

RADIO TEST REPORT FCC ID: ZSW-30-140

Product: Mobile Phone

Trade Mark: Bmobile Model No.: Venus Family Model: N/A Report No.: S25031804502002 Issue Date: Apr. 09, 2025

Prepared for

b mobile HK Limited

FLAT/RM 1202, 12/F GOLDEN STAR BUILDING, 20 LOCKHART ROAD, WANCHAI, HK, CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China

Tel. 0755-2320 0050 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
3	FACILITIES AND ACCREDITATIONS	6
3	3.1 FACILITIES	
-	3.2 LABORATORY ACCREDITATIONS AND LISTINGS	
3	3.3 MEASUREMENT UNCERTAINTY	
4	GENERAL DESCRIPTION OF EUT	7
5	DESCRIPTION OF TEST MODES	9
6	SETUP OF EQUIPMENT UNDER TEST	
6	5.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
6	5.2 SUPPORT EQUIPMENT	
6	5.3 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
7	TEST REQUIREMENTS	14
7	7.1 CONDUCTED EMISSIONS TEST	14
,	7.1.1 Applicable Standard	
	7.1.2 Conformance Limit	
	7.1.3 Measuring Instruments	
	7.1.4 Test Configuration	
	7.1.5 Test Procedure	
	7.1.6 Test Results	
7	7.2 RADIATED SPURIOUS EMISSION	
	7.2.1 Applicable Standard	
	7.2.2 Conformance Limit	
	7.2.3 Measuring Instruments	
	7.2.4 Test Configuration	
	7.2.5 Test Procedure	
7	7.2.6 Test Results	
/	7.3 6DB BANDWIDTH 7.3.1 Applicable Standard	
	 7.3.1 Applicable Standard 7.3.2 Conformance Limit 	
	7.3.3 Measuring Instruments	
	7.3.4 Test Setup	
	7.3.5 Test Procedure	
	7.3.6 Test Results	
7	7.4 DUTY CYCLE	
	7.4.1 Applicable Standard	
	7.4.2 Conformance Limit	
	7.4.3 Measuring Instruments	
	7.4.4 Test Setup	
	7.4.5 Test Procedure	
	7.4.6 Test Results	
7	7.5 PEAK OUTPUT POWER	
	7.5.1 Applicable Standard	
	7.5.2 Conformance Limit	
	7.5.3 Measuring Instruments	
	7.5.4 Test Setup	
	7.5.5 Test Procedure	
_	7.5.6 Test Results	
/	7.6 POWER SPECTRAL DENSITY	

7.6.	1 Applicable Standard	
7.6 .	2 Conformance Limit	
7.6 .	3 Measuring Instruments	
7.6.	4 Test Setup	
7.6.	5 Test Procedure	
7.6 .		
7.7	CONDUCTED BAND EDGE MEASUREMENT	
7.7.	1 Applicable Standard	
7.7.	2 Conformance Limit	
7.7.	3 Measuring Instruments	
7.7.	4 Test Setup	
7.7.	5 Test Procedure	
7.7.		
7.8	SPURIOUS RF CONDUCTED EMISSIONS	
7.8.		
7.8.	2 Measuring Instruments	
7.8.	<i>I</i>	
7.8.	4 Test Procedure	
7.8.		
7.9	ANTENNA APPLICATION	
7.9.		
7 .9.	2 Result	
8 TES	ST RESULTS	
8.1	DUTY CYCLE	
8.2	MAXIMUM CONDUCTED OUTPUT POWER	
8.3	-6DB BANDWIDTH	
8.4	Occupied Channel Bandwidth	
8.5	MAXIMUM POWER SPECTRAL DENSITY LEVEL	
8.6	BAND EDGE	
8.7	CONDUCTED RF SPURIOUS EMISSION	

1 TEST RESULT CERTIFICATION

b mobile HK Limited
FLAT/RM 1202, 12/F GOLDEN STAR BUILDING, 20 LOCKHART ROAD, WANCHAI, HK, CHINA
b mobile HK Limited
FLAT/RM 1202, 12/F GOLDEN STAR BUILDING, 20 LOCKHART ROAD, WANCHAI, HK, CHINA
Mobile Phone
Venus
N/A
S250318045002
Mar. 19, 2025 ~ Apr. 09, 2025

Measurement Procedure Used:

measurement i locedure Osed.				
APPLICABLE STANDARDS				
APPLICABLE STANDARD/ TEST PROCEDURE TEST RESULT				
FCC 47 CFR Part 2, Subpart J				
FCC 47 CFR Part 15, Subpart C	Complied			
ANSI C63.10-2013	Complied			
KDB 558074 D01 15.247 Meas Guidance v05r02				

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Prepared By: Allen Liu By: Allen Liu (Project Engineer) Reviewed By: Aaron Cheng (Supervised) Approved By: Alex Li

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C						
Standard Section Test Item Verdict Rema						
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)	247 (b) Peak Output Power					
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.247 (d)	Band Edge Emission	PASS				
15.247 (d)	Spurious RF Conducted Emission	PASS				
15.203	Antenna Requirement	PASS				

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan
	District, Shenzhen, Guangdong, People's Republic of China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment Mobile Phone				
Trade Mark Bmobile				
FCC ID	ZSW-30-140			
Model No.	Venus			
Family Model	N/A			
Model Difference	N/A			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Antenna Type	FPC Antenna			
Antenna Gain	0.9dBi			
Power supply	DC 3.85V from Battery or DC 5V from Adapter.			
BatteryRated Capacity: DC 3.85V, 4900 mAh, 18.86Wh Typical Capacity: DC 3.85V, 5000 mAh, 19.25Wh				
Adapter	INPUT: AC 100-240V~50-60Hz 0.3A OUTPUT: DC 5.0V2A			
HW Version	Bmobile_VENUS_HW_V1.0			
SW Version	Bmobile_VENUS_TIGO_LATAM_V001			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History

Report No.	Version	Description	Issued Date		
S25031804502002	Rev.01	Initial issue of report	Apr. 09, 2025		

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

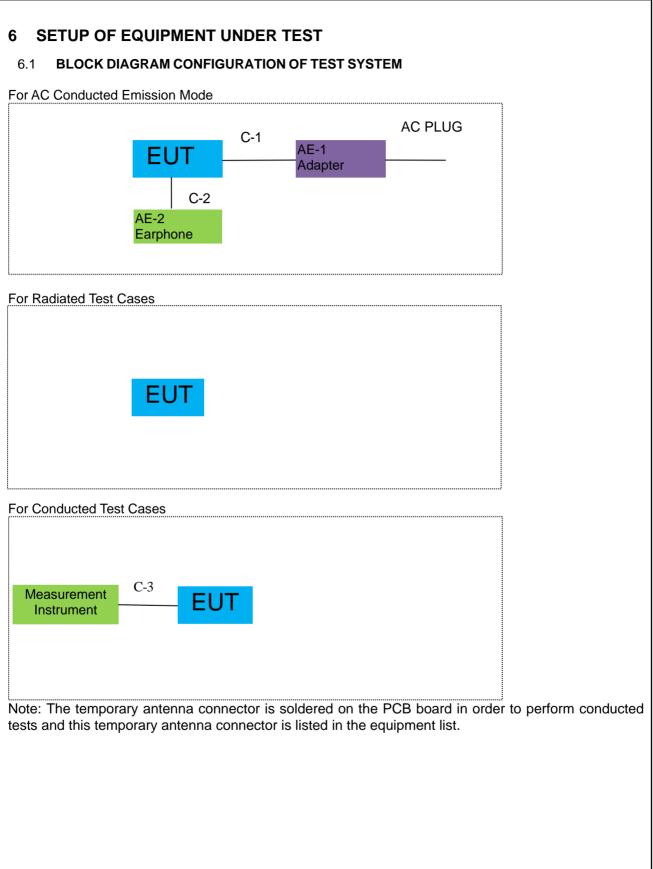
Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Frequency(MHz)		
2402		
2404		
2440		
2442		
2478		
2480		

