26          | 4,795000 s                                    | -24.099 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 13                          | 2.620000 s                             | -23.932 dBm                                | 27          | 4.935000 s                                    | -24.039 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 14                          | 2.775000 s                             | -23.955 dBm                                |             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |
|                             |                                        |                                            |             | Ready                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                             |                                        |                                            |             | Ready                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111       |

| Att      |       | 40      | dB 🥃 SWT 5 n      | ns VB       | W 1 MHz    |     |       |              |         |           |               |        |           |
|----------|-------|---------|-------------------|-------------|------------|-----|-------|--------------|---------|-----------|---------------|--------|-----------|
| SGL      |       |         |                   |             |            |     |       |              |         |           |               |        |           |
| ●1Pk Cli | rw    |         |                   |             |            |     |       |              |         |           |               |        |           |
|          |       |         |                   |             |            |     | D1    | [1]          |         |           |               |        | -6.75 dB  |
| 10 dBm-  |       |         |                   |             |            |     |       | 1000         |         |           |               |        | 70725 ms  |
|          |       |         |                   |             |            |     | M:    | L[1]         |         |           |               |        | 8.71 dBm  |
| 0 dBm—   | _     |         |                   |             |            |     |       |              |         |           | 177. 1 104000 | 1      | 41884 ms  |
|          |       | ł –     |                   |             |            |     |       | 1            |         |           |               |        |           |
| -10 dBm  |       |         |                   |             |            |     |       |              |         |           |               |        |           |
|          |       |         |                   |             |            |     |       | 1            |         |           |               |        |           |
| -20 dBm  |       |         |                   |             |            |     |       |              |         |           |               |        |           |
|          |       |         |                   |             |            |     |       |              |         |           |               |        |           |
| -30 dBm  |       |         | MI                |             |            |     |       |              |         | P         | 2             |        |           |
| -40 dBm  |       |         | MI                |             |            |     |       |              |         | prot.     | Ł             |        |           |
| -40 UBII |       | the all | with monthly for  |             |            |     |       | Git hour     | M. MILL | millional |               |        |           |
| -50 dBm  |       | And we  | march character a |             |            |     |       | <b>T</b> The | Ande    | william a |               |        |           |
|          |       |         |                   |             |            |     |       |              |         |           |               |        |           |
| -60 dBm  |       |         |                   |             |            |     |       |              |         |           | _             |        |           |
|          |       |         |                   |             |            |     |       |              |         |           |               |        |           |
| -70 dBm  |       |         |                   |             |            |     |       |              |         |           |               |        |           |
|          |       |         |                   |             |            |     |       |              |         |           |               |        |           |
| CF 2.48  | 3 GHz | 0       |                   |             | 691        | ots |       |              |         |           |               |        | i00.0 µs/ |
| Marker   |       |         |                   |             |            |     |       |              |         |           |               |        |           |
| Type     | Ref   | Trc     | Stimulus          | s           | Response   | 1   | Funct | ion          | 1       | Eu        | nction        | Result |           |
| M1       |       | 1       |                   | -<br>384 ms | -38.71 dBr | m   |       |              |         |           |               |        |           |
| D1       | Μ1    | 1       |                   | 725 ms      | -6.75 d    |     |       |              |         |           |               |        |           |
| D2       | M1    | 1       | 2.498             | 355 ms      | 1.86 d     | в   |       |              |         |           |               |        |           |
|          |       |         |                   |             |            |     |       |              | Read    | v ===     |               | -      |           |
|          |       |         |                   |             |            |     |       | ļ            | Reau    | ,         |               |        | 11.       |

Page 59 of 87

| est Mode            | : BT (1 M                    | bps) DH5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Channe                                  | el : 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|---------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                     | Ilses Per 5 sec              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| Spectrum            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| Ref Level 10<br>Att |                              | ● <b>RBW</b> 100 kHz<br>s ● <b>VBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \                       |
| SGL                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| ∋1Pk Max            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 0 dBm               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r                                       | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -23.95 dBm<br>2.03000 s |
| -10 dBm             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| -20 dBm             | 2 3                          | 45 7 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + <del>1</del>                          | 12 13 14 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 IZ                   |
| -30 dBm             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| -50 dBm             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| n6Q.dBman           | metricular martine more more | and the second sec | -                                       | the matter and the manufacture of the second states and the second | monocontracture         |
| -70 dBm             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| -80 dBm             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| CF 2.48 GHz         |                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 pts                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500.0 ms/               |
| Marker Peak I       | ist                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| No                  | Stimulus                     | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No                                      | Stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Response                |
| 1                   | 10.000000 ms                 | -23.996 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                      | 2.775000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -24.001 dBm             |
| 2                   | 840.000000 ms                | -23.994 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                      | 2.955000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -23.951 dBm             |
| 3                   | 1.225000 s                   | -23.961 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                      | 3.145000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -23.985 dBm             |
| 4                   | 1.780000 s                   | -23.965 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                      | 3.570000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -24.001 dBm             |
| 5                   | 1.850000 s                   | -24.068 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                                      | 3.775000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -23.982 dBm             |
| 6                   | 2.030000 s                   | -23.948 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                      | 3.975000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -24.037 dBm             |
| 7                   | 2.150000 s                   | -24.052 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                                      | 4.560000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -24.089 dBm             |
| 8                   | 2.350000 s<br>2.405000 s     | -23.989 dBm<br>-23.958 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                      | 4.770000 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -24.002 dBm             |
|                     | 2 405000 \$                  | -23,958,08m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |

| Spect      | rum           |          |                  |       |                        |      |      |       |                  |            |
|------------|---------------|----------|------------------|-------|------------------------|------|------|-------|------------------|------------|
|            | vel 2         | 0.00 dBm |                  |       | / 1 MHz                |      |      |       |                  | ```````    |
| Att<br>SGL |               | 40 de    | 5 🥌 SWT 5 ms     | S VBW | / 1 MHz                |      |      |       |                  |            |
| ●1Pk Cl    | rw            |          |                  |       |                        |      |      |       |                  |            |
|            |               |          |                  |       |                        | D    | 1[1] |       |                  | -7.01 dB   |
| 10 dBm     |               |          |                  |       |                        |      |      |       |                  | 2.94348 ms |
| 10 0.0.    |               |          |                  |       |                        | M    | 1[1] |       | 1.               | 39.46 dBm  |
| 0 dBm—     |               |          |                  |       |                        |      |      |       |                  | 773.91 µs  |
| -10 dBm    |               |          |                  |       |                        |      |      |       |                  |            |
| -10 000    | '             |          |                  |       |                        |      |      |       |                  |            |
| -20 dBm    | ∩             |          | +                |       |                        |      |      |       |                  |            |
|            |               |          |                  |       |                        |      |      |       |                  | 5          |
| -30 dBm    | י-ר           | MI       |                  |       |                        |      |      |       |                  |            |
| -40, dBm   | r             | MI       |                  |       | _                      |      |      |       |                  | R          |
| whether    | MUN           | 441      |                  |       |                        |      |      | PAMIN | y Public princip |            |
| -50 dBm    |               | US       | + +              |       |                        |      |      |       | 0 0 0            |            |
| -60 dBm    |               |          |                  |       |                        |      |      |       |                  |            |
| -00 ubii   | 'T            |          |                  |       |                        |      |      |       |                  |            |
| -70 dBm    | ν <del></del> |          |                  |       | _                      |      |      |       |                  |            |
|            |               |          |                  |       |                        |      |      |       |                  |            |
| CF 2.4     | B GHz         |          | 1 1              |       | 691 p                  | ts   |      |       |                  | 500.0 µs/  |
| Marker     |               |          |                  |       |                        |      |      |       |                  |            |
| Туре       | Ref           |          | Stimulus         |       | Response               | Func | tion | Fu    | nction Result    |            |
| M1         | 641           | 1        |                  | 91 µs | -39.46 dBm<br>-7.01 dB |      |      |       |                  |            |
| D1<br>D2   | M1<br>M1      | 1        | 2.9434<br>3.7449 |       | -7.01 dE<br>1.49 dE    |      |      |       |                  |            |

# Report No.: HA150021-RA

///

Ready




#### Report No.: HA150021-RA

# 8 Peak Output Power

#### 8.1 Test Instruments

Refer to Sec. 1.2 Test Instruments.

