

Report Number: F690501-RF-RTL005566

| Т                                                                                                                                     | EST REPORT                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                       | of                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| IC RS                                                                                                                                 | FCC Part 15 Subpart C §15.247<br>IC RSS-247 Issue 3 and RSS-Gen Issue 5<br>FCC ID: BEJLANR41<br>IC Certification: 2703H-LANR41                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Equipment Under Test                                                                                                                  | : CONTASSY-AV                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Model Name                                                                                                                            | : LANR41                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Variant Model Name(s)                                                                                                                 | : -                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Applicant                                                                                                                             | FCC: LG Electronics USA, Inc.<br>IC: LG ELECTRONICS INC.                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Manufacturer                                                                                                                          | : LG Electronics Co., Ltd.                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Date of Receipt                                                                                                                       | : 2024.07.04                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Date of Test(s)                                                                                                                       | : 2024.09.05 ~ 2024.11.11                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Date of Issue                                                                                                                         | : 2024.11.14                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| does not assure KOLAS a                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| <ul><li>2) The SGS Korea is not response</li><li>3) This test report cannot be response</li><li>4) The data marked  in this</li></ul> | t are effective only to the items tested.<br>onsible for the sampling, the results of this test report apply to the sample as received.<br>eproduced, except in full, without prior written permission of the Company.<br>report was provided by the customer and may affect the validity of the test results.<br>he information of this test report except for the data(%) provided by the customer. |  |  |  |  |  |
| Tested by:                                                                                                                            | Technical<br>Manager:                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                       | Dave Kim Jinhyoung Cho                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| SGS Kor                                                                                                                               | ea Co., Ltd. Gunpo Laboratory                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |



| Report Number: | F690501-RF-RTL005566 | Page: | 2 | of | 55 |
|----------------|----------------------|-------|---|----|----|
|                |                      |       |   |    |    |

# INDEX

| Table of Contents                                                           | Page |
|-----------------------------------------------------------------------------|------|
| 1. General Information                                                      | 3    |
| 2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emissions | 10   |
| 3. 20 dB Bandwidth & 99 % Bandwidth                                         | 32   |
| 4. Maximum Peak Conducted Output Power                                      | 41   |
| 5. Carrier Frequency Separation                                             | 43   |
| 6. Number of Hopping Frequencies                                            | 45   |
| 7. Time of Occupancy(Dwell Time)                                            | 47   |
| 8. Antenna Requirement                                                      | 55   |



## 1. General Information

## 1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- Designation number: KR0150

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>.

Phone No. : +82 31 688 0901

Fax No. : +82 31 688 0921

## 1.2. Details of Applicant

: LG Electronics USA, Inc. FCC Applicant FCC Address 111 Sylvan Avenue, North Building, Englewood Cliffs, New Jersey, United States, 07632 : IC Applicant : LG ELECTRONICS INC. IC Address 222, LG-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do, Korea (Republic of), 451-713 : Contact Person Kim, David : Phone No. +1 201 470 2696

## 1.3. Details of Manufacturer

| Company           | : LG Electronics Inc.                                                                             |
|-------------------|---------------------------------------------------------------------------------------------------|
| Address           | : 128, Yeoui-daero, Yeongdeungpo-gu, Seoul, Republic of Korea, 07336                              |
| Factory 1         | : LG Electronics Inc.                                                                             |
| Factory 1 Address | : 222 LG-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do, 17709, Republic of Korea                    |
| Factory 2         | : LG Electronics Vietnam Haiphong Co., Ltd.                                                       |
| Factory 2 Address | : Lots CN2, Trang Due Industrial Park, Le Loi Commune, An Duong District, Hai Phong City, Vietnam |
| Factory 3         | <b>6 1</b>                                                                                        |
| Factory 3 Address | : Av. Olimpia #2342, Parque Industrial Santa Maria 2da Etapa, 25903 Ramos Arizpe,                 |
| Factory 3         | Phong City, Vietnam<br>: LG Electronics Reynosa S.A. de C.V.                                      |

## 1.4. Description of EUT

| Kind of Product      | CONT ASSY-AV                                                                                                                    | CONT ASSY-AV                                        |  |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| Model Name           | LANR41                                                                                                                          | ANR41                                               |  |  |  |  |
| Serial Number        | Conducted: 001<br>Radiated: 002                                                                                                 |                                                     |  |  |  |  |
| Power Supply         | DC 12 V                                                                                                                         |                                                     |  |  |  |  |
| Frequency Range      | 2 402 Młz ~ 2 480 Młz (Bluetooth)                                                                                               |                                                     |  |  |  |  |
| Modulation Technique | GFSK, π/4DQPSK, 8DPSK                                                                                                           |                                                     |  |  |  |  |
| Number of Channels   | 79 channels (Bluetooth)                                                                                                         |                                                     |  |  |  |  |
| Antenna Type         | Ant. 1: Internal Dielectric Chip Antenna                                                                                        | Ant. 2: External PIFA                               |  |  |  |  |
| Antenna Gain         | Ant. 1<br>BT: 2 400 M/z ~ 2 483.5 M/z: 2.20 dB i<br>WLAN5: 5 150 M/z ~ 5 250 M/z: 4.60 dB i<br>5 725 M/z ~ 5 875 M/z: 3.50 dB i | Ant. 2<br>WLAN2: 2 400 MHz ~ 2 483.5 MHz: 0.25 dB i |  |  |  |  |
| H/W Version          | 1.0                                                                                                                             |                                                     |  |  |  |  |
| S/W Version          | 1.0                                                                                                                             |                                                     |  |  |  |  |
| FVIN                 | 1.0                                                                                                                             |                                                     |  |  |  |  |



## **1.5. Information about the FHSS characteristics:**

#### 1.5.1. Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

#### 1.5.2. Equal Hopping Frequency Use

The channels of this system will be used equally over the long-term distribution of the hopsets.

#### 1.5.3. Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10, 43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

#### 1.5.4. System Receiver Input Bandwidth

Each channel bandwidth is 1 Mtz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

#### **1.5.5. Equipment Description**

15.247(a) (1) that the Rx input bandwidths shift frequencies in synchronization with the transmitted signals.

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.



