

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE191201805

FCC REPORT

Applicant: SWAGTEK

Address of Applicant: 10205 NW 19th St. Suite 101, Miami, FL, 33172

Equipment Under Test (EUT)

Product Name: 5.5 inch 3G Smart Phone

Model No.: X55 PLUS, ATLAS, W55 PLUS

Trade mark: LOGIC, iSWAG, UNONU

FCC ID: 055554319

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 04 Dec., 2019

Date of Test: 05 Dec., 2019 to 09 Jan., 2020

Date of report issued: 10 Jan., 2020

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No: CCISE1912018

2 Version

Version No.	Date	Description
00	10 Jan., 2020	Original

Tested by:	Date:		10 Jan., 2020	
	Test Engineer			
Reviewed by:	Winner Thang	Date:	10 Jan., 2020	

Project Engineer

3 Contents

			Page
1	С	OVER PAGE	1
2	V	/ERSION	2
3	С	ONTENTS	3
4	TI	EST SUMMARY	4
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	MEASUREMENT UNCERTAINTY	
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	6
	5.7	DESCRIPTION OF CABLE USED	6
	5.8	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.9	LABORATORY FACILITY	
	5.10		
	5.11	TEST INSTRUMENTS LIST	7
6	TI	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	TI	EST SETUP PHOTO	
Ω	E	HIT CONSTRUCTIONAL DETAILS	10

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: The EUT not applicable of the test item.

Test Method: ANSI C63.4:2014

Report No: CCISE1912018

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Manufacturer/ Factory:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172

5.2 General Description of E.U.T.

Product Name:	5.5 inch 3G Smart Phone	
Model No.:	X55 PLUS, ATLAS, W55 PLUS	
Power supply:	Rechargeable Li-ion Battery DC3.8V, 2000mAh	
AC adapter:	Model: SSB-LW-001	
	Input: AC100-240V, 50/60Hz, 0.1A	
	Output: DC 5.0V, 1A	
Test Sample Condition:	The test samples were provided in good working order with no visible defects.	
Remark:	The Model No.: X55 PLUS, ATLAS, W55 PLUS were identical inside, the electrical circuit design, layout, components used and internal wiring, The only difference between them is as follows:	
	The trademark LOGIC correspond model X55 PLUS;	
	The trademark iSWAG correspond model ATLAS;	
	The trademark UNONU correspond model W55 PLUS.	

5.3 Test Mode

Operating mode	Detail description
PC mode Keep the EUT in Downloading mode(Worst case)	
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty	
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)	
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)	
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)	
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)	
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)	

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone, 186 (0) 755 23116366

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 5 of 18

Report No: CCISE1912018

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX7070	2J8XSZ2	DoC
DELL	MONITOR	SE2018HR	3M7QPY2	DoC
DELL	KEYBOARD	KB216d	N/A	DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.2m	EUT	Headset

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

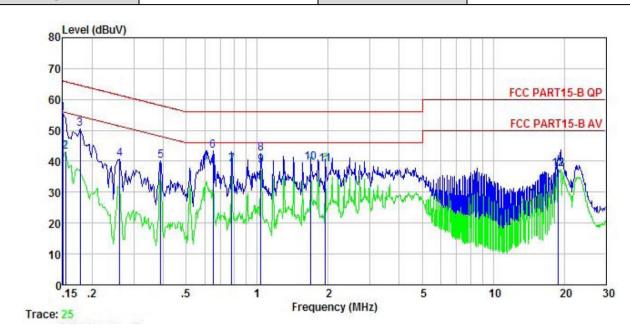
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.11 Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020		
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2019	11-20-2020		
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b		
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020		
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2019	11-20-2020		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020		
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2019	07-20-2020
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	,	Version: 6.110919	b

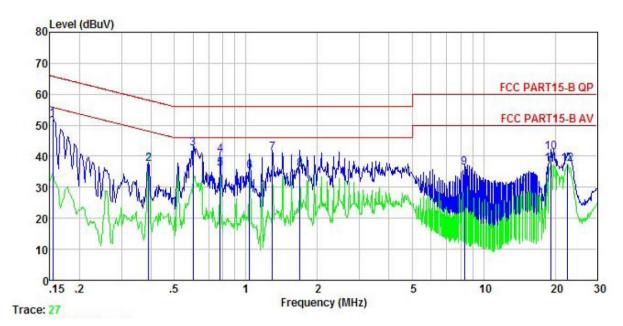
6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107						
Test Frequency Range:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz)		(dBµV)				
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	0.5-30	60	50				
	* Decreases with the logarithm	of the frequency.					
Test preseding	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC power					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4(latest version) on conducted measurement. 						
Test Instruments:	Refer to section 5.11 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Measurement data:

Product name:	5.5 inch 3G Smart Phone	Product model:	X55 PLUS
Test by:	YT	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level		Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2	MHz	dBu∇	<u>db</u>	<u>d</u> B	<u>dB</u>	dBu₹	dBu∜	<u>d</u> B	
1	0.150	45.07	-0.45	-0.05	10.78	55.35	66.00	-10.65	QP
2	0.154	32.87	-0.45	-0.06	10.78	43.14	55.78	-12.64	Average
2	0.178	40.33	-0.43	-0.12	10.77	50.55	64.59	-14.04	QP
4	0.262	30.67	-0.39	-0.23	10.75	40.80	61.38	-20.58	QP
4 5 6 7	0.389	29.58	-0.37	0.34	10.72	40.27	58.08	-17.81	QP
6	0.651	33.46	-0.38	-0.39	10.77	43.46	56.00	-12.54	QP
7	0.779	28.63	-0.38	-0.15	10.80	38.90	46.00	-7.10	Average
8	1.037	31.63	-0.38	0.42	10.87	42.54	56.00	-13.46	QP
9	1.037	27.90	-0.38	0.42	10.87	38.81	46.00	-7.19	Average
10	1.689	29.14	-0.40	-0.13	10.94	39.55	46.00	-6.45	Average
11	1.949	28.65	-0.41	-0.29	10.96	38.91	46.00	-7.09	Average
12	18.920	25.99	-0.91	1.43	10.92	37.43	50.00	-12.57	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	5.5 inch 3G Smart Phone	Product model:	X55 PLUS
Test by:	YT	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>ab</u>	<u>d</u> B		dBu∀	dBu∇	<u>dB</u>	
1	0.154	41.85	-0.68	0.01	10.78	51.96	65.78	-13.82	QP
2	0.389	27.53	-0.64	-0.05	10.72	37.56	48.08	-10.52	Average
2	0.601	32.39	-0.64	0.04	10.77	42.56	56.00	-13.44	QP
4 5 6	0.779	30.26	-0.64	0.05	10.80	40.47	56.00	-15.53	QP
5	0.779	25.81	-0.64	0.05	10.80	36.02	46.00	-9.98	Average
6	1.037	24.92	-0.63	0.08	10.87	35.24	46.00	-10.76	Average
7	1.296	30.61	-0.64	0.11	10.90	40.98	56.00	-15.02	QP
8	1.689	25.36	-0.66	0.15	10.94	35.79	46.00	-10.21	Average
9	8.323	25.04	-0.77	1.11	10.87	36.25	60.00	-23.75	QP
10	19.224	31.04	-1.33	0.64	10.93	41.28	60.00	-18.72	QP
11	19.224	27.34	-1.33	0.64	10.93	37.58	50.00	-12.42	Average
12	22.535	27.44	-1.43	0.50	10.90	37.41	50.00	-12.59	Average

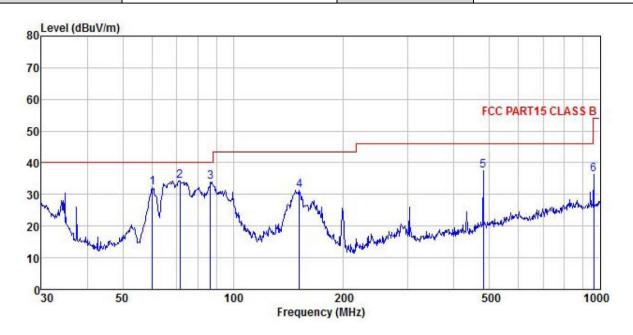
Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Section 15.109							
Test Frequency Range:	30MHz to 6000M	Hz						
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver setup:	Frequency	Detecto	r	RBW VBW		Remark		
r tocorror cotap.	30MHz-1GHz	Quasi-pe	ak	120kHz	300kHz	Quasi-peak Value		
	Above 1GHz	Peak		1MHz	3MHz	Peak Value		
	Above 1GHZ	RMS		1MHz	3MHz	Average Value		
Limit:	Frequenc		Lin	nit (dBuV/m	@3m)	Remark		
	30MHz-88N			40.0		Quasi-peak Value		
	88MHz-216I			43.5		Quasi-peak Value		
	216MHz-960			46.0		Quasi-peak Value		
	960MHz-10	3HZ		54.0		Quasi-peak Value		
	Above 1GI	Hz -		54.0		Average Value		
Test setup:				74.0		Peak Value		
	Turn 0.8m	Tum Jable 0.8m Im Table Oround Plane						
	Horn Anlenna Tower Ground Reference Plane Test Receiver Test Receiver Test Receiver							
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 							

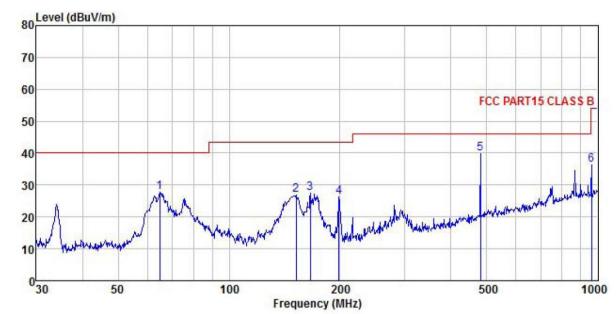
	A Formula in the first the FUT
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded



Measurement Data:

Below 1GHz:

Product Name:	5.5 inch 3G Smart Phone	Product Model:	X55 PLUS
Test By:	YT	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Intenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
-	MHz	dBu⊽		<u>ab</u>	<u>d</u> B	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	<u>dB</u>	
1	60.280	49.17	11.31	1.38	0.00	29.77	32.09	40.00	-7.91	QP
2	71.581	54.26	8.28	1.56	0.00	29.71	34.39	40.00	-5.61	QP
3	86.807	52.53	9.16	1.91	0.00	29.59	34.01	40.00	-5.99	QP
4	151.597	48.92	8.97	2.53	0.00	29.21	31.21	43.50	-12.29	QP
5	480.528	45.29	17.52	3.46	0.00	28.92	37.35	46.00	-8.65	QP
6	962.162	36.91	22.73	4.27	0.00	27.65	36.26	54.00	-17.74	QP

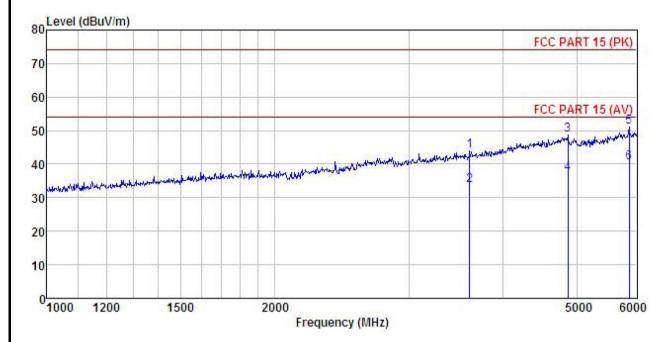
Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.5 inch 3G Smart Phone	Product Model:	X55 PLUS
Test By:	YT	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
,	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1	64.887	46.51	9.60	1.38	0.00	29.76	27.73	40.00	-12.27	QP
2	152.130	44.55	9.00	2.53	0.00	29.20	26.88	43.50	-16.62	QP
3	166.068	44.40	9.49	2.63	0.00	29.08	27.44	43.50	-16.06	QP
4	198.588	41.81	10.55	2.86	0.00	28.84	26.38	43.50	-17.12	QP
5	480.528	47.71	17.52	3.46	0.00	28.92	39.77	46.00	-6.23	QP
6	962.162	36.99	22.73	4.27	0.00	27.65	36.34	54.00	-17.66	QP

Remark:


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Product Name:	5.5 inch 3G Smart Phone	Product Model:	X55 PLUS
Test By:	YT	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	ReadAntenna Level Factor		Cable Preamp Loss Factor			Limit Line	Over Limit		
	MHz	dBu⊽		dB	<u>qp</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
1	3612.141	48.17	29.21	5.90	41.55	43.93	74.00	-30.07	Peak	
2	3612.141	37.77	29.21	5.90	41.55	33.53	54.00	-20.47	Average	
3	4864.797	49.57	31.69	6.84	41.83	48.74	74.00	-25.26	Peak	
4	4864.797	38.14	31.69	6.84	41.83	37.31	54.00	-16.69	Average	
5	5864.002	49.29	33.06	7.90	42.03	50.98	74.00	-23.02	Peak	
6	5864.002	38.87	33.06	7.90	42.03	40.56	54.00	-13.44	Average	

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name: Test By: Test Frequency: Test Voltage:				5.5 inch 3G Smart Phone YT 1 GHz ~ 6 GHz AC 120/60Hz				Product I	Model:	X55 F	X55 PLUS PC mode		
								Test mod	le:	PC m			
								Polarization: Environment:		Horiz	Horizontal		
										Temp	Temp: 24℃ Huni: 5		
	Leve	l (dBuV	/m)										
80		To I								- 1	FCC PART 1	5 (PK)	
70												10-00	
00													
60											FCC PART 15		
50										1	3	5	
40								a majorited gray	hand before the gland of the control	www.manufadan	Jan Jake Jan	6	
40	- du	بالعيارين	distantando	have madely mo-	manda series	and design to the second	Management			1			
30	WAYNA BENE	A STATE OF THE STA											
20												12	
10												(2)	
0	1000	120	0	1500		2000					5000	6000	
	1000	120	U	1500	jù		requency (MHz)			5000	0000	
				Rose	lûnt ann	a Cabl	e Preamp		Limit	Over			
		I	req		L Facto		e Freamp s Factor	Level		Limit			
	2		MHz	dBu\	7 dB/:	m d	BdE	dBuV/m	dBuV/m	<u>dB</u>			
ja.	1	4253.	563	48.29	30.6	7 6.4	8 41.85	45.87	74.00	-28.13	Peak		
	2	4253.	563	39.17	7 30.6	7 6.4	8 41.85	36.75	54.00	-17.25	Average		
	3 4			48.01 39.17						-26.82 -15.66	Peak Average		
	5 6	5829.	869	48.34 39.64	1 33.0	0 7.9	0 42.03	49.96	74.00	-24.04			
		5829.	003	J9. 04	33.0	0 (.9	0 42.03	41.20	04.00	-12.14	whetage		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.