# 8.2 Test Arrangement and Procedure



- 1. The transmitter output was connected to a sp ectrum analyzer (through an atten uator, if it's necessary).
- 2. The RBW is set to 3MHz and VBW is set to 3MHz. Span set to 5MHz.
- 3. Max Hold..

# 8.3 Limit (§ 15.247(b))

- 15.247(b) The maximum peak conducted output power of the intentional radiator shall not excee d the following:
- 15.247(b)(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. F or all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
- 15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the co nducted output power from the intentional rad iator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is <u>3</u> dBi, therefore, the limit is 30 dBm.

# 8.4 Test Result

#### Compliance.

The final test data are shown on the following page(s).



| Bluetooth 1 Mbps (DH | 5)              |              |             |
|----------------------|-----------------|--------------|-------------|
| Channel              | Frequency (MHz) | Result (dBm) | Limit (dBm) |
| 00                   | 2402            | -18.78       | 30          |
| 39                   | 2441            | -19.41       | 30          |
| 78                   | 2480            | -22.77       | 30          |

| 🖌 HongAn TE     | CHNOL | LOGY CO., LTL  | D.       |         |             |     |        | Repo      | ort No.: HA | 150021-RA              |
|-----------------|-------|----------------|----------|---------|-------------|-----|--------|-----------|-------------|------------------------|
| Temperature     | :     | <b>25.4</b> ℃  |          |         | Humidity    | :   | 40     | %         |             |                        |
| Test Date       | :     | 25-May-20      | 015      |         | Tested by   | / : | Ea     | son Hsieh |             |                        |
| Test Mode       | :     | BT (1Mbp       | s) DH5   |         | Channel     | :   | 00     |           |             |                        |
| Spectrum        | ſ     |                |          |         |             |     |        |           |             |                        |
| Ref Level 10.00 | ) dBm |                | RBW      | 3 MHz   |             |     |        |           |             |                        |
|                 | 30 dB | <b>SWT</b> 1.3 | µs 🖷 VBW | 3 MHz M | ode Auto Fi | Τ   |        |           |             |                        |
| ⊖1Pk View       |       |                |          |         |             |     |        |           |             |                        |
|                 |       |                |          |         | MJ          | [1] |        |           |             | 18.78 dBm<br>00000 GHz |
| 0 dBm           |       |                |          |         |             |     |        |           | 2.402       |                        |
|                 |       |                |          |         |             |     |        |           |             |                        |
| -10 dBm         |       |                |          |         |             |     |        |           |             |                        |
|                 |       |                |          | M       | ī           |     |        |           |             |                        |
| -20 dBm         |       |                |          |         | 7           |     |        |           |             |                        |
|                 |       |                |          |         |             |     |        |           | 10000       |                        |
| -30 dBm         |       |                |          |         |             |     |        |           |             |                        |
|                 |       |                |          |         |             |     |        |           |             |                        |
| -40 dBm         |       |                |          |         |             |     |        |           |             |                        |
|                 |       |                |          |         |             |     |        |           |             |                        |
| -50 dBm         |       |                |          |         |             |     |        |           |             |                        |
|                 |       |                |          |         |             |     |        |           |             |                        |
| -60 dBm         |       |                |          |         |             |     |        |           |             |                        |
|                 |       |                |          |         |             |     |        |           |             |                        |
| -70 dBm         |       |                |          |         |             |     |        |           |             |                        |
|                 |       |                |          |         |             |     |        |           |             |                        |
| -80 dBm         |       |                |          |         |             |     |        |           |             |                        |
|                 |       |                |          |         |             |     |        |           |             |                        |
| CF 2.402 GHz    |       |                |          | 691     | nte         |     |        |           |             | n 5.0 MHz              |
|                 |       |                |          | 091     | pts         | M   |        |           | opa         |                        |
|                 |       |                |          |         |             | mea | asurin | y         |             | · //,                  |

| HongAn TEC      | HNOLOGY CO., LTD.                     |         | Report No.: HA150021-                 |
|-----------------|---------------------------------------|---------|---------------------------------------|
| Test Mode       | : BT (1Mbps) DH5                      | Channel | : 39                                  |
| Spectrum        |                                       |         | (                                     |
| Ref Level 10.00 | dBm 🛛 🖷 RBW 3                         | MHz     | · · · · · · · · · · · · · · · · · · · |
|                 | 0 dB <b>SWT</b> 1.3 µs 👄 <b>VBW</b> 3 |         |                                       |
| ●1Pk View       | · · · · ·                             |         |                                       |
|                 |                                       | M1[1]   | -19.41 d<br>2.44100000 0              |
| 0 dBm           |                                       |         |                                       |
| -10 dBm         |                                       |         |                                       |
| -20 dBm         |                                       | M1      |                                       |
|                 |                                       |         |                                       |
| -30 dBm         |                                       |         |                                       |
| -40 dBm         |                                       |         |                                       |
| -50 dBm         |                                       |         |                                       |
| -60 dBm         |                                       |         |                                       |
| -70 dBm         |                                       |         |                                       |
| -80 dBm         |                                       |         |                                       |
| CF 2.441 GHz    |                                       | 601 ptc | Span E 0 Mi                           |
| GF 2.441 GHZ    |                                       | 691 pts | Span 5.0 Mł                           |
|                 |                                       | M       | 1easuring 🚺 🚺 🚧                       |

Channel : 78

| Test Mode : | BT (1 Mbps) DH5 |
|-------------|-----------------|
|-------------|-----------------|

| Spectrun  | n         |         |          |         |             |         |      |       |                        |
|-----------|-----------|---------|----------|---------|-------------|---------|------|-------|------------------------|
|           | 10.00 dBm |         | RBW      |         |             |         |      |       |                        |
| Att       | 30 dB     | SWT 1.3 | µs 👄 VBW | 3 MHz M | lode Auto F | FT      |      |       |                        |
| ⊜1Pk View |           |         |          |         |             |         |      | 500   |                        |
|           |           |         |          |         | M           | 1[1]    |      |       | 22.77 dBm<br>00000 GHz |
| 0 dBm     |           |         |          |         |             |         |      | 2.400 |                        |
| -10 dBm   |           |         |          |         |             |         |      |       |                        |
| 00 40     |           |         |          | N       | 1           |         |      |       |                        |
| -20 dBm—  |           |         | -        |         |             |         |      |       |                        |
| -30 dBm-  |           |         |          |         |             |         |      |       |                        |
| -40 dBm—  |           |         |          |         |             |         |      |       |                        |
| -50 dBm   |           |         |          |         |             |         |      |       |                        |
| -60 dBm   |           |         |          |         |             |         |      |       |                        |
| -70 dBm   |           |         |          |         |             |         |      |       |                        |
| -80 dBm   |           |         |          |         |             |         |      |       |                        |
| CF 2.48 G | <br>Hz    |         |          | 691     | pts         |         |      | Sna   | n 5.0 MHz              |
|           |           |         |          | 551     |             | Measuri | ng 🔳 |       |                        |
|           |           |         |          |         |             | ,       |      |       | - //                   |

# 9 100kHz Bandwidth of Band Edges

#### 9.1 Test Instruments

Refer to Sec. 1.2 Test Instruments.

#### 9.2 Test Arrangement and Procedure



- 1. Remove the antenna from the transmitter and connected it to a spectrum analyzer through a low loss RF cable (connect an attenuator, if it's necessary).
- 2. The RBW is set to 100 kHz and VBW is set to 100 kHz. Sweep set to Auto. Span set to 100MHz.
- 3. Max Hold. Mark Peak and record max level.
- 4. Keep the same instrument setting, perform the hopping function.
- 5. Max Hold. Mark Peak and record max level.

# 9.3 Limit (§ 15.247(d))

In any 100 kHz ba ndwidth outside the frequency band in which the spread spectrum or digitally m odulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, r adiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

## 9.4 Test Result

#### Compliance.

The final test data are shown on the following page(s).

Since the fix channel mode is the worst case, data of the hopping mode were not recorded in this report.