Note: fc=2402MHz+k×2MHz k=0 to 39


The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases		
Test Item	Data Rate/ Modulation	
AC Conducted Emission	Mode 1: normal link mode	
_	Mode 1: normal link mode	
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps	
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps	
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps	
Canduated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps	
Conducted Test Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps	
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps	

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously
- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT built-in battery-powered, the battery is fully-charged.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
	Mobile Phone	Venus	N/A	EUT
AE-1	Adapter	N/A	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测®

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2024.04.26	2025.04.25	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024.04.25	2025.04.24	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.04.25	2025.04.24	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.04.26	2025.04.25	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.05.12	2025.05.11	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2024.04.26	2027.04.25	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2024.05.12	2027.05.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2024.05.12	2027.05.11	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2024.04.25	2025.04.24	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2024.05.17	2027.05.16	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2024.04.25	2025.04.24	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2024.04.26	2027.04.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.04.26	2025.04.25	1 year
2	LISN	R&S	ENV216	101313	2024.04.25	2025.04.24	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.04.25	2025.04.24	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2024.04.26	2027.04.25	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

Measurement Software

Item	Manufacturer	Software Name	Software Version	Description
1	MWRFtest	MTS 8310 2.4GHz/5GHz	2.0	RF Conducted Test
2	Farad	EZ-EMC_RE	AIT-03A	RadiatedTest
3	Farad	EZ-EMC_CE	AIT-03A	AC Conducted Test

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

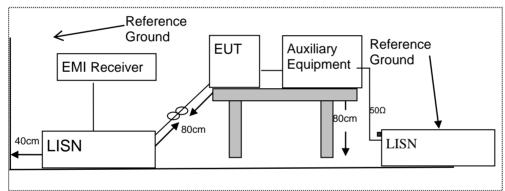
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

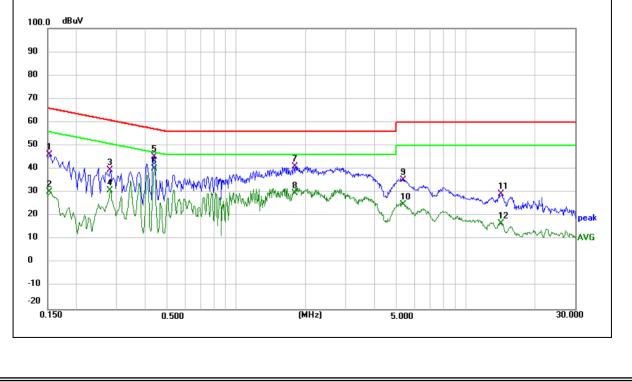
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


EUT:	Mobile Phone	Model Name :	Venus
Temperature:	25 ℃	Relative Humidity:	47%
Pressure:	1010hPa	Phase :	L
Test vollage ·	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	36.21	10.00	46.21	65.79	-19.58	QP
0.1539	20.21	10.00	30.21	55.79	-25.58	AVG
0.2819	29.31	10.25	39.56	60.76	-21.20	QP
0.2819	20.72	10.25	30.97	50.76	-19.79	AVG
0.4380	34.57	10.57	45.14	57.10	-11.96	QP
0.4380	29.62	10.57	40.19	47.10	-6.91	AVG
1.8020	27.69	13.39	41.08	56.00	-14.92	QP
1.8020	16.24	13.39	29.63	46.00	-16.37	AVG
5.3859	25.20	10.15	35.35	60.00	-24.65	QP
5.3859	14.71	10.15	24.86	50.00	-25.14	AVG
14.2180	17.68	11.69	29.37	60.00	-30.63	QP
14.2180	5.14	11.69	16.83	50.00	-33.17	AVG

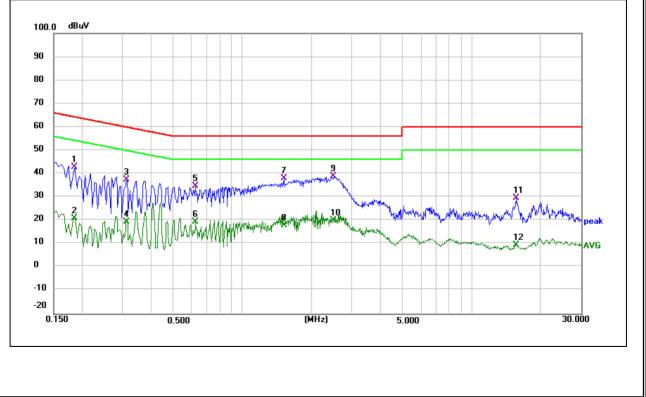
Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3

NTEK 北测®


EUT:	Mobile Phone	Model Name :	Venus
Temperature:	25 ℃	Relative Humidity:	47%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1844	33.32	9.48	42.80	64.29	-21.49	QP
0.1844	11.52	9.48	21.00	54.29	-33.29	AVG
0.3116	27.73	9.72	37.45	59.93	-22.48	QP
0.3116	9.88	9.72	19.60	49.93	-30.33	AVG
0.6260	24.39	10.24	34.63	56.00	-21.37	QP
0.6260	9.11	10.24	19.35	46.00	-26.65	AVG
1.5140	26.09	12.06	38.15	56.00	-17.85	QP
1.5140	5.94	12.06	18.00	46.00	-28.00	AVG
2.5059	29.89	9.10	38.99	56.00	-17.01	QP
2.5059	10.98	9.10	20.08	46.00	-25.92	AVG
15.5540	18.46	11.15	29.61	60.00	-30.39	QP
15.5540	-1.73	11.15	9.42	50.00	-40.58	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz			
16.42-16.423	399.9-410	4.5-5.15			
16.69475-16.69525	608-614	5.35-5.46			
16.80425-16.80475	960-1240	7.25-7.75			
25.5-25.67	1300-1427	8.025-8.5			
37.5-38.25	1435-1626.5	9.0-9.2			
73-74.6	1645.5-1646.5	9.3-9.5			
74.8-75.2	1660-1710	10.6-12.7			
123-138	2200-2300	14.47-14.5			
149.9-150.05	2310-2390	15.35-16.2			
156.52475-156.52525	2483.5-2500	17.7-21.4			
156.7-156.9	2690-2900	22.01-23.12			
162.0125-167.17	3260-3267	23.6-24.0			
167.72-173.2	3332-3339	31.2-31.8			
240-285	3345.8-3358	36.43-36.5			
322-335.4	3600-4400	(2)			
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