Report Number: F690501-RF-RTL005566

55

## 1.6. Test Equipment List

| Equipment                   | Manufacturer                    | Model                                | S/N                       | Cal. Date     | Cal.<br>Interval | Cal. Due      |
|-----------------------------|---------------------------------|--------------------------------------|---------------------------|---------------|------------------|---------------|
| Signal Generator            | R&S                             | SMA100B                              | 106887                    | Oct. 11, 2024 | Annual           | Oct. 11, 2025 |
| Spectrum Analyzer           | R&S                             | FSV30                                | 103453                    | Oct. 29, 2024 | Annual           | Oct. 29, 2025 |
| Spectrum Analyzer           | R&S                             | FSW67                                | 103242                    | Jul. 19, 2024 | Annual           | Jul. 19, 2025 |
| Spectrum Analyzer           | Agilent                         | N9020A                               | MY53421758                | Sep. 10, 2024 | Annual           | Sep. 10, 2025 |
| Bluetooth Tester            | TESCOM                          | TC-3000C                             | 3000C000560               | Sep. 19, 2024 | Annual           | Sep. 19, 2025 |
| Directional Coupler         | KRYTAR                          | 152613                               | 122660                    | Jul. 09, 2024 | Annual           | Jul. 09, 2025 |
| BRIDGE COUPLER              | MARKI<br>MICROWAVE INC          | CBR16-0012                           | 1542                      | May 13, 2024  | Annual           | May 13, 2025  |
| High Pass Filter            | Wainwright<br>Instrument GmbH   | WHKX3.0/18G-10SS                     | 21                        | Jun. 07, 2024 | Annual           | Jun. 07, 2025 |
| High Pass Filter            | Wainwright<br>Instrument GmbH   | WHNX7.5/26.5G-6SS                    | 15                        | Jun. 07, 2024 | Annual           | Jun. 07, 2025 |
| Low Pass Filter             | Mini-Circuits                   | NLP-1200+                            | V 8979400903-2            | Feb. 07, 2024 | Annual           | Feb. 07, 2025 |
| Power Sensor                | R&S                             | NRP-Z81                              | 100669                    | May 17, 2024  | Annual           | May 17, 2025  |
| DC Power Supply             | R&S HMP2020                     |                                      | 022802107                 | Oct. 31, 2024 | Annual           | Oct. 31, 2025 |
| Preamplifier                | H.P.                            | 8447F                                | 2944A03909                | Aug. 09, 2024 | Annual           | Aug. 09, 2025 |
| Signal Conditioning<br>Unit | R&S                             | SCU-18F                              | 101058                    | Dec. 07, 2023 | Annual           | Dec. 07, 2024 |
| Preamplifier                | MITEQ Inc.                      | JS44-18004000-35-8P                  | 1546891                   | Oct. 14, 2024 | Annual           | Oct. 14, 2025 |
| Loop Antenna                | Schwarzbeck Mess-<br>Elektronik | FMZB 1519                            | 1519-039                  | Aug. 21, 2023 | Biennial         | Aug. 21, 2025 |
| Bilog Antenna               | Schwarzbeck Mess-<br>Elektronik | chwarzbeck Mess-                     |                           | Apr. 02, 2024 | Biennial         | Apr. 02, 2026 |
| Horn Antenna                | Elektronik                      |                                      | 100326                    | Feb. 19, 2024 | Annual           | Feb. 19, 2025 |
| Horn Antenna                | Schwarzbeck Mess-<br>Elektronik | BBHA 9170                            | BBHA9170223               | Oct. 14, 2024 | Annual           | Oct. 14, 2025 |
| EMI Test Receiver           | R&S                             | ESU26                                | 100109                    | Jan. 16, 2024 | Annual           | Jan. 16, 2025 |
| Turn Table                  | Innco systems<br>GmbH           | DS 1200 S                            | N/A                       | N.C.R.        | N/A              | N.C.R.        |
| Controller                  | Innco systems<br>GmbH           | CONTROLLER CO3000-4P                 | CO3000/963/3833<br>0516/L | N.C.R.        | N/A              | N.C.R.        |
| Antenna Mast                | Innco systems<br>GmbH           | MA4640-XP-ET                         | MA4640/536/3833<br>0516/L | N.C.R.        | N/A              | N.C.R.        |
| Anechoic Chamber            | SY Corporation                  | L × W × H<br>(9.6 m × 6.4 m × 6.6 m) | N/A                       | N.C.R.        | N/A              | N.C.R.        |
| Coaxial Cable               | SENSORVIEW                      | NMST-13A26-NMST-5 m                  | TPC2402190004             | Oct. 04, 2024 | Semi-<br>Annual  | Apr. 04, 2025 |
| Coaxial Cable               | SENSORVIEW                      | NMST-13A26-NMST-10 m                 | TPC2402190001             | Oct. 04, 2024 | Semi-<br>Annual  | Apr. 04, 2025 |
| Coaxial Cable               | RADIALL                         | TESTPRO 3                            | 182287                    | Oct. 11, 2024 | Semi-<br>Annual  | Apr. 11, 2025 |
| Coaxial Cable               | RADIALL                         | TESTPRO 3                            | 182288                    | Oct. 11, 2024 | Semi-<br>Annual  | Apr. 11, 2025 |
| Coaxial Cable               | RADIALL                         | TESTPRO 3                            | 182290                    | Oct. 11, 2024 | Semi-<br>Annual  | Apr. 11, 2025 |

## Note;

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date



## Report Number: F690501-RF-RTL005566

## **1.7. Declaration by the Manufacturer**

- BT, BLE and WLAN 5 GHz utilize internal Dielectric Chip Antenna, whereas WLAN 2 GHz employs an external PIFA.

## 1.8. Summary of Test Results

The EUT has been tested according to the following specifications:

| APPLIED STA                      | NDARD: FCC Part15                                                                                                                      | Subpart C, IC RSS-247 Issue 3 and RSS-Ge | n Issue 5         |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------|
| Section in FCC                   | Section in IC                                                                                                                          | Test Item(s)                             | Result            |
| 15.205(a)<br>15.209<br>15.247(d) | 5.2095.5Transmitter Radiated Spurious Emissions5.209RSS-Gen Issue 5<br>8.9and Conducted Spurious Emission                              |                                          | Pass              |
| 15.247(a)(1)                     | RSS-247 Issue 3      20 dB      Bandwidth and 99 % Bandwidth        15.247(a)(1)      6.7      20 dB      Bandwidth and 99 % Bandwidth |                                          | Pass              |
| 15.247(a)(1)<br>15.247(b)(1)     | RSS-247 Issue 3<br>5.1(b)<br>5.4(b)                                                                                                    | Maximum Peak Conducted Output Power      | Pass              |
| 15.247(a)(1)                     | RSS-247 Issue 3<br>5.1(b)                                                                                                              | Carrier Frequency Separation             | Pass              |
| 15.247(a)(1)(iii)                | RSS-247 Issue 3<br>5.1(d)                                                                                                              | Number of Hopping Frequencies            | Pass              |
| 15.247(a)(1)(iii)                | RSS-247 Issue 3<br>5.1(d)                                                                                                              | Time of Occupancy<br>(Dwell Time)        | Pass              |
| 15.207                           | RSS-Gen Issue 5<br>8.8                                                                                                                 | AC Power Line Conducted Emission         | N/A <sup>1)</sup> |

#### Note;

1) The AC power line test was not performed because the EUT use battery power for operation and which do not operate from the AC power lines.

## 1.9. Test Procedure(s)

The measurement procedures described in the American National Standard of Procedure for Compliance Testing of unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 15.247 Meas Guidance v05r02 were used in the measurement of the DUT.

## 1.10. Sample Calculation

Where relevant, the following sample calculation is provided:

#### 1.10.1. Conducted Test

Offset value (dB) = Directional coupler (dB) + Cable loss (dB)

#### 1.10.2. Radiation Test

Field strength level (dBµN/m) = Measured level (dBµN) + Antenna factor (dB) + Cable loss (dB) - Amplifier gain (dB) + Duty factor (dB)

## **1.11. Information of software for test**

- Using the software of Qualcomm Radio Control Toolkit v4.0 to testing of EUT.