#### Bluetooth (1Mbps) Channel: <u>00</u> non-Hopping mode

|                                         | Measure           |                                     |                                      |                |               |  |
|-----------------------------------------|-------------------|-------------------------------------|--------------------------------------|----------------|---------------|--|
| Lower<br>Channel (MHz)                  | Max Peak<br>Power | Highest Freq. at<br>Lower Band edge | Max Peak Power at<br>Lower Band edge | Result<br>(dB) | Limit<br>(dB) |  |
| • · · · · · · · · · · · · · · · · · · · | (dBm)             | (MHz)                               | (dBm)                                |                |               |  |
| 2402.06                                 | -18.97            | 2400                                | -59.41                               | 40.44          | 20            |  |

*Remark: Result* (*dB*) = *Max Peak Power* – *Max Peak power at lower band edge. When Result* > *Limit, it's a pass.* 

| Bluetooth (1Mbps) Channel: 00 Hopping mode |          |                  |                   |        |       |  |  |  |
|--------------------------------------------|----------|------------------|-------------------|--------|-------|--|--|--|
|                                            | Measure  |                  |                   |        |       |  |  |  |
|                                            | Max Peak | Highest Freq. at | Max Peak Power at | Result | Limit |  |  |  |
|                                            | Power    | Lower Band edge  | Lower Band edge   | (dB)   | (dB)  |  |  |  |
| Channel (MHz)                              | (dBm)    | (MHz)            | (dBm)             |        |       |  |  |  |
| 2408.05                                    | -18.8    | 2326.13          | -56.96            | 38.16  | 20    |  |  |  |

Remark: Result (dB) = Max Peak Power – Max Peak power at lower band edge. When Result > Limit, it's a pass.



#### Bluetooth (1Mbps) Channel: <u>78</u> non-Hopping mode

|                        | Measure | ed Result |                                               |                |               |
|------------------------|---------|-----------|-----------------------------------------------|----------------|---------------|
| Upper<br>Channel (MHz) | Power   |           | Max Peak Power at<br>Upper Band edge<br>(dBm) | Result<br>(dB) | Limit<br>(dB) |
| 2480                   | -23.12  | 2578.6    | -58.47                                        | 35.35          | 20            |

*Remark: Result* (*dB*) = *Max Peak Power* – *Max Peak power at upper band edge. When Result* > *Limit, it's a pass.* 

| Bluetooth (1Mbps) Channel: <u>78</u> Hopping mode |          |                  |                   |        |       |  |  |  |
|---------------------------------------------------|----------|------------------|-------------------|--------|-------|--|--|--|
|                                                   | Measure  |                  |                   |        |       |  |  |  |
|                                                   | Max Peak | Highest Freq. at | Max Peak Power at | Result | Limit |  |  |  |
|                                                   | Power    | Upper Band edge  | Upper Band edge   | (dB)   | (dB)  |  |  |  |
| Channel (MHz)                                     | (dBm)    | (MHz)            | (dBm)             |        |       |  |  |  |
| 2472.09                                           | -22.45   | 2505.93          | -57.01            | 34.56  | 20    |  |  |  |

Remark: Result (dB) = Max Peak Power – Max Peak power at Upper band edge. When Result > Limit, it's a pass.

| 🖌 HongAn TECHI                 | NOL              | LOGY CO., LTD.                 |                    |              |                   |      | Rep                                            | ort No.: HA | 150021-RA                           |
|--------------------------------|------------------|--------------------------------|--------------------|--------------|-------------------|------|------------------------------------------------|-------------|-------------------------------------|
| Temperature                    | :                | <b>25.4</b> ℃                  |                    | Humidity     | , <u>;</u>        | 4    | 40%                                            |             |                                     |
| Test Date                      | :                | 25-May-2015                    |                    | Tested b     | у:                | E    | Eason Hsieh                                    | 1           |                                     |
| Test Mode                      | :                | BT (1Mbps)<br>non-hopping mode |                    | Channel      | :                 | 2    | 2402                                           |             |                                     |
| Spectrum                       |                  |                                |                    |              |                   |      |                                                |             |                                     |
|                                |                  | ● RBW<br>● SWT 90 ms ● VBW     | 100 kHz<br>300 kHz | Mode Auto    | ) Sweep           |      |                                                |             |                                     |
| ●1Pk View                      |                  | 1 1                            |                    |              | 1[1]              |      |                                                |             | 18.97 dBm                           |
| 0 dBm                          |                  |                                |                    |              | 2[1]              |      |                                                | 2.40        | 20600 GHz<br>59.41 dBm<br>00000 GHz |
| -10 dBm                        |                  |                                |                    |              |                   |      |                                                |             | 141                                 |
| -20 dBm-D1 -18.9               | 970              | dBm                            |                    |              |                   |      |                                                |             | M1                                  |
| -30 dBm                        |                  |                                |                    |              |                   |      |                                                |             |                                     |
| -40 dBm                        | -38              | 3.970 dBm                      |                    |              |                   |      |                                                |             |                                     |
| -50 dBm                        |                  |                                |                    |              |                   |      |                                                |             |                                     |
| raciolatellination or manhalad | <del>hefer</del> | the second the second second   | andaratharitarita  | mounduration | all of the second | माम् | www.adutoutoutoutoutoutoutoutoutoutoutoutoutou |             | a London                            |
| -70 dBm                        |                  |                                |                    |              |                   |      |                                                |             |                                     |
| -80 dBm                        |                  |                                |                    |              |                   |      |                                                |             |                                     |
|                                |                  |                                |                    |              |                   |      |                                                | F           |                                     |
| Start 2.31 GHz                 |                  |                                | 1001               | pts          |                   |      |                                                |             | 2.41 GHz                            |
|                                |                  |                                |                    |              | Mea               | su   | ıring 🚺                                        |             |                                     |

| Hong             | An TECHNO    | LOGY CO., LT                             | D.                       |                       |                      |          |                   | Report No                                  | : HA1500              | 21-RA   |
|------------------|--------------|------------------------------------------|--------------------------|-----------------------|----------------------|----------|-------------------|--------------------------------------------|-----------------------|---------|
| Test Mode        | :            | BT (1 Mb                                 | os) Hoppin               | g mode                | Channel              | :        | 2402              |                                            |                       |         |
| Spectrum         | 'n           |                                          |                          |                       |                      |          |                   |                                            |                       |         |
| <b>Ref Level</b> | 10.00 dBm    |                                          | 🔵 RBW                    | ' 100 kHz             |                      |          |                   |                                            |                       |         |
| Att              | 30 dB        | 👄 SWT 10                                 | ms 👄 VBW                 | / 300 kHz             | Mode Auto            | Sweep    |                   |                                            |                       | -       |
| ⊖1Pk View        |              |                                          |                          |                       |                      |          |                   |                                            |                       | ,       |
|                  |              |                                          |                          |                       | M                    | [1]      |                   |                                            | -18.8                 | 0 dBm   |
|                  |              |                                          |                          |                       |                      |          |                   |                                            | 2.408050              | 0 GHz   |
| 0 dBm            |              |                                          |                          |                       | MS                   | 2[1]     |                   |                                            | -56.9                 | 6 dBm   |
|                  |              |                                          |                          |                       |                      |          |                   | r                                          | 2.326130              | 0 GHz   |
| -10 dBm          |              |                                          |                          |                       |                      |          |                   |                                            |                       |         |
| 10 0.0111        |              |                                          |                          |                       |                      |          |                   |                                            |                       | 100     |
|                  | D1 -18.800   | dBm                                      |                          |                       |                      |          |                   |                                            |                       | M1      |
| -20 dBm          | DI -10.000   |                                          |                          |                       |                      |          |                   |                                            | 111                   | 11111   |
|                  |              |                                          |                          |                       |                      |          |                   |                                            |                       | JARIN ( |
| -30 dBm          | ,            |                                          |                          |                       |                      |          |                   |                                            | 10                    | ЩЩЦ     |
|                  |              |                                          |                          |                       |                      |          |                   |                                            | 14                    | ԱԱՍՊ    |
| -40 dBm          |              | 8.800 dBm <u>—</u>                       |                          |                       |                      |          |                   |                                            | P***                  |         |
| -40 uBm          | TO OLAN MORE | Contraction Contraction of               |                          |                       |                      |          |                   |                                            |                       |         |
|                  |              |                                          |                          |                       |                      |          |                   |                                            |                       |         |
| -50 dBm          | 10.0120      |                                          |                          |                       |                      |          | _                 |                                            |                       |         |
|                  | M2           |                                          |                          |                       |                      |          |                   |                                            |                       |         |
| h-bendeminit     | -            | والمربعة والمحاوية المجاجر المعرو العالم | مراوا معربية أسريهم والم | والعسير والمد ومحاوله |                      | -Allower |                   | 1.4. Martin and Incold                     | uterture al           |         |
|                  |              | 1200071280 200-0                         | 1946 - 194 - CESTRONS    | 1997.A. 252.6900. 897 | 1. A 1994 (947) A 19 |          | 10.000 mar 20.000 | and the second second second second second | and the second second |         |
|                  |              |                                          |                          |                       |                      |          |                   |                                            |                       |         |
| -70 dBm—         |              |                                          |                          |                       |                      |          |                   |                                            |                       | 1       |
|                  |              |                                          |                          |                       |                      |          |                   |                                            |                       |         |
| -80 dBm          |              |                                          |                          |                       |                      |          |                   |                                            |                       |         |
|                  |              |                                          |                          |                       |                      |          |                   |                                            | F1                    |         |
| Start 2.31       | GHz          | 1                                        |                          | 100:                  | l pts                |          |                   |                                            | Stop 2.41             | GHz     |
|                  |              |                                          |                          |                       |                      | Mea      | suring            |                                            |                       |         |
| L                |              |                                          |                          |                       |                      | nea      | surniy            |                                            |                       | 11.     |