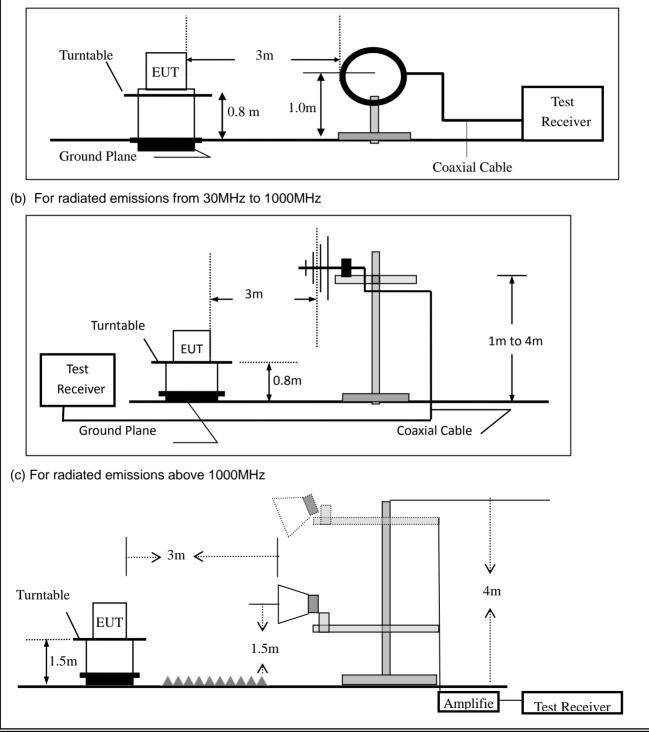
Frequency/MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

see the felle mild operation analyzer beamger						
Spectrum Parameter	Setting					
Attenuation	Auto					
Start Frequency	1000 MHz					
Stop Frequency	10th carrier harmonic					
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average					

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Mobile Phone	Model No.:	Venus
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3/ Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

ACC

Certificate #4298.01

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	rtoman
Н	48.1630	1.97	19.72	21.69	40.00	-18.31	QP
Н	76.7810	9.57	14.90	24.47	40.00	-15.53	QP
Н	103.0800	6.86	17.55	24.41	43.50	-19.09	QP
Н	206.3980	3.67	17.79	21.46	43.50	-22.04	QP
Н	701.7610	1.16	27.82	28.98	46.00	-17.02	QP
Н	958.7940	1.49	30.88	32.37	46.00	-13.63	QP
Remark Emission 80.0	n Level= Meter F dBu¥/m	Reading+ Fac	tor, Margin	= Emission Le	vel - Limit		
70 -							
60 -							
50 -							
40							6
30		2	3		بياني .	5 WWW.m. adm. Appl. Complete	and the second
20	and the man and the man	man Mary	WAYNAW	WATTER AND MANA	harmandersonation		
10							
0.0	000 6	0.00		(MHz)	300.00		1000.000

NTEK 北测®

UT:		Mobil	e Phone	1	Μ	odel No.:		Venus		
Tempe	erature:	20 ℃			R	Relative Humidity: 48%		48%		
Test N	lode:	Mode	2/Mode	le3/Mode4 Test By:			Allen Liu			
										_
F	Frequency	Read Level	Cable loss	Antenna Factor	Pream Facto		Limits	s Margin	Remark	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/	m) (dB)		
				Low Cha	annel (2	402 MHz)(GFSk	()Above	91G		
	4804.338	62.58	5.21	35.59	44.30	59.08	74.00) -14.92	Pk	Vertical
	4804.338	41.27	5.21	35.59	44.30	37.77	54.00	-16.23	AV	Vertical
	7206.107	61.04	6.48	36.27	44.60	59.19	74.00) -14.81	Pk	Vertical
	7206.107	42.27	6.48	36.27	44.60	40.42	54.00) -13.58	AV	Vertical
	4804.169	63.70	5.21	35.55	44.30	60.16	74.00	-13.84	Pk	Horizontal
	4804.169	43.21	5.21	35.55	44.30	39.67	54.00) -14.33	AV	Horizontal
	7206.214	61.84	6.48	36.27	44.52	2 60.07	74.00	-13.93	Pk	Horizontal
	7206.214	41.83	6.48	36.27	44.52	2 40.06	54.00	-13.94	AV	Horizontal
				Mid Cha	annel (24	440 MHz)(GFSK)Above	1G		
	4880.473	63.94	5.21	35.66	44.20	0 60.61	74.00) -13.39	Pk	Vertical
	4880.473	43.28	5.21	35.66	44.20	39.95	54.00	-14.05	AV	Vertical
	7320.265	65.96	7.10	36.50	44.43	3 65.13	74.00) -8.87	Pk	Vertical
	7320.265	41.17	7.10	36.50	44.43	3 40.34	54.00	-13.66	AV	Vertical
	4880.366	62.78	5.21	35.66	44.20	59.45	74.00	-14.55	Pk	Horizontal
	4880.366	42.05	5.21	35.66	44.20	38.72	54.00	-15.28	AV	Horizontal
	7320.234	59.42	7.10	36.50	44.43	3 58.59	74.00) -15.41	Pk	Horizontal
	7320.234	44.99	7.10	36.50	44.43	3 44.16	54.00	-9.84	AV	Horizontal
				High Cha	annel (2	480 MHz)(GFSK	() Above	e 1G		
	4960.482	63.87	5.21	35.52	44.2 ⁻	1 60.39	74.00) -13.61	Pk	Vertical
	4960.482	42.82	5.21	35.52	44.2 ⁻	1 39.34	54.00	-14.66	AV	Vertical
	7440.131	64.30	7.10	36.53	44.60	63.33	74.00	-10.67	Pk	Vertical
	7440.131	48.51	7.10	36.53	44.60	47.54	54.00	-6.46	AV	Vertical
	4960.326	63.11	5.21	35.52	44.2 ⁻	1 59.63	74.00) -14.37	Pk	Horizontal
	4960.326	44.06	5.21	35.52	44.2 ⁻	1 40.58	54.00	-13.42	AV	Horizontal
	7440.199	64.49	7.10	36.53	44.60	0 63.52	74.00	-10.48	Pk	Horizontal
	7440.199	44.89	7.10	36.53	44.60	0 43.92	54.00	0 -10.08	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