RTT7081-02(2020.10.05)(0)



## Report Number: F690501-RF-RTL005566

## **1.12. Measurement Uncertainty**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Parameter                           |   | Uncertainty    |
|-------------------------------------|---|----------------|
| Maximum Peak Conducted Output Power |   | <b>0.33</b> dB |
| 99 % Bandwidth                      |   | 8.34 kHz       |
| 20 dB Bandwidth                     |   | 9.43 kHz       |
| Conducted Spurious Emission         |   | <b>0.84</b> dB |
| Time of Occupancy                   |   | 0.01 ms        |
| Dedicted Emission 0 We to 20 We     | Н | <b>3.40</b> dB |
| Radiated Emission, 9 kHz to 30 MHz  | V | <b>3.40</b> dB |
| Padiated Emission below 1 Mr        | Н | <b>4.60</b> dB |
| Radiated Emission, below 1 GHz      | V | <b>5.00</b> dB |
| Padiated Emission, above 1 Ma       | Н | <b>3.60</b> dB |
| Radiated Emission, above 1 Glz      | V | <b>3.60</b> dB |

All measurement uncertainty values are shown with a coverage factor k = 2 to indicate a 95 % level of confidence.

## 1.13. Test Report Revision

| Revision | Report Number        | Date of Issue | Description |
|----------|----------------------|---------------|-------------|
| 0        | F690501-RF-RTL005566 | 2024.11.14    | Initial     |

## 1.14. Device Capabilities

| Antenna                             | Bluetooth<br>Low Energy | Bluetooth | WLAN 2 GHz | WLAN 5 GHz |  |  |
|-------------------------------------|-------------------------|-----------|------------|------------|--|--|
| External<br>PIFA                    | X X                     |           | 0          | Х          |  |  |
| Internal Dielectric<br>Chip Antenna | 0                       | 0         | Х          | 0          |  |  |



## Report Number: F690501-RF-RTL005566

## **1.15. Descriptions of Test Mode**

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

| Operation<br>Mode | Data Rate<br>(Mbps) | Channel | Frequency<br>(ᡅ) | RF Peak Output Power<br>(dB m) |             |
|-------------------|---------------------|---------|------------------|--------------------------------|-------------|
|                   |                     | Low     | 2 402            | 1.31                           |             |
| GFSK              | 1                   | Middle  | 2 441            | <u>2.02</u>                    |             |
|                   |                     | High    | 2 480            | 1.94                           |             |
|                   |                     | Low     | 2 402            | 0.24                           |             |
| π/4DQPSK          | 2                   | 2       | Middle           | 2 441                          | <u>0.86</u> |
|                   |                     | High    | 2 480            | 0.77                           |             |
|                   |                     | Low     | 2 402            | 0.34                           |             |
| 8DPSK             | 3                   | Middle  | 2 441            | <u>1.23</u>                    |             |
|                   |                     | High    | 2 480            | 0.75                           |             |

#### Note;

1. For transmitter radiated spurious emissions, conducted spurious emission, carrier frequency separation and number of hopping frequencies, GFSK / DH5 and 8DPSK / 3DH5 are tested as worst condition. 2. For 20 dB bandwidth and maximum peak conducted output power, GFSK / DH5,  $\pi$ /4DQPSK / 2DH5 and 8DPSK / 3DH5 are tested as worst condition.

3. For Time of Occupancy, GFSK / DH1, DH3, DH5 and 8DPSK / 3DH1, 3DH3, 3DH5 are tested as worst condition.



## 1.16. Duty Cycle Correction Factor of EUT

According to KDB 558074 D01 15.247 Meas Guidance v05r02, 9, as a "duty cycle correction factor", pulse averaging with 20 log (worst case dwell time / 100 ms) has to be used for average result.

#### 3DH5 on time (One Pulse) Plot on Channel 39

#### 3DH5 on time (Count Pulses) Plot on Channel 39

| Spectrum                                                                           |                        |                  |                                 | Spectrur                   | n                    |                                                                                                                 |                         |                      |             |              |                        |                   |                                    |
|------------------------------------------------------------------------------------|------------------------|------------------|---------------------------------|----------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|-------------|--------------|------------------------|-------------------|------------------------------------|
| Ref Level      20.00 dBm        Att      40 dB      5        SGL TDF      3      3 | RBW 3 MHz<br>SWT 15 ms |                  |                                 | Ref Leve<br>Att<br>SGL TDF | l 20.00 dBr<br>40 di | n<br>B <mark>e SWT</mark> 10                                                                                    |                         | WI 3 MHz<br>WI 3 MHz |             |              |                        |                   |                                    |
| 1Pk Max                                                                            |                        |                  |                                 | Pk Max                     |                      |                                                                                                                 |                         |                      |             |              |                        |                   |                                    |
| 10 dBm                                                                             |                        | D2[1]<br>M1[1]   | -1.1<br>2.880<br>-1.40<br>1.605 | ms<br>Bm 10 dBm            |                      |                                                                                                                 |                         |                      |             |              |                        |                   |                                    |
| 0 dBm                                                                              | manifer manifestingene |                  | tean-trannin Thistories         | -10 dBm                    |                      |                                                                                                                 |                         |                      |             |              |                        |                   |                                    |
| -20 dBm                                                                            | Hiterary               | work that        | u <sup>M</sup> IU <sup>M</sup>  |                            | weekydupowe          | the approximation of the second se | un-hallinnyhinnyhinnyhi | halullingen          | ipun Mintan | meditedition | purposed               | hydroferyganaddiw | keinin uniterratuu                 |
| -40 dBm                                                                            |                        |                  |                                 | -40 dBm-                   |                      |                                                                                                                 |                         | , ,                  |             |              |                        |                   |                                    |
| -60 dBm                                                                            |                        |                  |                                 | -60 dBm                    |                      |                                                                                                                 |                         |                      |             |              |                        |                   |                                    |
| -70 dBm-                                                                           |                        |                  |                                 | -70 dBm-                   |                      |                                                                                                                 |                         |                      |             |              |                        |                   |                                    |
| CF 2.441 GHz                                                                       | 10                     | 001 pts<br>Ready | 1.5 n<br>13.09.202<br>15:24:4   |                            | )[]                  |                                                                                                                 |                         | 1001                 |             | Ready        | N NA VA NA VA NA VA VA | 444               | 10.0 ms/<br>13.09.2024<br>15:22:44 |

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time 3DH5 packet is observed;

the period to have 3DH5 packet completing one hopping sequence is 2.88 ms x 20 channels = 57.60 ms

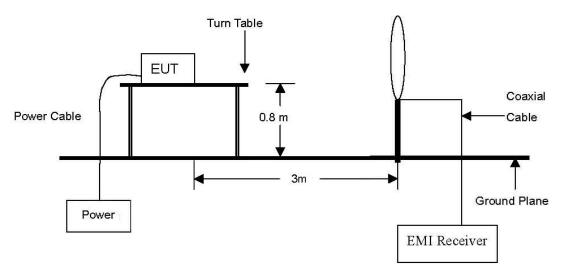
There cannot be 2 complete hopping sequences within 100 ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.60 ms] = 2 hops

Thus, the maximum possible ON time:

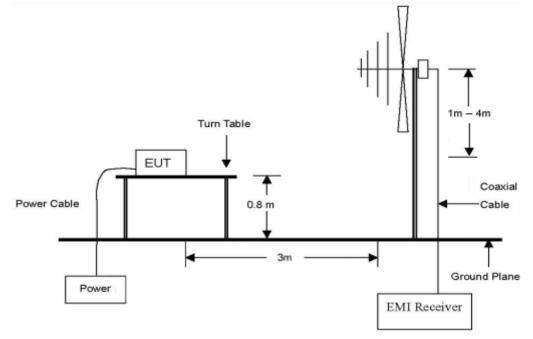
2.88 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time:

20 x log (5.76 ms/100 ms) = -24.79 dB




# 2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emissions

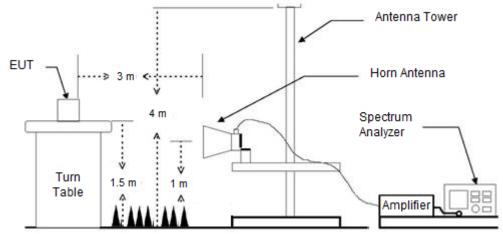

## 2.1. Test Setup

## 2.1.1. Transmitter Radiated Spurious Emissions

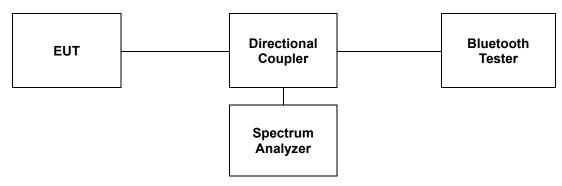
The diagram below shows the test setup that is utilized to make the measurements for emission from 9  $\,\rm klz$  to 30  $\,\rm Mz$ 



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz.







## Report Number: F690501-RF-RTL005566



The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1  $\mathbb{G}_{\mathbb{Z}}$  to the 10<sup>th</sup> harmonic of the highest fundamental frequency or 40  $\mathbb{G}_{\mathbb{Z}}$ , whichever is lower.



## 2.1.2. Conducted Spurious Emissions





## 2.2. Limit

## 2.2.1. FCC

According to §15.247(d), in any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klb bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emission which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency<br>(쌘) | Field Strength<br>( <i>µ</i> V/m) | Measurement Distance<br>(Meters) |
|------------------|-----------------------------------|----------------------------------|
| 0.009-0.490      | 2 400/F(kHz)                      | 300                              |
| 0.490-1.705      | 24 000/F(kHz)                     | 30                               |
| 1.705-30.0       | 30                                | 30                               |
| 30-88            | 100**                             | 3                                |
| 88-216           | 150**                             | 3                                |
| 216-960          | 200**                             | 3                                |
| Above 960        | 500                               | 3                                |

\*\* Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.



## Report Number: F690501-RF-RTL005566

## 2.2.2. IC

According to RSS-247 Issue 3, 5.5, in any 100 km bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 km bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

According to RSS-Gen Issue 5, 8.9, except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

| Frequency (Mb) | Field Strength (µV/m at 3 m) |
|----------------|------------------------------|
| 30-88          | 100                          |
| 88-216         | 150                          |
| 216-960        | 200                          |
| Above 960      | 500                          |

#### Table 5 – General Field Strength Limits at frequencies above 30 Mz

## Table 6 – General Field Strength Limits at frequencies below 30 Mb

| Frequency                     | Magnetic Field Strength<br>(H-Field)<br>(μλ/m) | Measurement Distance<br>(meters) |
|-------------------------------|------------------------------------------------|----------------------------------|
| <b>9-490</b> kHz <sup>1</sup> | 6.37/F (F in kl₂)                              | 300                              |
| <b>490-1 705</b> kHz          | 63.7/F (F in k批)                               | 30                               |
| 1.705-30 Mz                   | 0.08                                           | 30                               |

**Note<sup>1</sup>:** The emission limits for the ranges 9-90 kl and 110-490 kl are based on measurements employing a linear average detector.



## 2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.10-2013.

#### 2.3.1. Test Procedures for emission below 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

#### 2.3.2. Test Procedures for emission from above 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site below 1 GHz and 1.5 meter above the ground at a 3 meter anechoic chamber test site above 1 GHz. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. For measurements below 1 GHz resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.
- 6. For measurements Above 1 GHz resolution bandwidth is set to 1 MHz, the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.



#### 2.3.3. Test Procedures for Conducted Spurious Emissions

#### 2.3.3.1. Band-edge Compliance of RF Conducted Emissions

The transmitter output was connected to the spectrum analyzer. Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation. RBW  $\geq$  100 kHz VBW = 300 kHz Sweep = auto Detector function = peak Trace = max hold

#### 2.3.3.2. Spurious RF Conducted Emissions

The transmitter output was connected to the spectrum analyzer. RBW = 1 Mb VBW = 3 Mb Sweep = auto Detector function = peak Trace = max hold

#### 2.3.3.3. TDF function

- For plots showing conducted spurious emissions from 9 klz to 25 Glz, all path loss of wide frequency range was investigated and compensated to spectrum analyzer as TDF function. So, the reading values shown in plots were final result.



Report Number: F690501-RF-RTL005566

## 2.4. Test Results

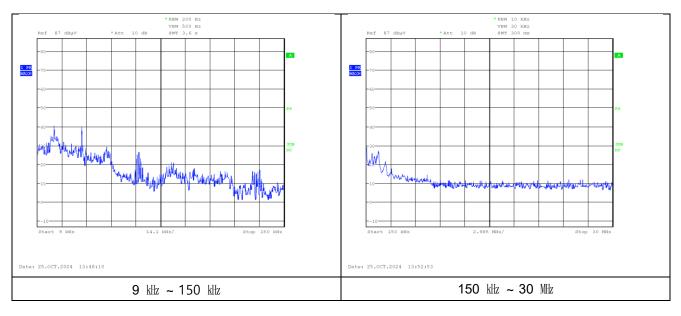
| Ambient temperature | : | (23 | ± 1) ℃ |
|---------------------|---|-----|--------|
| Relative humidity   | : | 47  | % R.H. |

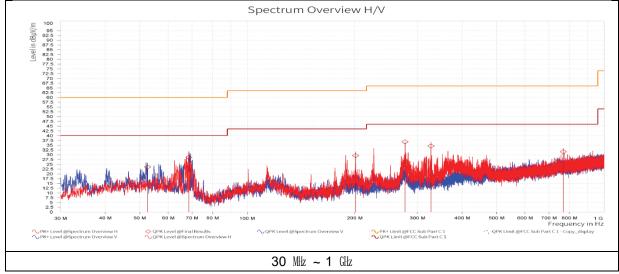
#### 2.4.1. Radiated Spurious Emission below 1 000 Mb

The frequency spectrum from 9 klz to 1 000 Mz was investigated. All reading values are peak values.