| HongA                                 | n TECHNO           | LOGYCO     | ., LTD.    |       |           |                        |          |                    | Report No.          | : HA1         | 50021   | -RA |
|---------------------------------------|--------------------|------------|------------|-------|-----------|------------------------|----------|--------------------|---------------------|---------------|---------|-----|
| Toot Mode                             |                    | BT (1      | Mbps)      |       |           | Channel                |          | 2480               |                     |               |         |     |
| Test Mode                             | •                  | non-ho     | opping mo  | ode   |           | Channel                | •        |                    |                     |               |         |     |
| Spectrum                              |                    |            |            |       |           |                        |          |                    |                     |               | ſ       | ₽   |
|                                       |                    |            |            |       | ₩ 100 kHz |                        |          |                    |                     |               | ļ       |     |
| Ref Level 1<br>Att                    | 10.00 авт<br>30 dB | SWT        | 227 5 us ( |       | W 300 kHz | Mode Au                | to FET   |                    |                     |               |         |     |
| ●1Pk View                             | 00 40              | 0/11       | 221.5 μ3   |       |           | moue Au                |          |                    |                     |               |         |     |
|                                       |                    |            |            |       |           | M                      | 1[1]     |                    |                     |               | 23.12 d | Bm  |
|                                       |                    |            |            |       |           |                        |          |                    |                     |               | 30000 ( | 100 |
| 0 dBm                                 |                    |            |            |       |           | M:                     | 2[1]     |                    |                     |               | 58.47 d |     |
|                                       |                    |            |            |       |           |                        |          | T                  | Ĩ                   | 2.57          | 78680 ( | GHZ |
| -10 dBm                               |                    |            |            |       |           |                        |          |                    |                     |               |         | -   |
|                                       |                    |            |            |       |           |                        |          |                    |                     |               |         |     |
| -20148m-                              |                    |            |            |       |           |                        |          |                    |                     | —             |         | _   |
|                                       | 01 -23,120         | dBm        |            |       |           |                        |          |                    |                     |               |         |     |
| -30 c <mark>Bm</mark>                 |                    |            |            |       |           |                        |          |                    |                     | $\rightarrow$ |         | _   |
|                                       |                    |            |            |       |           |                        |          |                    |                     |               |         |     |
| -40 dBm                               |                    |            |            |       |           |                        |          |                    |                     | $\rightarrow$ |         | _   |
|                                       | — D2 -4;           | 3.120 dBi  | m          |       |           |                        |          |                    |                     |               |         | -   |
| -50 dBm                               |                    |            |            |       |           |                        |          |                    |                     |               |         | _   |
|                                       |                    |            |            |       | M2        | 9                      |          |                    |                     |               |         |     |
| Jag dBaby                             | -                  | mathematic | AM MARAMAN | Allon | thereway  | addreathering          | Mandante | all when the state | a long barting long | toutport      | withing | -   |
| · · · · · · · · · · · · · · · · · · · |                    |            |            |       |           | 1999 10.00 Percent 100 |          |                    |                     |               |         |     |
| -70 dBm                               |                    |            |            |       |           |                        |          |                    |                     |               |         |     |
|                                       |                    |            |            |       |           |                        |          |                    |                     |               |         |     |
| -80 dBm                               |                    | ļ          |            |       |           |                        |          |                    |                     |               |         |     |
| F1                                    |                    |            |            |       |           |                        |          |                    |                     |               |         |     |
|                                       |                    |            |            |       |           |                        |          |                    |                     |               |         |     |
| Start 2.47 G                          | Hz                 |            |            |       | 1001      | pts                    |          |                    |                     |               | 2.69 G  | Hz  |
|                                       | Л                  |            |            |       |           |                        | Meas     | suring             |                     | 144           |         |     |

| Hong                      | An TECHNO       | LOGY CO., L    | TD.             |                   |         |                 | Rep                                            | oort No.: HA               | 150021-RA    |
|---------------------------|-----------------|----------------|-----------------|-------------------|---------|-----------------|------------------------------------------------|----------------------------|--------------|
| Test Mode                 | :               | BT (1 Mb       | ops) Hoppin     | g mode            | Channel | :               | 2480                                           |                            |              |
| Spectrun                  | n               |                |                 |                   |         |                 |                                                |                            |              |
| Ref Level                 | 10.00 dBm       |                | 👄 RB            | <b>W</b> 100 kHz  |         |                 |                                                |                            |              |
| Att                       | 30 dB           | <b>SWT</b> 22  | 7.5 µs 👄 VB     | <b>W</b> 300 kHz  | Mode Au | ito FFT         |                                                |                            |              |
| ●1Pk View                 |                 |                |                 |                   |         |                 |                                                |                            |              |
|                           |                 |                |                 |                   | M       | 1[1]            |                                                | 5                          | 22.45 dBm    |
|                           |                 |                |                 |                   |         |                 |                                                | 2.4                        | 72090 GHz    |
| 0 dBm                     |                 |                |                 |                   | M       | 2[1]            |                                                |                            | 57.01 dBm    |
|                           |                 |                |                 |                   |         |                 | T.                                             | 2.5                        | 05930 GHz    |
| -10 dBm                   |                 |                |                 |                   |         |                 |                                                |                            |              |
| 10 0.011                  |                 |                |                 |                   |         |                 |                                                |                            |              |
| 11- 1-                    |                 |                |                 |                   |         |                 |                                                |                            |              |
| 420 dBm                   | D1 -22.450      | ) dBm          |                 |                   |         |                 |                                                |                            |              |
| MARINE -                  |                 |                |                 |                   |         |                 |                                                |                            |              |
| 1481 (Bm                  |                 |                |                 |                   |         |                 |                                                |                            |              |
|                           |                 |                |                 |                   |         |                 |                                                |                            |              |
| -40 dBm                   |                 |                |                 |                   |         |                 |                                                |                            |              |
|                           | D2 -4           | 4.450 dBm-     |                 |                   |         |                 |                                                |                            |              |
| -50 d <mark>8</mark> m    | -               |                |                 |                   |         |                 |                                                |                            |              |
|                           | M2              |                |                 |                   |         |                 |                                                |                            |              |
| -60 d <mark>8 h~ h</mark> | and an intering | hoursen and    | Juneaky Lange M | Public and an and | -       | ببالديم ويستعال | محبوبيها والمعادلة والموادية                   | and the state of the state | up marghales |
| 00 00 11                  | 23 253500       | 1. 1911 (1993) |                 |                   |         | 6 6886 (N       | 245 (A. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | S 526 13                   | 81 (AC14)    |
|                           |                 |                |                 |                   |         |                 |                                                |                            |              |
| -70 dBm—                  |                 |                |                 |                   |         |                 |                                                |                            |              |
|                           |                 |                |                 |                   |         |                 |                                                |                            |              |
| -80 dB <mark>m</mark>     |                 |                |                 |                   |         |                 |                                                |                            |              |
| F1                        |                 |                |                 |                   |         |                 |                                                |                            |              |
| Start 2.47                | GHz             |                | 1               | 1001              | pts     |                 | I                                              | Stop                       | 2.69 GHz     |
|                           | )(              |                |                 |                   | 1       | Meas            | uring                                          |                            | 1            |
|                           |                 |                |                 |                   |         | J               |                                                |                            | - ///        |

# 10 Spurious RF Conducted Emissions

#### **10.1 Test Instruments**

Refer to Sec. 1.2 Test Instruments.