Spunous	ETHISSION	in Result	ted Band Z	310-2390	IVINZ anu z	403.	5-250			
UT:	Mobile	Mobile Phone			No.:	,	Venus			
emperature:	20 ℃	20 ℃			Relative Humidity: 48%			%		
est Mode:	Mode2	/ Mode4		Test B	y:		Allen	Liu		
										ľ
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
			Low	Channel (24	402 MHz)(GF	SK)				
2310	72.83	2.97	27.8	43.8	59.80	7	'4	-14.20	Pk	Horizontal
2310	54.04	2.97	27.8	43.8	41.01	5	4	-12.99	AV	Horizontal
2310	71.24	2.97	27.8	43.8	58.21	7	'4	-15.79	Pk	Vertical
2310	51.41	2.97	27.8	43.8	38.38	5	4	-15.62	AV	Vertical
2390	73.77	3.14	27.21	43.8	60.32	7	'4	-13.68	Pk	Vertical
2390	53.79	3.14	27.21	43.8	40.34	5	4	-13.66	AV	Vertical
2390	74.22	3.14	27.21	43.8	60.77	7	'4	-13.23	Pk	Horizontal
2390	51.76	3.14	27.21	43.8	38.31	5	4	-15.69	AV	Horizontal
			High	n Channel (2	480 MHz)(GF	SK)				
2483.5	72.72	3.58	27.7	44	60.00	7	'4	-14.00	Pk	Vertical
2483.5	52.82	3.58	27.7	44	40.10	5	64	-13.90	AV	Vertical
2483.5	74.86	3.58	27.7	44	62.14	7	'4	-11.86	Pk	Horizontal
2483.5	54.30	3.58	27.7	44	41.58	5	4	-12.42	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

UT: Mobile Phone I			Model	Model No.:			Venus			
mperature:	20 ℃			Relativ	e Humidity	/: 4	48%			
st Mode:	Mode2/	' Mode4		Test By	/:		Allen	Liu		
	Reading	Cable	Antenna	Droomo	Emission					
Frequency	Level	Loss	Factor	Preamp Factor	Level	Lim	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
			Low	Channel (24	02 MHz)(GF	SK)				
3260	63.57	4.04	29.57	44.7	52.48	74	4	-21.52	Pk	Vertical
3260	58.03	4.04	29.57	44.7	46.94	54	4	-7.06	AV	Vertical
3260	66.25	4.04	29.57	44.7	55.16	74	4	-18.84	Pk	Horizontal
3260	59.29	4.04	29.57	44.7	48.20	54	4	-5.80	AV	Horizontal
17797	44.60	10.99	43.95	43.5	56.04	74	4	-17.96	Pk	Vertical
17797	34.54	10.99	43.95	43.5	45.98	54	4	-8.02	AV	Vertical
			High	Channel (24	480 MHz)(GF	SK)				
3332	65.00	4.26	29.87	44.4	54.73	74	4	-19.27	Pk	Vertical
3332	58.07	4.26	29.87	44.4	47.80	54	4	-6.20	AV	Vertical
3332	66.83	4.26	29.87	44.4	56.56	74	4	-17.44	Pk	Horizontal
3332	53.45	4.26	29.87	44.4	43.18	54	4	-10.82	AV	Horizontal
17788	44.02	11.81	43.69	44.6	54.92	74	4	-19.08	Pk	Horizonta
17788	37.41	11.81	43.69	44.6	48.31	54	4	-5.69	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	Venus
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	Venus
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Mobile Phone	Model No.:	Venus
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	Venus
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	Venus
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

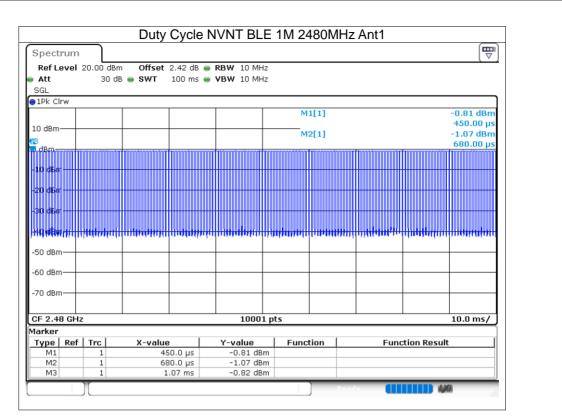
7.9.2 Result

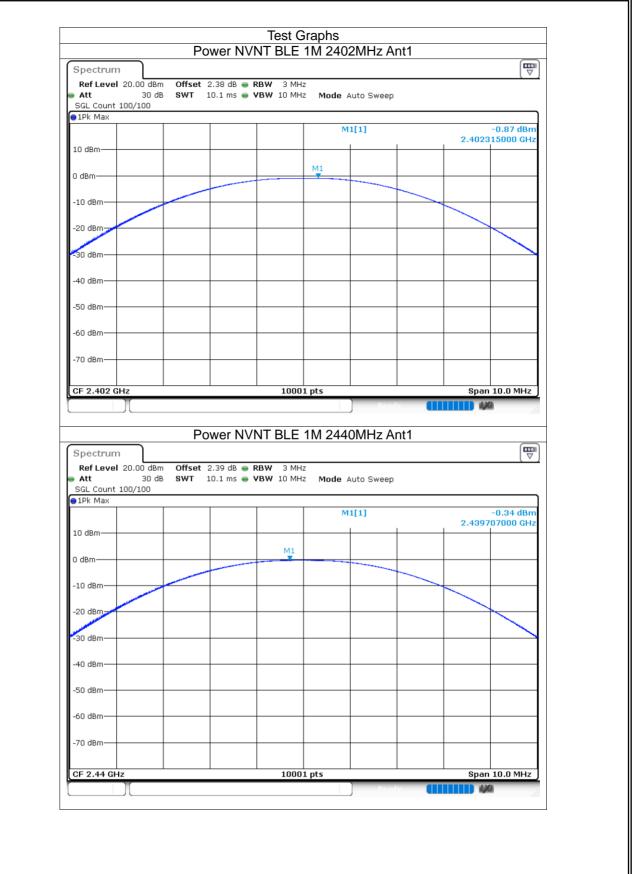
The EUT antenna is permanent attached FPC antenna (Gain:0.9 dBi). It comply with the standard requirement.

8 TEST RESULTS

8.1 DUTY CYCLE

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	64.8	1.88	2.5
NVNT	BLE 1M	2440	Ant1	64.79	1.88	2.5
NVNT	BLE 1M	2480	Ant1	64.79	1.88	2.56

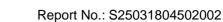




8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-0.87	30	Pass
NVNT	BLE 1M	2440	Ant1	-0.34	30	Pass
NVNT	BLE 1M	2480	Ant1	-0.93	30	Pass

				M 2480MHz			Ē
Spectrum							
Ref Level 20.00		2.42 dB 🖷 RB					
		10.1 ms 👄 VB	₩ 10 MHz	Mode Auto Swe	ep		
GL Count 100/100)						,
1Pk Max							
				M1[1]			0.93 dBm 1000 GHz
) dBm						2.4/9///	
dBm			M1				
uBill							
LO dBm						<hr/>	
20 dBm							
30 dBm							
10 dBm							
i0 dBm							
o abiii							
50 dBm							
'0 dBm							
= 2.48 GHz	1		10001 p	ts		Span 1	0.0 MHz



8.3 -6DB BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.678	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.656	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.684	0.5	Pass