| Rac                | Radiated Emissions |                | Ant. | Correction        | Total              | Limit             |                |  |
|--------------------|--------------------|----------------|------|-------------------|--------------------|-------------------|----------------|--|
| Frequency<br>(Mbz) | Reading<br>(dBµN)  | Detect<br>Mode | Pol. | Factors<br>(dB/m) | Actual<br>(dBµN/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |  |
| 52.54              | 30.97              | Quasi<br>Peak  | V    | -7.38             | 23.59              | 40.00             | 16.41          |  |
| 68.57              | 39.99              | Quasi<br>Peak  | Н    | -11.32            | 28.67              | 40.00             | 11.33          |  |
| 201.27             | 38.62              | Quasi<br>Peak  | Н    | -9.08             | 29.54              | 43.50             | 13.96          |  |
| 276.77             | 43.47              | Quasi<br>Peak  | Н    | -6.73             | 36.74              | 46.00             | 9.26           |  |
| 327.18             | 40.06              | Quasi<br>Peak  | Н    | -5.52             | 34.54              | 46.00             | 11.46          |  |
| 767.98             | 30.25              | Quasi<br>Peak  | Н    | 1.33              | 31.58              | 46.00             | 14.42          |  |
| Above<br>800.00    | Not<br>detected    | -              | -    | -                 | -                  | -                 | -              |  |

#### Remark;


- 1. Spurious emissions for all channels were investigated and almost the same below 1 Glz.
- 2. Test from 30 Mt to 1 000 Mt was performed using the software of ELEKTRAT(V5.02) from Rohde & Schwarz GmbH & Co. KG.
- Reported spurious emissions are in <u>BDR / DH5 / Middle channel</u> as worst case among other channels.
  Radiated spurious emission measurement as below.
- (Actual = Reading + Correction)
  (Correction = Antenna Factor + AMP Factor + Cable Loss)
- 5. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB.




## Report Number: F690501-RF-RTL005566

55

#### - Test plots







#### 2.4.2. Radiated Spurious Emission above 1 000 Mb

The frequency spectrum above 1 000 Mb was investigated. All reading values are peak values.

#### **Operating Mode: GFSK**

A. Low Channel (2 402 Mb)

| Radiated Emissions |                   |                | Ant. | Corr         | ection Fa  | actors     | Total              | Limit                      |                |
|--------------------|-------------------|----------------|------|--------------|------------|------------|--------------------|----------------------------|----------------|
| Frequency<br>(胍)   | Reading<br>(dBµN) | Detect<br>Mode | Pol. | AF<br>(dB/m) | CL<br>(dB) | DF<br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dB <i>µ</i> V/m) | Margin<br>(dB) |
| *2 310.00          | 25.18             | Peak           | V    | 27.96        | 6.01       | -          | 59.15              | 74.00                      | 14.85          |
| *2 310.00          | -                 | Average        | -    | -            | -          | -24.79     | 34.36              | 54.00                      | 19.64          |
| *2 386.94          | 27.04             | Peak           | V    | 28.13        | 6.11       | -          | 61.28              | 74.00                      | 12.72          |
| *2 386.94          | -                 | Average        | -    | -            | -          | -24.79     | 36.49              | 54.00                      | 17.51          |
| *2 390.00          | 24.87             | Peak           | V    | 28.12        | 6.12       | -          | 59.11              | 74.00                      | 14.89          |
| *2 390.00          | -                 | Average        | -    | -            | -          | -24.79     | 34.32              | 54.00                      | 19.68          |

| Radiated Emissions |                   | Ant.           | Co   | rrection Fa  | ctors          | Total      | Limit              |                   |                |
|--------------------|-------------------|----------------|------|--------------|----------------|------------|--------------------|-------------------|----------------|
| Frequency<br>(胍)   | Reading<br>(dBµV) | Detect<br>Mode | Pol. | AF<br>(dB/m) | AMP+CL<br>(dB) | DF<br>(dB) | Actual<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| Above<br>1 000.00  | Not<br>detected   | -              | -    | -            | -              | -          | -                  | -                 | -              |

B. Middle Channel (2 441 Mz)

| Radiated Emissions |                   | Ant.           | Co   | rrection Fa  | actors         | Total      | Lin                | nit               |                |
|--------------------|-------------------|----------------|------|--------------|----------------|------------|--------------------|-------------------|----------------|
| Frequency<br>(酏)   | Reading<br>(dBµN) | Detect<br>Mode | Pol. | AF<br>(dB/m) | AMP+CL<br>(dB) | DF<br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |
| Above<br>1 000.00  | Not<br>detected   | -              | -    | -            | -              | -          | -                  | -                 | -              |



## Report Number: F690501-RF-RTL005566

55

#### C. High Channel (2 480 Mb)

| Radiated Emissions |                   |                | Ant. | Corr         | ection Fa  | actors     | Total              | Limit             |                |
|--------------------|-------------------|----------------|------|--------------|------------|------------|--------------------|-------------------|----------------|
| Frequency<br>(胍)   | Reading<br>(dBµN) | Detect<br>Mode | Pol. | AF<br>(dB/m) | CL<br>(dB) | DF<br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| *2 483.50          | 25.39             | Peak           | V    | 28.33        | 6.24       | -          | 59.96              | 74.00             | 14.04          |
| *2 483.50          | -                 | Average        | -    | -            | -          | -24.79     | 35.17              | 54.00             | 18.83          |
| *2 490.93          | 28.28             | Peak           | V    | 28.36        | 6.25       | -          | <u>62.89</u>       | 74.00             | 11.11          |
| *2 490.93          | -                 | Average        | -    | -            | -          | -24.79     | 38.10              | 54.00             | 15.90          |
| *2 500.00          | 24.88             | Peak           | V    | 28.40        | 6.26       | -          | 59.54              | 74.00             | 14.46          |
| *2 500.00          | -                 | Average        | -    | -            | -          | -24.79     | 34.75              | 54.00             | 19.25          |

| Radiated Emissions |                   | Ant.           | Co   | orrection Fa | actors         | Total      | Limit              |                   |                |
|--------------------|-------------------|----------------|------|--------------|----------------|------------|--------------------|-------------------|----------------|
| Frequency<br>(胍)   | Reading<br>(dBµN) | Detect<br>Mode | Pol. | AF<br>(dB/m) | AMP+CL<br>(dB) | DF<br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |
| Above<br>1 000.00  | Not<br>detected   | -              | -    | -            | -              | -          | -                  | -                 | -              |



## Report Number: F690501-RF-RTL005566

55

## **Operating Mode: 8DPSK**

| A. Low Channel (2 | 2 402 | MHz) |
|-------------------|-------|------|
|-------------------|-------|------|

| Radia            | ated Emissic      | ons            | Ant. | Cor          | rection Fac | tors       | Total              | Lim               | it             |
|------------------|-------------------|----------------|------|--------------|-------------|------------|--------------------|-------------------|----------------|
| Frequency<br>(胍) | Reading<br>(dBµN) | Detect<br>Mode | Pol. | AF<br>(dB/m) | CL<br>(dB)  | DF<br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµ∛/m) | Margin<br>(dB) |
| *2 310.00        | 25.45             | Peak           | V    | 27.96        | 6.01        | -          | 59.42              | 74.00             | 14.58          |
| *2 310.00        | -                 | Average        | -    | -            | -           | -24.79     | 34.63              | 54.00             | 19.37          |
| *2 336.54        | 26.93             | Peak           | V    | 28.12        | 6.05        | -          | 61.10              | 74.00             | 12.90          |
| *2 336.54        | -                 | Average        | -    | -            | -           | -24.79     | 36.31              | 54.00             | 17.69          |
| *2 390.00        | 26.63             | Peak           | V    | 28.12        | 6.12        | -          | 60.87              | 74.00             | 13.13          |
| *2 390.00        | -                 | Average        | -    | -            | -           | -24.79     | 36.08              | 54.00             | 17.92          |

| Radiated Emissions |                   | Ant.           | <b>Correction Factors</b> |              |                | Total      | Lim                | nit               |                |
|--------------------|-------------------|----------------|---------------------------|--------------|----------------|------------|--------------------|-------------------|----------------|
| Frequency<br>(肔)   | Reading<br>(dBµN) | Detect<br>Mode | Pol.                      | AF<br>(dB/m) | AMP+CL<br>(dB) | DF<br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| Above<br>1 000.00  | Not<br>detected   | -              | -                         | -            | -              | -          | -                  | -                 | -              |