### **10.2 Test Arrangement and Procedure**



1. Remove the antenna from the transmitter and connected it to a spectrum analyzer through a low loss RF cable (connect an attenuator, if it's necessary).

2. Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic.

3. Typically, several plots are required to cover this entire span.

4. RBW = 100 kHz ; VBW  $\geq$  RBW ; Sweep = auto

- 5. Detector function = peak ; Trace = max hold ; Allow the trace to stabilize.
- 6. Set the marker on the peak of any spurious emission recorded.
- 7. The level displayed must comply with the limit specified in this Section.
- 8. Submit these plots.

# 10.3 Limit (§ 15.247(d))

In any 100 kHz ba ndwidth outside the frequency band in which the spread spectrum or digitally m odulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a ra diated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, r adiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

# 10.4 Test Result

#### Compliance.

The final test data are shown on the following page(s).

Since the fix channel mode is the worst case, data of the hopping mode were not recorded in this report.

# Bluetooth (1Mbps) Channel: 00

| 2.0000000000000000000000000000000000000 | 56) Ghannon <u>56</u> |                    |                    |        |       |
|-----------------------------------------|-----------------------|--------------------|--------------------|--------|-------|
|                                         | Measure               |                    |                    |        |       |
|                                         | Max Peak              | Highest Freq. at   | Max Peak Power at  | Result | Limit |
| (GHz)                                   | Power                 | spurious emissions | spurious emissions | (dB)   | (dB)  |
|                                         | (dBm)                 | (GHz)              | (dBm)              |        |       |
| 2.40210                                 | -20.07                | 2.82640            | -57.93             | 37.86  | 20    |
| 2.4020                                  | -20.41                | 15.6250            | -50.04             | 29.63  | 20    |

*Remark: Result* (*dB*) = *Max Peak Power* – *Max Peak power at spurious emissions.* 

When Result > Limit, it's a pass.

| Spectrum<br>Ref Level 1<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00 dBm<br>30 dB            | SWT 29            | ● RB<br>7 ms ● VB   | W 100 kHz<br>W 300 kHz     | Mode Auto                             | Sween               |                       |                     |                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|---------------------|----------------------------|---------------------------------------|---------------------|-----------------------|---------------------|----------------------------------------------------|
| 1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00 00                        | 0HT 25.           | 7 1113 - 70         | N SOO KIL                  | Mode Aut                              | 5 3466p             |                       |                     |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                   |                     |                            | M1                                    | [1]                 |                       |                     | -20.07 dB                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                   |                     |                            |                                       |                     |                       |                     | .40210 GH                                          |
| dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                   |                     |                            | M2                                    | [1]                 |                       |                     | -57.93 dB                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                   |                     |                            | 1                                     | 1                   |                       | 2                   | .82640 GF                                          |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                   |                     | -                          |                                       |                     |                       |                     |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                   |                     |                            |                                       |                     | M                     | 1                   |                                                    |
| 20 dBm D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 -20.070                    | dBm               |                     |                            |                                       |                     |                       | ÷                   | _                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                   |                     |                            |                                       |                     |                       |                     |                                                    |
| 30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                   |                     |                            |                                       |                     |                       |                     |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                   |                     |                            |                                       |                     |                       |                     |                                                    |
| 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00.40                        | 070 40-           |                     |                            |                                       |                     |                       |                     |                                                    |
| 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -D2 -40                      | .070 dBm-         |                     |                            |                                       |                     |                       |                     |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                   |                     |                            |                                       |                     |                       |                     |                                                    |
| 50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                   |                     |                            |                                       |                     |                       | -                   | 10000                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                   |                     |                            |                                       |                     |                       |                     | M2                                                 |
| 60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | البيني ا                     | A dilly demotion  | Alitative deter     | kuljoteltrurturaneltik     | الماران والمحمد المرام الماريد        | tutur matteriture   | and the second second | and the dimension   | aletter mulo                                       |
| united the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | malanalinale                 | An M. M. M. M. A. | - An at low so a.   | And a second and have been | -11- 47 all -1                        |                     |                       |                     |                                                    |
| 70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                   |                     |                            |                                       |                     |                       |                     | -                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                   |                     |                            |                                       |                     |                       |                     |                                                    |
| 80 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                   |                     |                            |                                       |                     |                       |                     | _                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                   |                     |                            |                                       |                     |                       |                     |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                   |                     |                            | · · · · · · · · · · · · · · · · · · · |                     |                       |                     |                                                    |
| start 30.0 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hz                           |                   |                     | 1001                       | pts                                   |                     |                       | St                  | op 3.0 GH                                          |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | π                            |                   |                     |                            |                                       | Measurir            | ig <b></b>            |                     | •                                                  |