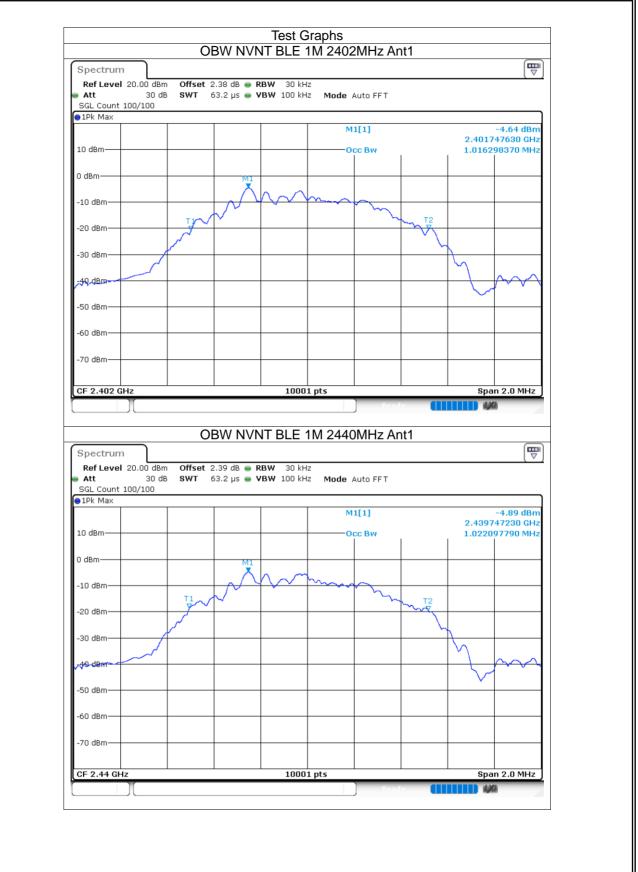
ACCREDITED

NTEK 北测[®]

ACC

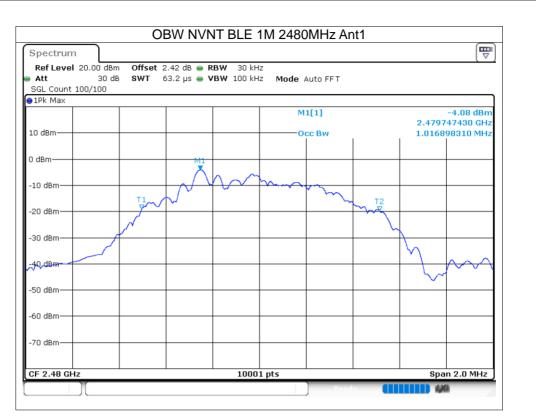
REDITED

Spectrum							E
Ref Level Att SGL Count 1	30 d			Mode Auto FFT			(•
1Pk Max							
				M1[1]			-1.72 dBm
10 dBm						2.4797	47630 GHz
		M	.	M2[1]			-7.74 dBm
D dBm					1	2.4796	59000 GHz
		M2		M3			
-10 dBm					\checkmark	-	
00 d0							
20 dBm							
-30 dBm							
							~~
40 dBm							F
50 dBm							
60 dBm							
70 dBm							
/ ubiii							
CF 2.48 GH	7			<u> </u>		Sna	n 2.0 MHz
larker	-		10001 pt	-		590	
	Trc	X-value	Y-value	Function	Fun	ction Result	
M1	1	2.47974763 GHz	-1.72 dBm				_
M2	1	2.479659 GHz	-7.74 dBm				
MЗ	1	2.480343 GHz	-7.73 dBm				

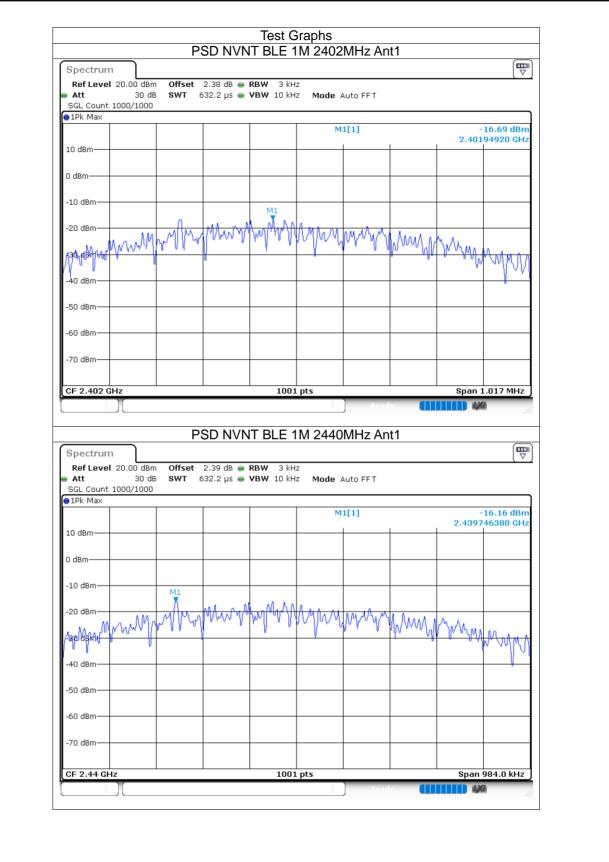


8.4 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.016
NVNT	BLE 1M	2440	Ant1	1.022
NVNT	BLE 1M	2480	Ant1	1.017

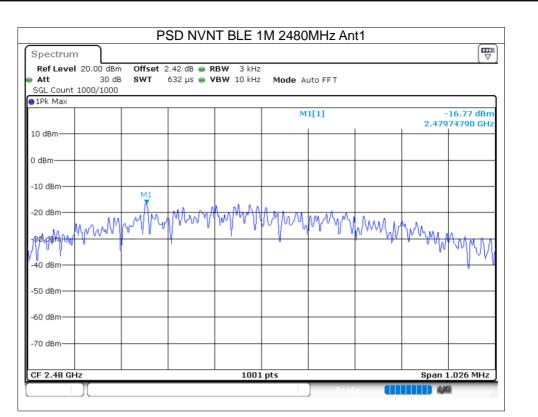


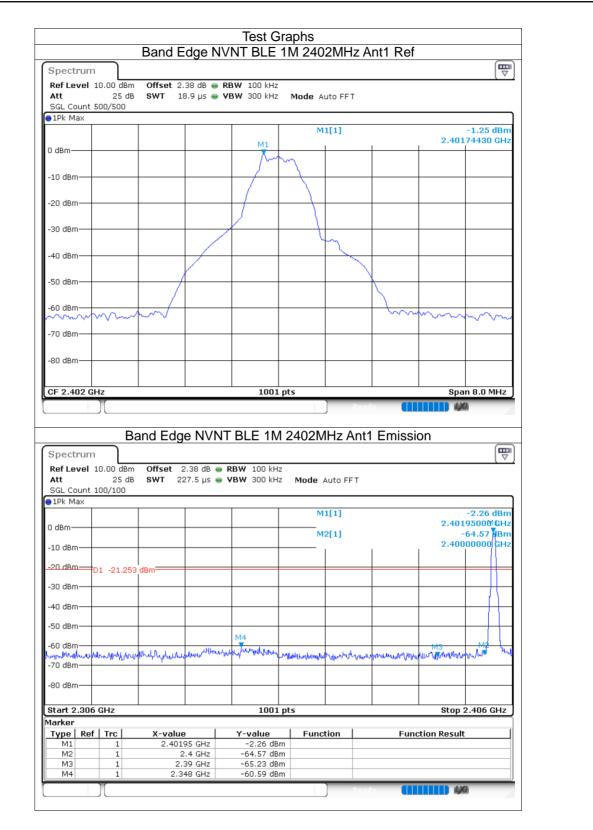
NTEK 北测[®]