B. Middle Channel (2 441 Mz)

| Radiated Emissions |                   | Ant.           | <b>Correction Factors</b> |              |                | Total      | Lim                | nit               |                |
|--------------------|-------------------|----------------|---------------------------|--------------|----------------|------------|--------------------|-------------------|----------------|
| Frequency<br>(肔)   | Reading<br>(dB#V) | Detect<br>Mode | Pol.                      | AF<br>(dB/m) | AMP+CL<br>(dB) | DF<br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |
| Above<br>1 000.00  | Not<br>detected   | -              | -                         | -            | -              | -          | -                  | -                 | -              |



## Report Number: F690501-RF-RTL005566

#### C. High Channel (2 480 Mb)

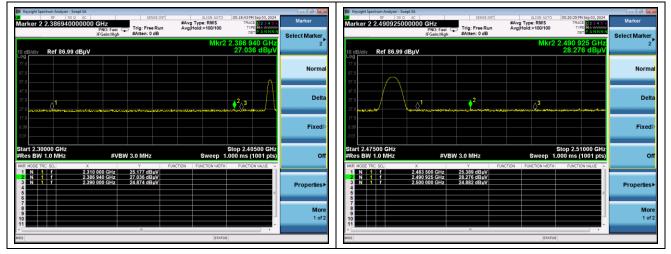
| Radiated Emissions |                   |                | Ant. | Corr         | ection Fa  | actors     | Total              | Lim               | it             |
|--------------------|-------------------|----------------|------|--------------|------------|------------|--------------------|-------------------|----------------|
| Frequency<br>(胍)   | Reading<br>(dBµN) | Detect<br>Mode | Pol. | AF<br>(dB/m) | CL<br>(dB) | DF<br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| *2 483.50          | 25.79             | Peak           | V    | 28.33        | 6.24       | -          | 60.36              | 74.00             | 13.64          |
| *2 483.50          | -                 | Average        | -    | -            | -          | -24.79     | 35.57              | 54.00             | 18.43          |
| *2 493.03          | 27.90             | Peak           | V    | 28.37        | 6.25       | -          | 62.52              | 74.00             | 11.48          |
| *2 493.03          | -                 | Average        | -    | -            | -          | -24.79     | 37.73              | 54.00             | 16.27          |
| *2 500.00          | 28.07             | Peak           | V    | 28.40        | 6.26       | -          | <u>62.73</u>       | 74.00             | 11.27          |
| *2 500.00          | -                 | Average        | -    | -            | -          | -24.79     | 37.94              | 54.00             | 16.06          |

| Radiated Emissions |                   | Ant.           | <b>Correction Factors</b> |              |                | Total      | Total Limit        |                   |                |
|--------------------|-------------------|----------------|---------------------------|--------------|----------------|------------|--------------------|-------------------|----------------|
| Frequency<br>(胍)   | Reading<br>(dBµN) | Detect<br>Mode | Pol.                      | AF<br>(dB/m) | AMP+CL<br>(dB) | DF<br>(dB) | Actual<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| Above<br>1 000.00  | Not<br>detected   | -              | -                         | -            | -              | -          | -                  | -                 | -              |

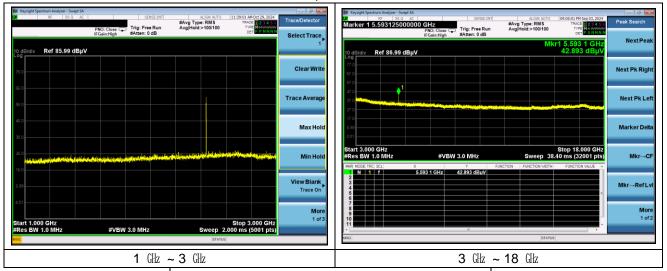
#### Remark;

- 1. "\*" means the restricted band.
- 2. Measuring frequencies from 1 GHz to the 10<sup>th</sup> harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1 000 № were made with an instrument using peak/average detector mode.
- 4. Actual = Reading + AF + CL + (DF) or Reading + AF + AMP + CL + (DF).
- 5. According to § 15.31(o), emission levels are not reported much lower than the limits by over 20 dB.
- 6. The maximized peak measured value complies with the average limit, to perform an average measurement is unnecessary.




## Report Number: F690501-RF-RTL005566

#### - Test plots


#### Operating Mode: GFSK

Low channel band edge (Peak)

High channel band edge (Peak)

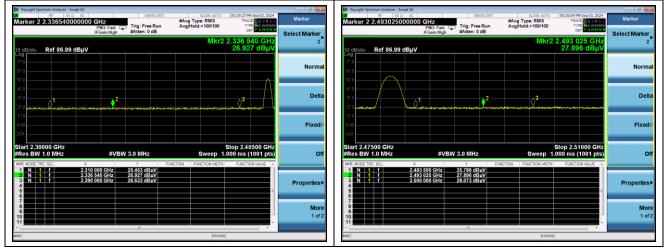


#### Radiated Spurious Emissions

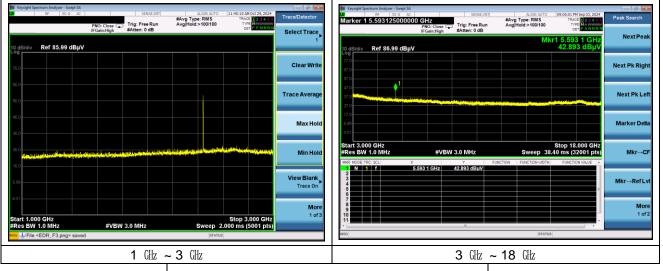


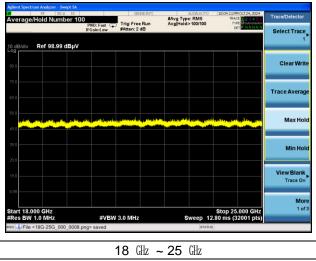
 Algebra
 Stant 18.000 GHz
 Stant 18

Note: According to § 15.31(o), emission levels are not reported much lower than the limits by over 20 dB.