| Spectrum<br>Ref Level 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | 8WT 220           |                     | V 100 kHz                  | Made Auto                             |                     | ıg <b>E</b>           |                     | Ģ                                                  |
| Second and the second sec | 0.00 dBm<br>30 dB            | <b>SWT</b> 230    | ● RBV<br>) ms ● VBV |                            | Mode Auto                             |                     | ıg <b>T</b>           |                     | Ę                                                  |
| Ref Level 1<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | <b>SWT</b> 230    |                     |                            |                                       | Sweep               | g <b>4</b>            |                     |                                                    |
| Ref Level 1<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | <b>SWT</b> 230    |                     |                            |                                       |                     | g <b>U</b>            |                     | -20.41 dB                                          |
| Ref Level 1<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | <b>SWT</b> 230    |                     |                            | M1                                    | Sweep               | g <b>U</b>            |                     | -20.41 dB<br>2.4020 Gł<br>-50.04 dB                |
| Ref Level 1<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | <b>SWT</b> 230    |                     |                            | M1                                    | Sweep               | g <b>4</b>            |                     | -20.41 dB<br>2.4020 Gł<br>-50.04 dB                |
| Att<br>IPk View<br>dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | <b>SWT</b> 230    |                     |                            | M1                                    | Sweep               | g <b>4</b>            |                     | -20.41 dB<br>2.4020 Gł<br>-50.04 dB                |
| Att<br>1Pk View<br>0 dBm<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | <b>SWT</b> 230    |                     |                            | M1                                    | Sweep               | g <b>.</b>            |                     | -20.41 dB<br>2.4020 Gł<br>-50.04 dB                |
| Act Level 1<br>Att<br>1Pk View<br>dBm<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30 dB                        |                   |                     |                            | M1                                    | Sweep               | g <b>.</b>            |                     | -20.41 dB<br>2.4020 GI<br>-50.04 dB                |
| Act Level 1<br>Att<br>1Pk View<br>dBm<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                   |                     |                            | M1                                    | Sweep               | g <b>.</b>            |                     | -20.41 dB<br>2.4020 Gł<br>-50.04 dB                |
| Ref Level 1<br>Att<br>1Pk View<br>10 dBm<br>10 dBm<br>10 dBm<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30 dB                        |                   |                     |                            | M1                                    | Sweep               | g <b>.</b>            |                     | -20.41 dB<br>2.4020 Gł<br>-50.04 dB                |
| Ref Level 1<br>Att<br>1Pk View<br>10 dBm<br>10 dBm<br>10 dBm<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30 dB                        |                   |                     |                            | M1                                    | Sweep               | g <b>.</b>            |                     | -20.41 dB<br>2.4020 Gł<br>-50.04 dB                |
| Ref Level 1           Att           1Pk View           dBm           10 dBm           10 dBm           10 dBm           10 dBm           10 dBm           10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30 dB                        | dBm               |                     |                            | M1                                    | Sweep               | g <b>.</b>            |                     | -20.41 dB<br>2.4020 Gł<br>-50.04 dB                |
| Ref Level 1           Att           11Pk View           0 dBm           10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30 dB                        |                   |                     |                            | M1                                    | Sweep               | g <b>.</b>            |                     | -20.41 dB<br>2.4020 Gł<br>-50.04 dB<br>5.6250 Gł   |
| Ref Level 1           Att           1Pk View           0 dBm           10 dBm           10 dBm           9 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30 dB                        | dBm               |                     |                            | M1                                    | Sweep               | g •                   |                     | -20.41 dB<br>2.4020 GF<br>-50.04 dB                |
| Ref Level 1           Att           1Pk View           0 dBm           10 dBm           10 dBm           9 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30 dB                        | dBm<br>.410 dBm   | ) ms • VBV          | V 300 kHz                  | M1<br>M2                              | Sweep<br>[1]<br>[1] |                       | 1                   | -20.41 dB<br>-20.4020 GH<br>-50.04 dB<br>5.6250 GH |
| Ref Level 1           Att           1Pk View           0 dBm           10 dBm           10 dBm           10 dBm           10 dBm           50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30 dB                        | dBm               | ) ms • VBV          | V 300 kHz                  | M1<br>M2                              | Sweep<br>[1]<br>[1] |                       |                     | -20.41 dB<br>-2.4020 Gł<br>-50.04 dB<br>5.6250 Gł  |
| Ref Level 1           Att           1Pk View           dBm           10 dBm           10 dBm           30 dBm           40 dBm           50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30 dB                        | dBm<br>.410 dBm   | ) ms • VBV          | V 300 kHz                  | M1<br>M2                              | Sweep<br>[1]<br>[1] |                       | 1                   | -20.41 dB<br>-2.4020 Gł<br>-50.04 dB<br>5.6250 Gł  |
| Ref Level 1           Att           1Pk View           0 dBm           10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 dB                        | dBm<br>.410 dBm   | ) ms • VBV          | V 300 kHz                  | M1<br>M2                              | Sweep<br>[1]<br>[1] |                       | 1                   | -20.41 dB<br>-2.4020 Gł<br>-50.04 dB<br>5.6250 Gł  |
| Ref Level 1           Att           1Pk View           0 dBm           10 dBm           10 dBm           10 dBm           10 dBm           50 dBm           50 dBm           50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 dB                        | dBm<br>.410 dBm   | ) ms • VBV          | V 300 kHz                  | M1<br>M2                              | Sweep<br>[1]<br>[1] |                       | 1                   | -20.41 dB<br>-2.4020 Gł<br>-50.04 dB<br>5.6250 Gł  |
| Ref Level 1           Att           1Pk View           0 dBm           10 dBm           10 dBm           10 dBm           10 dBm           50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30 dB                        | dBm<br>.410 dBm   | ) ms • VBV          | V 300 kHz                  | M1<br>M2                              | Sweep<br>[1]<br>[1] |                       | 1                   | -20.41 dB<br>-20.4020 GH<br>-50.04 dB<br>5.6250 GH |
| Ref Level 1           Att           1Pk View           0 dBm           10 dBm           10 dBm           10 dBm           10 dBm           50 dBm           50 dBm           50 dBm           70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 dB                        | dBm<br>.410 dBm   | ) ms • VBV          | V 300 kHz                  | M1<br>M2                              | Sweep<br>[1]<br>[1] |                       | 1                   | -20.41 dB<br>-2.4020 Gł<br>-50.04 dB<br>5.6250 Gł  |
| Ref Level 1           Att           1Pk View           0 dBm           10 dBm           10 dBm           10 dBm           10 dBm           50 dBm           50 dBm           50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 dB                        | dBm<br>.410 dBm   | ) ms • VBV          | V 300 kHz                  | M1<br>M2                              | Sweep<br>[1]<br>[1] |                       | 1                   | -20.41 dB<br>-20.4020 GH<br>-50.04 dB<br>5.6250 GH |
| Ref Level 1           Att           1Pk View           0 dBm           10 dBm           10 dBm           10 dBm           10 dBm           50 dBm           50 dBm           50 dBm           70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 dB                        | dBm<br>.410 dBm   | ) ms • VBV          | V 300 kHz                  | M1<br>M2                              | Sweep<br>[1]<br>[1] |                       | 1                   | -20.41 dB<br>-20.4020 GH<br>-50.04 dB<br>5.6250 GH |
| Ref Level 1           Att           1Pk View           idBm           10 dBm           10 dBm           10 dBm           10 dBm           50 dBm           50 dBm           50 dBm           70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 dB<br>1 -20.410<br>D2 -40 | dBm<br>.410 dBm   | ) ms • VBV          | V 300 kHz                  | M1<br>-M2<br>M3<br>M3<br>M3           | Sweep<br>[1]<br>[1] |                       | 1<br>N-bulturturtur | -20.41 dB<br>-20.4020 GH<br>-50.04 dB<br>5.6250 GH |