8.5 MAXIMUM POWER SPECTRAL DENSITY LEVEL

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-16.69	8	Pass
NVNT	BLE 1M	2440	Ant1	-16.16	8	Pass
NVNT	BLE 1M	2480	Ant1	-16.77	8	Pass

ACCREDITED





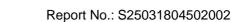
8.6 BAND EDGE

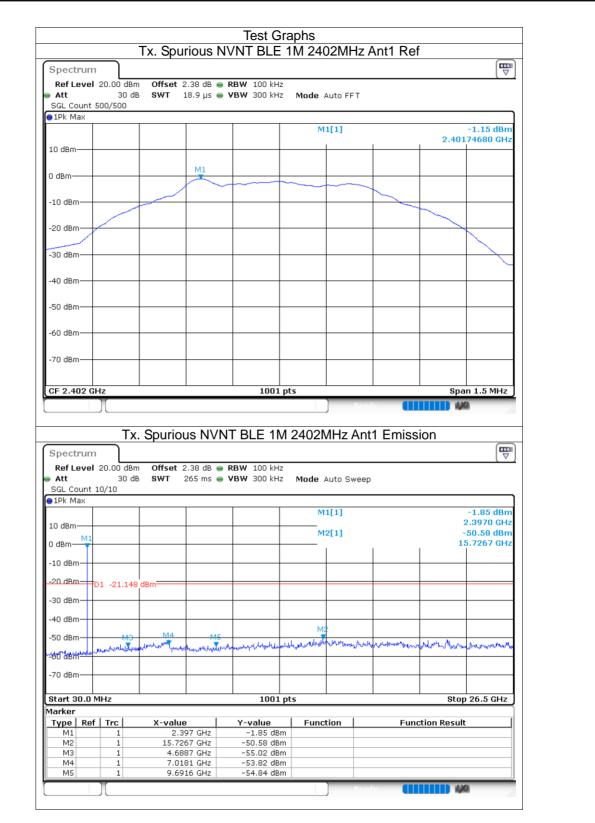
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-59.34	-20	Pass
NVNT	BLE 1M	2480	Ant1	-61.18	-20	Pass

NTEK 北测[®]