## Report Number: F690501-RF-RTL005566

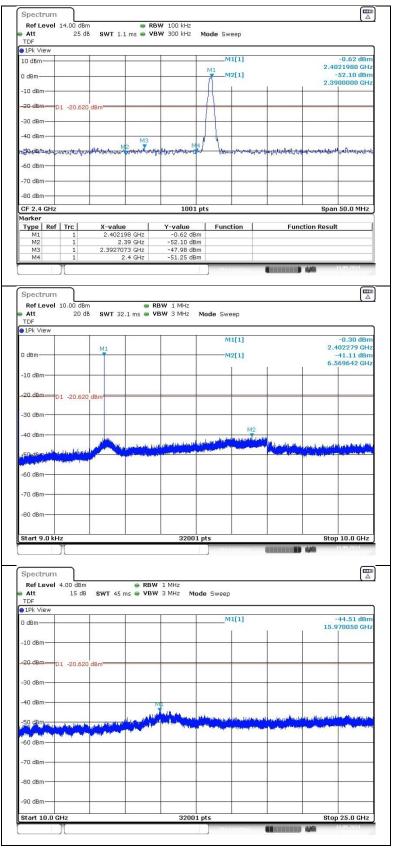

#### **Operating Mode: 8DPSK**




High channel band edge (Peak)



#### Radiated Spurious Emissions






Note: According to § 15.31(o), emission levels are not reported much lower than the limits by over 20 dB.

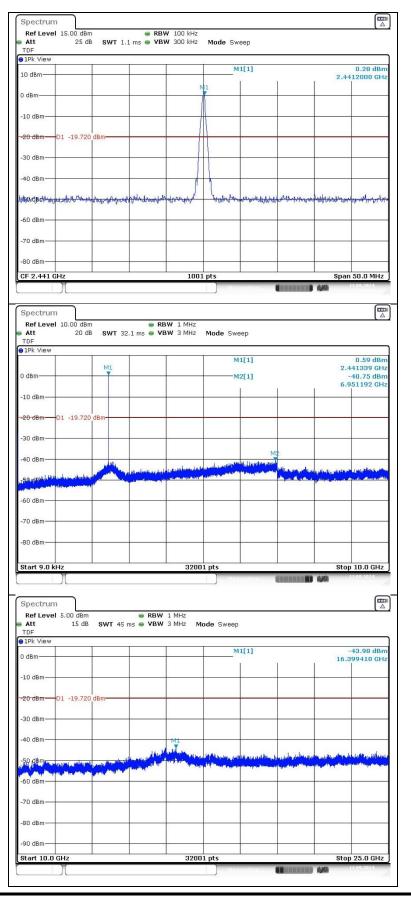


#### 2.4.3. Plot of Spurious Conducted Emissions Operating Mode: GFSK\_hopping function turned off Low channel





Page:


25

of

55

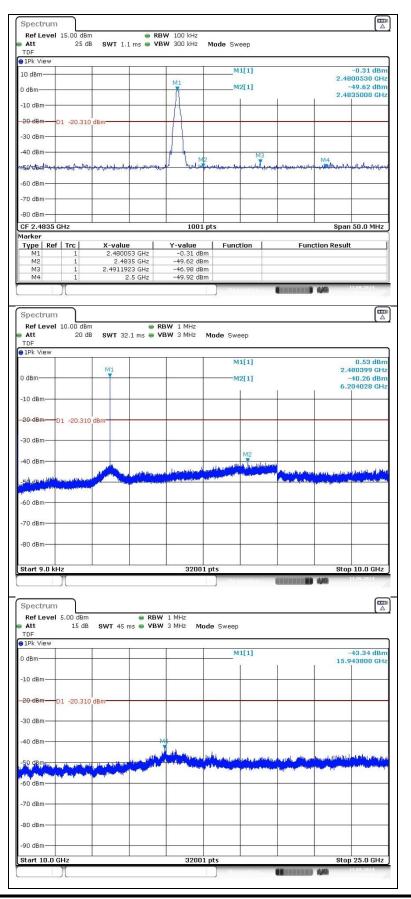
## Report Number: F690501-RF-RTL005566

#### Middle channel





Page:


26

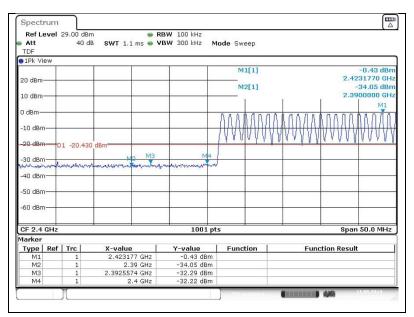
of

55

## Report Number: F690501-RF-RTL005566

#### High channel






## Report Number: F690501-RF-RTL005566

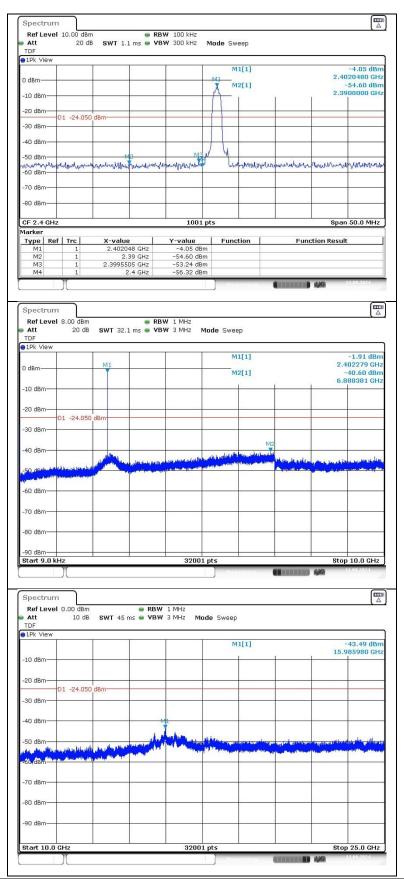
| Page: | 27 | of | 55 |
|-------|----|----|----|
|-------|----|----|----|