# Bluetooth (1Mbps) Channel: 39

| Bidoteotii (iiiib | 56) enamen <u>56</u> |                    |                    |        |       |
|-------------------|----------------------|--------------------|--------------------|--------|-------|
|                   | Measure              |                    |                    |        |       |
|                   | Max Peak             | Highest Freq. at   | Max Peak Power at  | Result | Limit |
| (GHz)             | Power                | spurious emissions | spurious emissions | (dB)   | (dB)  |
|                   | (dBm)                | (GHz)              | (dBm)              |        |       |
| 2.4407            | -19.73               | 2.10250            | -57.51             | 37.78  | 20    |
| 2.4480            | -20.24               | 15.0730            | -50.59             | 30.35  | 20    |

*Remark: Result* (*dB*) = *Max Peak Power* – *Max Peak power at spurious emissions.* 

When Result > Limit, it's a pass.

| REFLEVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                |                | DDUL 100 LV                  |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | Į,                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|----------------|------------------------------|--------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------|
| Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.00 dBn<br>30 dB              |                |                | RBW 100 kHz<br>VBW 300 kHz   | Mode Auto          | Sween                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
| 1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                |                |                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                |                              | M1                 | [1]                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 19.73 dB                                       |
| 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                |                |                              |                    | F 11                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 44070 GH                                       |
| ) dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                |                |                              | M2                 | [1]                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 57.51 dB<br>10250 GF                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                |                              | 1 1                | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                |
| 10 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                |                |                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                |                              |                    |                      | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                                |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D1 -19.73                       | 0 dBm          |                |                              |                    |                      | - II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                |                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
| 30 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                |                |                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                |                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
| 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | 39.730 dBr     | n              |                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                |                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
| 50 dBm —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br>9                          | -              |                |                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                |                              |                    | MP                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 1.000                                          |
| 60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | La anala                        | New March 1945 | hundernational | at the growth and the second | how and the second | Here and any how way | All and and all a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | الطالح مرمد ومشاهد | ulushashaan                                    |
| and the state of t | Marine Marine                   |                |                |                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
| 70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | -              |                | _                            |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                |                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
| 80 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                |                |                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                |                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |                |                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
| start 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MHz                             |                |                | 100                          | 1 pts              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sto                | p 3.0 GH                                       |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                               |                |                |                              |                    | Measuring.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | Ę                                              |
| Ref Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.00 dBn                       |                |                | RBW 100 kHz                  |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | Ģ                                              |
| Ref Level<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                |                | RB₩ 100 kHz<br>VB₩ 300 kHz   | Mode Auto          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | ļ                                              |
| Ref Level<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.00 dBn                       |                |                |                              |                    | Sweep                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |
| Ref Level<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.00 dBn                       |                |                |                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 20.24 dB                                       |
| Ref Level<br>Att<br>1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.00 dBn                       |                |                |                              |                    | Sweep                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                  | 20.24 dB<br>2.4480 GF<br>50.59 dB              |
| Ref Level<br>Att<br>1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.00 dBn                       |                |                |                              | M1                 | Sweep                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                  | 20.24 dB<br>2.4480 GF<br>50.59 dB              |
| Ref Level<br>Att<br>1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.00 dBn                       |                |                |                              | M1                 | Sweep                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                  | 20.24 dB<br>2.4480 GF<br>50.59 dB              |
| Att<br>1Pk View<br>dBm<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.00 dBn                       |                |                |                              | M1                 | Sweep                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                  | 20.24 dB<br>2.4480 GF<br>50.59 dB              |
| Att<br>Att<br>11Pk View<br>0 dBm<br>10 dBm<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.00 dBn                       | B SWT          |                |                              | M1                 | Sweep                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                  | 20.24 dB<br>2.4480 Gł<br>50.59 dB              |
| Att<br>Att<br>11Pk View<br>0 dBm<br>10 dBm<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.00 dBn<br>30 df              | B SWT          |                |                              | M1                 | Sweep                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                  | 20.24 dB<br>2.4480 GF<br>50.59 dB              |
| Att<br>Att<br>11Pk View<br>0 dBm<br>10 dBm<br>10 dBm<br>11<br>20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.00 dBn<br>30 df              | B SWT          |                |                              | M1                 | Sweep                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                  | 20.24 dB<br>2.4480 GF<br>50.59 dB              |
| Att<br>Att<br>11Pk View<br>0 dBm<br>10 dBm<br>10 dBm<br>11<br>20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.00 dBn<br>30 df              | B SWT          |                |                              | M1                 | Sweep                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                  | 20.24 dB<br>2.4480 GF<br>50.59 dB              |
| Aref Level<br>Att<br>1Pk View<br>0 dBm<br>10 dBm<br>10 dBm<br>11<br>70-dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.00 dBn<br>30 di<br>01 -20.24 | B SWT          | 230 ms • 1     |                              | M1                 | Sweep                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                  | 20.24 dB<br>2.4480 GF<br>50.59 dB              |
| Ref Level<br>Att<br>IPk View<br>0 dBm<br>10 dBm<br>10 dBm<br>11<br>30 dBm<br>30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.00 dBn<br>30 di<br>01 -20.24 | B SWT          | 230 ms • 1     |                              | M1<br>M2           | Sweep                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                  | 20.24 dB<br>2.4480 GF<br>50.59 dB              |
| Ref Level           Att           1Pk View           0 dBm           10 dBm           10 dBm           30 dBm           40-dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.00 dBn<br>30 di<br>01 -20.24 | B SWT          | 230 ms • 1     | VBW 300 kHz                  | M1<br>             | Sweep [1] [1] [1]    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                  | 20.24 dB<br>2.4480 Gi<br>50.59 dB<br>5.0730 Gi |
| Ref Level           Att           1Pk View           1Pk View           0 dBm           10 dBm           10 dBm           30 dBm           30 dBm           50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.00 dBm<br>30 di<br>D1 -20.24 | B SWT          | 230 ms • 1     | VBW 300 kHz                  | M1<br>             | Sweep [1] [1] [1]    | relative the star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                  | 20.24 dB<br>.4480 Gł<br>50.59 dB<br>5.0730 Gł  |
| Ref Level           Att           1Pk View           1Pk View           0 dBm           10 dBm           10 dBm           30 dBm           30 dBm           50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.00 dBm<br>30 di<br>D1 -20.24 | B SWT          | 230 ms • 1     |                              | M1<br>             | Sweep [1] [1] [1]    | rale all for the star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                  | 20.24 dB<br>.4480 Gł<br>50.59 dB<br>5.0730 Gł  |
| Ref Level           Att           1Pk View           1Pk View           0 dBm           10 dBm           10 dBm           30 dBm           30 dBm           50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.00 dBm<br>30 di<br>D1 -20.24 | B SWT          | 230 ms • 1     | VBW 300 kHz                  | M1<br>             | Sweep [1] [1] [1]    | rdeally with sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                  | 20.24 dB<br>.4480 Gł<br>50.59 dB<br>5.0730 Gł  |
| Ref Level<br>Att<br>1Pk View<br>0 dBm<br>10 dBm<br>10 dBm<br>10 dBm<br>30 dBm<br>40 dBm<br>50 dBm<br>50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.00 dBm<br>30 di<br>D1 -20.24 | B SWT          | 230 ms • 1     | VBW 300 kHz                  | M1<br>             | Sweep [1] [1] [1]    | rales at Agentification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                  | 20.24 dB<br>2.4480 GF<br>50.59 dB<br>5.0730 GF |
| 30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.00 dBm<br>30 di<br>D1 -20.24 | B SWT          | 230 ms • 1     | VBW 300 kHz                  | M1<br>             | Sweep [1] [1] [1]    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                  | 20.24 dB<br>.4480 GF<br>50.59 dB<br>5.0730 GF  |
| Ref Level<br>Att<br>1Pk View<br>0 dBm<br>10 dBm<br>10 dBm<br>10 dBm<br>30 dBm<br>40 dBm<br>50 dBm<br>50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.00 dBm<br>30 di<br>D1 -20.24 | B SWT          | 230 ms • 1     | VBW 300 kHz                  | M1<br>             | Sweep [1] [1] [1]    | ente all'hor d'All street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                  | 20.24 dB<br>.4480 Gł<br>50.59 dB<br>5.0730 Gł  |
| Ref Level           Att           1Pk View           0 dBm           10 dBm           10 dBm           30 dBm           30 dBm           60 dBm           50 dBm           70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.00 dBm<br>30 di<br>D1 -20.24 | B SWT          | 230 ms • 1     | VBW 300 kHz                  | M1<br>             | Sweep [1] [1] [1]    | ente all'anti de cale a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                  | 20.24 dB<br>.4480 GF<br>50.59 dB<br>5.0730 GF  |
| Ref Level<br>Att<br>1Pk View<br>dBm<br>10 dBm<br>10 dBm<br>10 dBm<br>30 dBm<br>60 dBm<br>50 dBm<br>50 dBm<br>70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.00 den<br>30 di<br>D1 -20.24 | B SWT          | 230 ms • 1     | VBW 300 kHz                  | M1<br>             | Sweep [1] [1] [1]    | ente all'anna de la constante | 2<br>              | 20.24 dB<br>.4480 Gł<br>50.59 dB<br>5.0730 Gł  |

# Bluetooth (1Mbps) Channel: 78

| Bidotootii (iiiib | 56) Ghannen <u>16</u> |                    |                    |        |       |
|-------------------|-----------------------|--------------------|--------------------|--------|-------|
|                   | Measure               |                    |                    |        |       |
|                   | Max Peak              | Highest Freq. at   | Max Peak Power at  | Result | Limit |
| (GHz)             | Power                 | spurious emissions | spurious emissions | (dB)   | (dB)  |
|                   | (dBm)                 | (GHz)              | (dBm)              |        |       |
| 2.47930           | -24.64                | 2.85020            | -58.43             | 33.79  | 20    |
| 2.4710            | -23.08                | 15.7290            | -50.11             | 27.03  | 20    |

*Remark: Result* (*dB*) = *Max Peak Power* – *Max Peak power at spurious emissions.* 

When Result > Limit, it's a pass.