ACC

REDITED

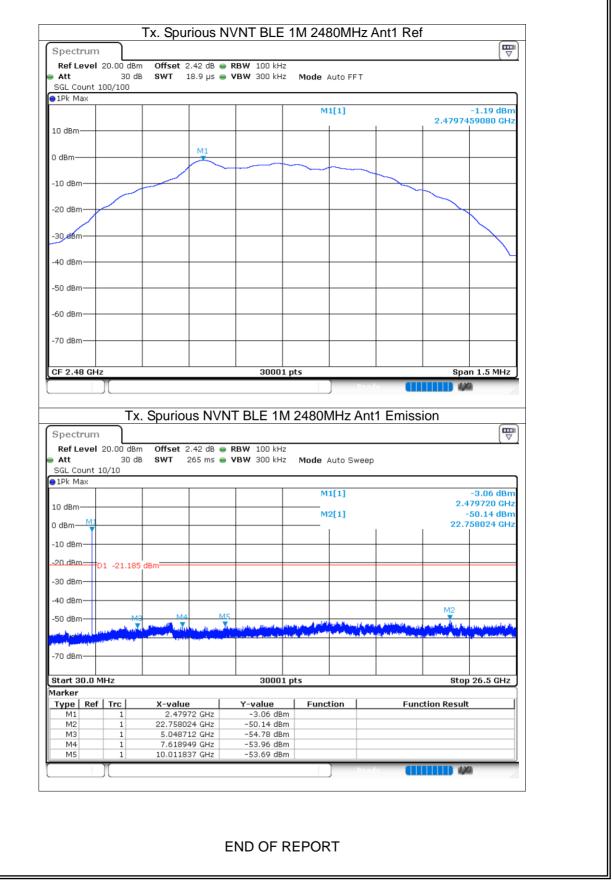

Spectrum							
Ref Level 10.00 de		dB 👄 RBW 100 kH					
Att 25 SGL Count 100/100		µs 🖷 VBW 300 kł	Hz Mode A	uto FFT			
100 Count 100/100							
			M	1[1]			-1.14 dBm
0 dBm		M1		1	1	2.479	74430 GHz
o dom		\wedge	m				
-10 dBm			+				
-20 dBm			+				
-30 dBm							
-40 dBm		\sim		n			
-40 0811							
-50 dBm				\vdash			
-60 dBm	mm	×		<u> </u>	min	A .A	
-70 dBm						r ~~~``	m
-/ U UBIII							
-80 dBm							
	1						
CF 2.48 GHz	Band Edge	NVNT BLE 1	M 2480N]	1 Emissi		n 8.0 MHz
Spectrum Ref Level 10.00 df	Bm Offset 2.42	NVNT BLE 1 2 dB • RBW 100 F	M 2480N		1 Emissi		
Spectrum Ref Level 10.00 df Att 25	Bm Offset 2.42 dB SWT 227	NVNT BLE 1	M 2480N) Rea <u>1Hz Ant</u> Auto FFT	1 Emissi		
Spectrum Ref Level 10.00 df	Bm Offset 2.42 dB SWT 227	NVNT BLE 1 2 dB • RBW 100 F	M 2480M	Auto FFT	1 Emissi		
Spectrum Ref Level 10.00 df Att 25 SGL Count 100/100 P1Pk Max M1	Bm Offset 2.42 dB SWT 227	NVNT BLE 1 2 dB • RBW 100 F	M 2480M		1 Emissi	on	
Spectrum Ref Level 10.00 da Att 25 SGL Count 100/100 ● 1Pk Max	Bm Offset 2.42 dB SWT 227	NVNT BLE 1 2 dB • RBW 100 F	M 2480N	Auto FFT	1 Emissi	on 2.479	-1.15 dBm 75000 GHz 64.84 dBm
Spectrum Ref Level 10.00 df Att 25 SGL Count 100/100 P1Pk Max M1	Bm Offset 2.42 dB SWT 227	NVNT BLE 1 2 dB • RBW 100 F	M 2480N	Auto FFT	1 Emissi	on 2.479	-1.15 dBm 75000 GHz
Spectrum Ref Level 10.00 di Att 25 SGL Count 100/100 ● 1Pk Max M1 0 dtm -10 dBm	Bm Offset 2.43 dB SWT 227	NVNT BLE 1 2 dB • RBW 100 F	M 2480N	Auto FFT	1 Emissi	on 2.479	-1.15 dBm 75000 GHz 64.84 dBm
Spectrum Ref Level 10.00 da Att 25 SGL Count 100/100 ● 1Pk Max M1 0 dam -10 dBm -20 cBm D1 -21.3	Bm Offset 2.42 dB SWT 227	NVNT BLE 1 2 dB • RBW 100 F	M 2480N	Auto FFT	1 Emissi	0n 2.479	-1.15 dBm 75000 GHz 64.84 dBm
Spectrum Ref Level 10.00 df Att 25 SGL Count 100/100 ● 1PK Max M1 0 dBm -10 dBm -20 dBm D1 -21.1 -30 dBm	Bm Offset 2.43 dB SWT 227	NVNT BLE 1 2 dB • RBW 100 F	M 2480N	Auto FFT	1 Emissi	0n 2.479	-1.15 dBm 75000 GHz 64.84 dBm
Spectrum Ref Level 10.00 da Att 25 SGL Count 100/100 ● 1Pk Max 0 dam -10 dam -20 a Bm D1 -21.3	Bm Offset 2.43 dB SWT 227	NVNT BLE 1 2 dB • RBW 100 F	M 2480N	Auto FFT	1 Emissi	0n 2.479	-1.15 dBm 75000 GHz 64.84 dBm
Spectrum Ref Level 10.00 df Att 25 SGL Count 100/100 ● 1PK Max M1 0 dBm -10 dBm -20 dBm D1 -21.1 -30 dBm	Bm Offset 2.43 dB SWT 227	NVNT BLE 1 2 dB • RBW 100 F	M 2480N	Auto FFT	1 Emissi	0n 2.479	-1.15 dBm 75000 GHz 64.84 dBm
Spectrum Ref Level 10.00 df Att 25 SGL Count 100/100 P1Pk Max M1 0 dbm -10 dbm -20 dbm -40 dbm -50 dbm -60 dbm	3m Offset 2.43 dB SWT 227	NVNT BLE 1	M 2480N	Auto FFT		2.479 2.483	-1.15 dBm 75000 GHz 64.84 dBm 50000 GHz
Spectrum Ref Level 10.00 df Att 25 SGL Count 100/100 P1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm	3m Offset 2.43 dB SWT 227	NVNT BLE 1 2 dB • RBW 100 F	M 2480N	Auto FFT		2.479 2.483	-1.15 dBm 75000 GHz 64.84 dBm 50000 GHz
Spectrum Ref Level 10.00 d8 Att 25 SGL Count 100/100 @ 1Pk Max 0 d8m -10 d8m -20 c8m -20 c8m -30 c8m -50 d8m -50 d8m -70 d8m	3m Offset 2.43 dB SWT 227	NVNT BLE 1	M 2480N	Auto FFT		2.479 2.483	-1.15 dBm 75000 GHz 64.84 dBm 50000 GHz
Spectrum Ref Level 10.00 df Att 25 SGL Count 100/100 1Pk Max 0 dBm -10 dBm -20 dBm -40 dBm -50 dBm -60 dBm -	3m Offset 2.43 dB SWT 227	NVNT BLE 1	M 2480N	Auto FFT		2.479 2.483	-1.15 dBm 75000 GHz 64.84 dBm 50000 GHz
Spectrum Ref Level 10.00 da Att 25 SGL Count 100/100 ● 1Pk Max 0 dam -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -80 dBm	3m Offset 2.43 dB SWT 227	NVNT BLE 1 2 dB • RBw 100 H 5 μs • YBW 300 H 	M 2480N	Auto FFT		2.479 2.483	-1.15 dBm 75000 GHz 64.84 dBm 50000 GHz
Spectrum Ref Level 10.00 dk Att 25 SGL Count 100/100 ● 1Pk Max 0 dtm -10 dBm -20 cBm -20 cBm -50 dBm -50 dBm -70 dBm	3m Offset 2.43 dB SWT 227	NVNT BLE 1 2 dB • RBw 100 H 5 μs • YBW 300 H 	M 2480N	Auto FFT		2.479 2.483	-1.15 dBm 75000 GHz 64.84 dBm 50000 GHz
Spectrum Ref Level 10.00 df Att 25 SGL Count 100/100 IPK Max 0 dfm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -80 dBm -80 dBm -80 dBm -80 dBm -70 dBm -80 dBm -70 dBm -80 dBm -80 dBm	3m Offset 2.43 dB SWT 227.	NVNT BLE 1	M 2480N (Hz (Hz Mode) М М М М М М М М М М М М М М М М М М М	Auto FFT		2.479 2.483	-1.15 dBm 75000 GHz 64.84 dBm 50000 GHz
Spectrum Ref Level 10.00 df Att 25 SGL Count 100/100 1Pk Max M1 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm -80 dBm -80 dBm -80 dBm -80 dBm	3m Offset 2.43 dB SWT 227 1 138 dBm	NVNT BLE 1	M 2480N	Auto FFT		0n 2.479 2.483 2.483	-1.15 dBm 75000 GHz 64.84 dBm 50000 GHz
Spectrum Ref Level 10.00 df Att 25 SGL Count 100/100 IPk Max 0 dfm -10 dBm -20 cBm -30 cBm -50 dBm -50 dBm -80 dBm -80 dBm -80 dBm -70 dBm -80 dBm -70 dBm -80 dBm -80 dBm -70 dBm -80 dBm -90 dBm -90 dBm -90 dBm -90 dBm <	3m Offset 2.43 dB SWT 227. 138 dBm 138 dBm 1	NVNT BLE 1	M 2480N	Auto FFT		0n 2.479 2.483 2.483	-1.15 dBm 75000 GHz 64.84 dBm 50000 GHz



8.7 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-49.43	-20	Pass
NVNT	BLE 1M	2440	Ant1	-49.39	-20	Pass
NVNT	BLE 1M	2480	Ant1	-48.95	-20	Pass

ACCREDITED



	1								
	20.00 dBm			RBW 100 kHz					
SGL Count	30 dB	SWT 18	8.9 µs 👄	VBW 300 kHz	Mode /	uto FFT			
●1Pk Max	100/100								
TEK Man					M	1[1]			-0.59 dBm
								2.43974	63580 GHz
10 dBm								+	
			M1						
0 dBm			- MII	+					
			\sim		~~~				
-10 dBm									
-20 dBm									
-30 dBm-									
-40 dBm									
-50 dBm									
20 0011									
-60 dBm									
20 0011									
-70 dBm									
-/0 0011									
CF 2.44 GH	z			30001	pts			Spa	n 1.5 MHz
Spectrum]	Spuriou	s NVN	IT BLE 1M) /Hz Ant	t1 Emiss	sion	
Ref Level	Tx.	Offset 2.	.39 dB 👄	IT BLE 1N RBW 100 kHz	12440N			sion	
Ref Level Att	Tx. 20.00 dBm 30 dB	Offset 2.	.39 dB 👄	IT BLE 1N	12440N) Rea MHz Ant Auto Sweep		sion	
Ref Level	Tx. 20.00 dBm 30 dB	Offset 2.	.39 dB 👄	IT BLE 1N RBW 100 kHz	12440N			sion	
Ref Level Att SGL Count	Tx. 20.00 dBm 30 dB	Offset 2.	.39 dB 👄	IT BLE 1N RBW 100 kHz	1 2440N Mode 4				
Ref Level Att SGL Count	Tx. 20.00 dBm 30 dB	Offset 2.	.39 dB 👄	IT BLE 1N RBW 100 kHz	1 2440N Mode 4	Auto Sweep 1[1]		2.4	-1.51 dBm 40010 GHz
Ref Level Att SGL Count 1Pk Max	Tx. 20.00 dBm 30 dB	Offset 2.	.39 dB 👄	IT BLE 1N RBW 100 kHz	1 2440N Mode 4	Auto Sweep		2.4	-1.51 dBm 40010 GHz 49.99 dBm
Ref Level Att SGL Count 1Pk Max	Tx. 20.00 dBm 30 dB	Offset 2.	.39 dB 👄	IT BLE 1N RBW 100 kHz	1 2440N Mode 4	Auto Sweep 1[1]		2.4	-1.51 dBm 40010 GHz
Ref Level Att SGL Count 1Pk Max	Tx. 20.00 dBm 30 dB	Offset 2.	.39 dB 👄	IT BLE 1N RBW 100 kHz	1 2440N Mode 4	Auto Sweep 1[1]		2.4	-1.51 dBm 40010 GHz 49.99 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2. SWT 2	.39 dB 👄	IT BLE 1N RBW 100 kHz	1 2440N Mode 4	Auto Sweep 1[1]		2.4	-1.51 dBm 40010 GHz 49.99 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2. SWT 2	.39 dB 👄	IT BLE 1N RBW 100 kHz	1 2440N Mode 4	Auto Sweep 1[1]		2.4	-1.51 dBm 40010 GHz 49.99 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2. SWT 2	.39 dB 👄	IT BLE 1N RBW 100 kHz	1 2440N Mode 4	Auto Sweep 1[1]		2.4	-1.51 dBm 40010 GHz 49.99 dBm
Mef Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2. SWT 2	.39 dB 👄	IT BLE 1N RBW 100 kHz	1 2440N Mode 4	Auto Sweep 1[1]		2.4	-1.51 dBm 40010 GHz 49.99 dBm
Mathematical SGL Count Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2. SWT 2	.39 dB 👄	IT BLE 1N RBW 100 kHz	1 2440N Mode 4	Auto Sweep 1[1] 2[1]		2.4	-1.51 dBm 40010 GHz 49.99 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2. SWT 2	.39 dB ● 65 ms ●	JT BLE 1M	1 2440N Mode 4 	Auto Sweep 1[1] 2[1]		2.4	-1.51 dBm 40010 GHz 49.99 dBm
Mathematical SGL Count Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2. SWT 2	.39 dB 👄	JT BLE 1M	1 2440N Mode 4 M 	Auto Sweep 1[1] 2[1]		2.4	-1.51 dBm 40010 GHz 49.99 dBm
Mail Max 10 dBm 10 dBm 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2. SWT 2	.39 dB ● 65 ms ●	JT BLE 1M	1 2440N Mode 4 M 	Auto Sweep 1[1] 2[1]		2.4 - 15.8	-1.51 dBm 40010 GHz 49.99 dBm 52001 GHz
Mathematical SGL Count Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2. SWT 2	.39 dB ● 65 ms ●	JT BLE 1M	1 2440N Mode 4 M 	Auto Sweep 1[1] 2[1]		2.4 - 15.8	-1.51 dBm 40010 GHz 49.99 dBm 52001 GHz
Mathematical Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2. SWT 2	.39 dB ● 65 ms ●	JT BLE 1M	1 2440N Mode 4 M M	Auto Sweep 1[1] 2[1]		2.4 - 15.8	-1.51 dBm 40010 GHz 49.99 dBm 52001 GHz
Mail Mail 10 dBm 10 dBm 10 dBm 10 dBm -10 dBm 10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm -30.0	Tx. 20.00 dBm 30 dB 10/10	Offset 2. SWT 2	.39 dB ● 65 ms ●	JT BLE 1M	1 2440N Mode 4 M M	Auto Sweep 1[1] 2[1]		2.4 - 15.8	-1.51 dBm 40010 GHz 49.99 dBm 52001 GHz
Mail Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm 70 dBm Start 30.0 Marker	Tx. 20.00 dBm 30 dB 10/10 D1 -20.587	dBm	.39 dB ● 65 ms ● 	JT BLE 1N	1 2440N Mode 4 M M M M M	Auto Sweep 1[1] 2[1]		2.4 	-1.51 dBm 40010 GHz 49.99 dBm 52001 GHz
Marker Type Ref	Tx. 20.00 dBm 30 dB 10/10 D1 -20.587 M3 MHz	Offset 2. SWT 2 dBm dBm	39 dB ● 65 ms ●	JT BLE 1M	1 2440N Mode 4 M: M: M: M: M: M: M: M: M: M: M: M: M:	Auto Sweep 1[1] 2[1]		2.4 - 15.8	-1.51 dBm 40010 GHz 49.99 dBm 52001 GHz
Mat SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm Marker Type Ref M1 M2	Tx. 20.00 dBm 30 dB 10/10 D1 -20.587 MHz MHz 1 1	Offset 2. SWT 2 dBm 	39 dB ● 65 ms ●	IT BLE 1W RBW 100 kHz VBW 300 kHz BU 300 kHz CONTRACTOR CONTRAC	1 2440N Mode 4 M M M M M M M M M M M M M M M M M M M	Auto Sweep 1[1] 2[1]		2.4 	-1.51 dBm 40010 GHz 49.99 dBm 52001 GHz
Mathematical Solution Mathematical Solution 10 dBm 10 dBm 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -70 dBm -70 dBm Warker Type Type Ref M1 M2 M3	Tx. 20.00 dBm 30 dB 10/10 D1 -20.587 MHz MHz Trc 1 1 1	Offset 2. SWT 2 dBm dBm <u>M1</u> <u>X-value</u> 2.4400 15.85200 4.80342	.39 dB ● 65 ms ● 	JT BLE 1M RBW 100 kHz VBW 300 kHz 	1 2440N Mode 4 M M M M M M M M	Auto Sweep 1[1] 2[1]		2.4 	-1.51 dBm 40010 GHz 49.99 dBm 52001 GHz
Mail Mail SGL Count SGL Count 1Pk Max IPk Max 10 dBm Mail -10 dBm	Tx. 20.00 dBm 30 dB 10/10 D1 -20.587 MHz MHz 1 1	Offset 2. SWT 2 dBm 	.39 dB ● 65 ms ● 	IT BLE 1W RBW 100 kHz VBW 300 kHz BU 300 kHz CONTRACTOR CONTRAC	1 2440N Mode 4 Mi Mi Mi Mi Mi Mi Mi Mi Mi Mi	Auto Sweep 1[1] 2[1]		2.4 	-1.51 dBm 40010 GHz 49.99 dBm 52001 GHz