| Spectrum<br>Ref Level<br>Att                                                                                                                                                                                                                                                                                                             |                                                                               |                              |                       | RBW 100 kHz<br>VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mode Aut            | to Swoon                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | [,                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------|
| 1Pk View                                                                                                                                                                                                                                                                                                                                 | 30 (                                                                          | 10 <b>5WI</b>                | 29.7 ms 🖷             | YBW 300 KH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MODE AU             | to Sweep                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                   |
|                                                                                                                                                                                                                                                                                                                                          |                                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                   | 1[1]                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -24.64 dB                                         |
|                                                                                                                                                                                                                                                                                                                                          |                                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 2.47930 GH                                        |
| dBm                                                                                                                                                                                                                                                                                                                                      |                                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                   | 2[1]                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -58.43 dB                                         |
|                                                                                                                                                                                                                                                                                                                                          |                                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                   | 1                       | î.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1         | 2.85020 GH                                        |
| 10 dBm                                                                                                                                                                                                                                                                                                                                   |                                                                               | -                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                   |                         | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -         |                                                   |
|                                                                                                                                                                                                                                                                                                                                          |                                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                   |
| 20 dBm                                                                                                                                                                                                                                                                                                                                   |                                                                               | _                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MI        |                                                   |
|                                                                                                                                                                                                                                                                                                                                          | D1 -24.6                                                                      | 40 dBm-                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y         |                                                   |
| 30 dBm                                                                                                                                                                                                                                                                                                                                   |                                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                   |
|                                                                                                                                                                                                                                                                                                                                          |                                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                   |
| 40 dBm                                                                                                                                                                                                                                                                                                                                   |                                                                               | _                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                   |
| io abiii                                                                                                                                                                                                                                                                                                                                 | D2                                                                            | -44.640 dBi                  | m                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                   |
| 50 dBm                                                                                                                                                                                                                                                                                                                                   |                                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                   |
| JO UDITI                                                                                                                                                                                                                                                                                                                                 |                                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 140                                               |
| 60 d0                                                                                                                                                                                                                                                                                                                                    |                                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | M2                                                |
| ou asm                                                                                                                                                                                                                                                                                                                                   | ab J How                                                                      | an har with the second start | berkash guesdy halmon | where the second and the second s | HURLING HIDLEN PHUL | errolly and the second  | approximate a provinsion of the second s | A HAMANNA | Man Manufactures and the                          |
|                                                                                                                                                                                                                                                                                                                                          | non-render of d                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | 1.4                     | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                                   |
| 70 dBm                                                                                                                                                                                                                                                                                                                                   |                                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                   |
| 100.000                                                                                                                                                                                                                                                                                                                                  |                                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                   |
| 80 dBm                                                                                                                                                                                                                                                                                                                                   |                                                                               | -                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -         |                                                   |
|                                                                                                                                                                                                                                                                                                                                          |                                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                   |
| tart 30.0                                                                                                                                                                                                                                                                                                                                | MHz                                                                           |                              |                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 pts               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | Stop 3.0 GH                                       |
| Spectrup                                                                                                                                                                                                                                                                                                                                 |                                                                               |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | Measur                  | ing <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                                   |
| Spectrun<br>Ref Level<br>Att                                                                                                                                                                                                                                                                                                             | 10.00 dB                                                                      |                              |                       | RBW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mode Aut            | ,<br>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | Ę                                                 |
|                                                                                                                                                                                                                                                                                                                                          |                                                                               |                              |                       | <b>RBW</b> 100 kHz<br><b>VBW</b> 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mode Aut            | ,<br>                   | ing <b>4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | (q                                                |
| Ref Level<br>Att                                                                                                                                                                                                                                                                                                                         | 10.00 dB                                                                      |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | ,<br>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 1                                                 |
| Ref Level<br>Att<br>1Pk View                                                                                                                                                                                                                                                                                                             | 10.00 dB                                                                      |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | м                   | o Sweep<br>1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 GI                            |
| Ref Level<br>Att                                                                                                                                                                                                                                                                                                                         | 10.00 dB                                                                      |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | м                   | o Sweep                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 Gł<br>-50.11 dB               |
| Ref Level<br>Att<br>1Pk View<br>dBm                                                                                                                                                                                                                                                                                                      | 10.00 dB                                                                      |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | м                   | o Sweep<br>1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 GI<br>-50.11 dB               |
| Ref Level<br>Att<br>1Pk View<br>dBm                                                                                                                                                                                                                                                                                                      | 10.00 dB                                                                      |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | м                   | o Sweep<br>1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 GI<br>-50.11 dB               |
| Att<br>1Pk View<br>dBm<br>10 dBm                                                                                                                                                                                                                                                                                                         | 10.00 dB                                                                      |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | м                   | o Sweep<br>1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 Gł<br>-50.11 dB               |
| Att<br>1Pk View<br>dBm<br>10 dBm<br>20 dBm                                                                                                                                                                                                                                                                                               | 10.00 dB<br>30 (                                                              | dB SWT                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | м                   | o Sweep<br>1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 GI<br>-50.11 dB               |
| Att<br>IPk View<br>dBm<br>10 dBm<br>dBm                                                                                                                                                                                                                                                                                                  | 10.00 dB                                                                      | dB SWT                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | м                   | o Sweep<br>1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 GI<br>-50.11 dB               |
| Att<br>IPk View<br>dBm<br>10 dBm<br>dBm                                                                                                                                                                                                                                                                                                  | 10.00 dB<br>30 (                                                              | dB SWT                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | м                   | o Sweep<br>1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 GI<br>-50.11 dB               |
| Att<br>IPk View<br>dBm<br>10 dBm<br>dBm                                                                                                                                                                                                                                                                                                  | 10.00 dB<br>30 (                                                              | dB SWT                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | м                   | o Sweep<br>1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 GI<br>-50.11 dB               |
| Ref Level           Att           1Pk View           dBm           10 dBm           20 dBm           a0 dBm                                                                                                                                                                                                                              | 10.00 dB<br>30 d                                                              | 30 dBm                       | 230 ms                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | м                   | o Sweep<br>1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 Gł<br>-50.11 dB               |
| Ref Level           Att           1Pk View           dBm           10 dBm           20 dBm           a0 dBm                                                                                                                                                                                                                              | 10.00 dB<br>30 d                                                              | dB SWT                       | 230 ms                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                   | o Sweep<br>1[1]<br>2[1] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 Gł<br>-50.11 dB               |
| Ref Level           Att           1Pk View           dBm           10 dBm           20 dBm           a0 dBm           a0 dBm                                                                                                                                                                                                             | 10.00 dB<br>30 d                                                              | 30 dBm                       | 230 ms                | VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M                   | o Sweep<br>1[1]<br>2[1] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 GI<br>-50.11 dB<br>15.7290 GI |
| Ref Level           Att           1Pk View           dBm           10 dBm           20 dBm           40 dBm           40 dBm                                                                                                                                                                                                             | 10.00 dB<br>30 (<br>D1 -23.0                                                  | 48 SWT                       | 230 ms                | VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M                   | o Sweep<br>1[1]<br>2[1] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 Gł<br>-50.11 dB<br>15.7290 Gł |
| Ref Level           Att           1Pk View           dBm           10 dBm           20 dBm           40 dBm           40 dBm                                                                                                                                                                                                             | 10.00 dB<br>30 d                                                              | 48 SWT                       | 230 ms                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                   | o Sweep<br>1[1]<br>2[1] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 G<br>-50.11 dB<br>15.7290 Gł  |
| Ref Level           Att           1Pk View           dBm           10 dBm           20 dBm           40 dBm           40 dBm                                                                                                                                                                                                             | 10.00 dB<br>30 (<br>D1 -23.0                                                  | 48 SWT                       | 230 ms                | VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M                   | o Sweep<br>1[1]<br>2[1] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 Gł<br>-50.11 dB<br>15.7290 Gł |
| Ref Level           Att           1Pk View           dBm           10 dBm           20 dBm                                                                                                                        | 10.00 dB<br>30 (<br>D1 -23.0                                                  | 48 SWT                       | 230 ms                | VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M                   | o Sweep<br>1[1]<br>2[1] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 Gł<br>-50.11 dB<br>15.7290 Gł |
| Ref Level           Att           01Pk View           0 dBm           10 dBm           20 dBm                                                                                                                                                                                                                                            | 10.00 dB<br>30 (<br>D1 -23.0                                                  | 48 SWT                       | 230 ms                | VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M                   | o Sweep<br>1[1]<br>2[1] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 Gł<br>-50.11 dB<br>15.7290 Gł |
| Ref Level           Att           1Pk View           dBm           10 dBm           20 dBm | 10.00 dB<br>30 (<br>D1 -23.0                                                  | 48 SWT                       | 230 ms                | VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M                   | o Sweep<br>1[1]<br>2[1] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 Gł<br>-50.11 dB<br>15.7290 Gł |
| Ref Level           Att           1Pk View           dBm           10 dBm           20 dBm                                                                                                                        | 10.00 dB<br>30 (<br>D1 -23.0                                                  | 48 SWT                       | 230 ms                | VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M                   | o Sweep<br>1[1]<br>2[1] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 Gł<br>-50.11 dB<br>15.7290 Gł |
| Ref Level           Att           1Pk View           dBm           10 dBm           20 dBm | 10.00 dB<br>30 (<br>D1 -23.0                                                  | 48 SWT                       | 230 ms                | VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M                   | o Sweep<br>1[1]<br>2[1] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 Gł<br>-50.11 dB<br>15.7290 Gł |
| Ref Level           Att           1Pk View           dBm           10 dBm           20 dBm | 10.00 dB<br>30 d<br>20 d<br>20 d<br>20 d<br>20 d<br>20 d<br>20 d<br>20 d<br>2 | 48 SWT                       | 230 ms                | VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M                   | o Sweep<br>1[1]<br>2[1] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -23.08 dB<br>2.4710 Gł<br>-50.11 dB<br>15.7290 Gł |

# **11 Antenna requirement**

# 11.1 Limit (§ 15.203)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a uniue coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

# 11.2 Test Result

#### Compliance.

The EUT applies a PCB antenna.

# **12 Information about the FHSS characteristics**

# 12.1 Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels.

The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master.

The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1600 hops/s.

#### 12.2 Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10,43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

# **12.3 Equal Hopping Frequency Use**

Due to each the GFSK of modulation of hopping frequency will be transmitted in accordance to the frequency tables described above, there is no any frequency will be able to hop more times than other. Therefore each frequency will be used equally.