## Operating Mode: GFSK\_hopping function turned on Band edge compliance

Low channel



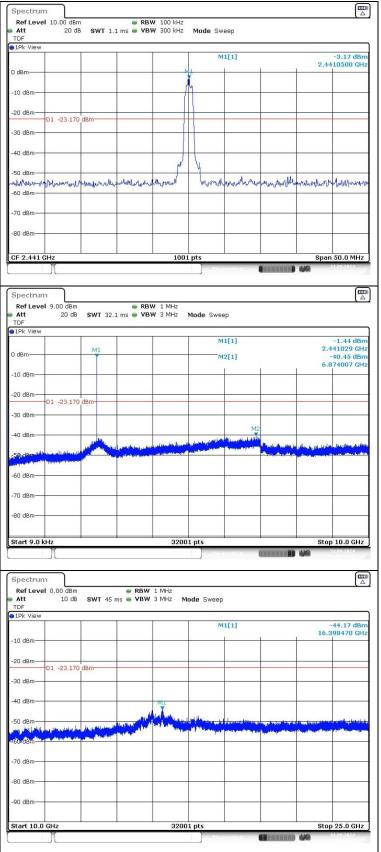
#### High channel


| PofL       | rum   | 30.00 dBr | n <b>a</b> I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RBW 100 kHz              |             |                           |            |
|------------|-------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|---------------------------|------------|
| Att<br>TDF |       |           | B SWT 1.1 ms 👄 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | lode Sweep  |                           |            |
| ∎1Pk Vi    | ew    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | M1[1]       |                           | 0.06 dBn   |
|            |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | milil       | 2.4                       | 780050 GH  |
| 20 dBm     |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | M2[1]       |                           | -33.21 dBr |
| 10 dBm     |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |             |                           | 835000 GH  |
| to ubili   |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MI                       |             |                           |            |
| d8m-       | 0.00  |           | 0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |             |                           |            |
| VIII I     | 1 AIL | 11111     | WURTA AIR NA J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LAIA A                   |             |                           |            |
| -10 dBr    | 1     | HHH       | $W_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1$ | 11111                    |             |                           | -          |
| VYY        | VVI   | IVVV      | MAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VVV                      |             |                           |            |
| -20 dBn    |       | 1 -19,940 | ) dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |             |                           |            |
| -30 dBn    |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M2                       |             | M3 M4                     |            |
| -30 ubii   | ·     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lowenness                | montermeter | multimeter and the second | Annaliant  |
| -40 dBn    |       |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |             |                           |            |
|            |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |             |                           |            |
| -50 dBn    | 1-    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |             |                           | -          |
| -          |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |             |                           |            |
| -60 dBn    |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |             |                           | 2          |
|            |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |             |                           |            |
| CF 2.4     | 835 G | Hz        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001 pt                  | 5           | Spar                      | n 50.0 MHz |
| larker     |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |             |                           |            |
| Туре       | Ref   |           | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-value                  | Function    | Function Resul            | t          |
| M1<br>M2   |       | 1         | 2.478005 GHz<br>2.4835 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.06 dBm<br>-33.21 dBm   |             |                           |            |
| M2<br>M3   |       | 1         | 2.4835 GHz<br>2.49349 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -33.21 dBm<br>-30.74 dBm |             |                           |            |
|            | -     | 1         | 2.49349 GH2<br>2.5 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -32.79 dBm               | 0           |                           |            |
| M4         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |             |                           |            |



## Report Number: F690501-RF-RTL005566

## Operating Mode: 8DPSK\_hopping function turned off


Low channel





## Report Number: F690501-RF-RTL005566

#### Middle channel



Page:

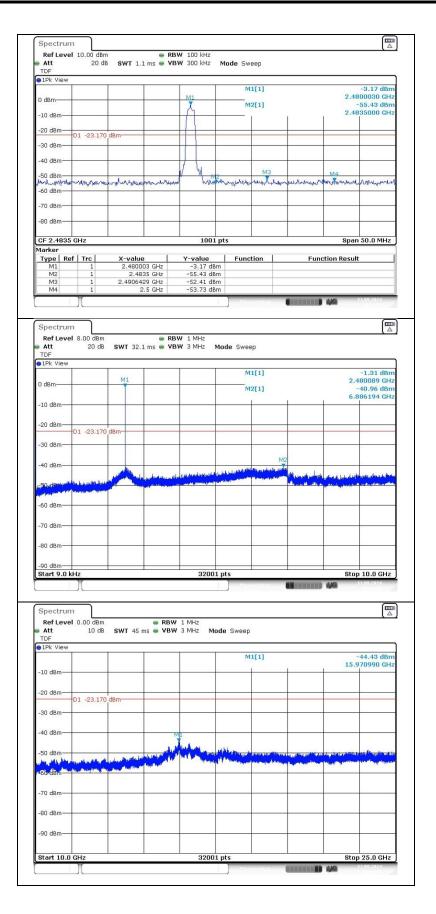
29

of

55



Page:

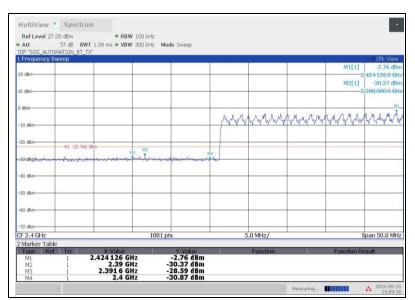

30

of

55

## Report Number: F690501-RF-RTL005566

#### High channel



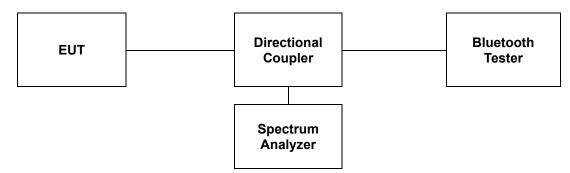



## Report Number: F690501-RF-RTL005566

## Operating Mode: 8DPSK\_hopping function turned on Band edge compliance

Low channel




#### High channel

| Frequency Sv | veep            |      |          |     |    |          |              |       | O 1Pk Vier  |
|--------------|-----------------|------|----------|-----|----|----------|--------------|-------|-------------|
|              |                 |      |          |     |    |          |              | M1[1] | -2.30 di    |
| ) dBm        |                 |      |          |     |    |          |              |       | 463 170 0   |
|              |                 |      |          |     |    |          |              | M2[1] | -30.39 d    |
| ) dBm-       |                 |      |          |     |    | -        |              | 2     | 483 500 0 0 |
| MI           |                 |      |          |     |    |          |              |       |             |
| dBm I d I    |                 |      |          |     |    | 1        |              |       |             |
| MANY         | VVVV            | many | WYWWW    | 44  |    |          |              |       |             |
| lû d8m-      |                 |      |          |     | _  |          |              |       |             |
| 0 dBm        |                 |      |          | 1   |    |          |              |       |             |
| tu usm       | -H1 -22.300 dBr | n    |          |     |    | МЗ       |              |       |             |
| 10 dBm-      |                 |      |          | has | M2 | mound    | and the same | M4    | and share   |
|              |                 |      |          |     |    |          |              |       |             |
| i0 dBm       |                 |      |          |     |    | -        |              |       |             |
|              |                 |      |          |     |    |          |              |       |             |
| i0 d8m       |                 |      |          |     | _  | -        |              |       |             |
|              |                 |      |          |     |    | 1 1      |              |       |             |
| i0 dBm       |                 |      |          |     | -  | -        |              |       |             |
|              |                 |      |          |     |    | 1 1      |              |       |             |
| 70 dBm       |                 |      |          |     | _  |          |              |       |             |
| 2.483 5 GHz  |                 |      | 1001 pts |     |    | 5.0 MHz/ |              | S     | pan 50.0 N  |
| Marker Table |                 |      |          |     |    |          |              |       |             |



## 3. 20 dB Bandwidth and 99 % Bandwidth

## 3.1. Test Setup



## 3.2. Limit

Limit: Not Applicable

## 3.3. Test Procedure

## **3.3.1. 20** dB **Bandwidth**

The test follows ANSI C63.10-2013.

The 20 dB bandwidth was measured with a spectrum analyzer connected to RF antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency.

Use the following spectrum analyzer setting:

- 1. Span = approximately 2 to 5 times the 20 dB bandwidth.
- 2. RBW  $\geq$  1 % to 5 % of the 20 dB bandwidth.
- 3. VBW  $\ge$  3 x RBW
- 4. Sweep = auto
- 5. Detector = peak
- 6. Trace = max hold

The marker-to-peak function to set the mark to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is 20 dB bandwidth of the emission.



#### 3.3.2. 99 % Bandwidth

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the actual occupied /  $x \, dB$  bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99 % emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99 % emission bandwidth).

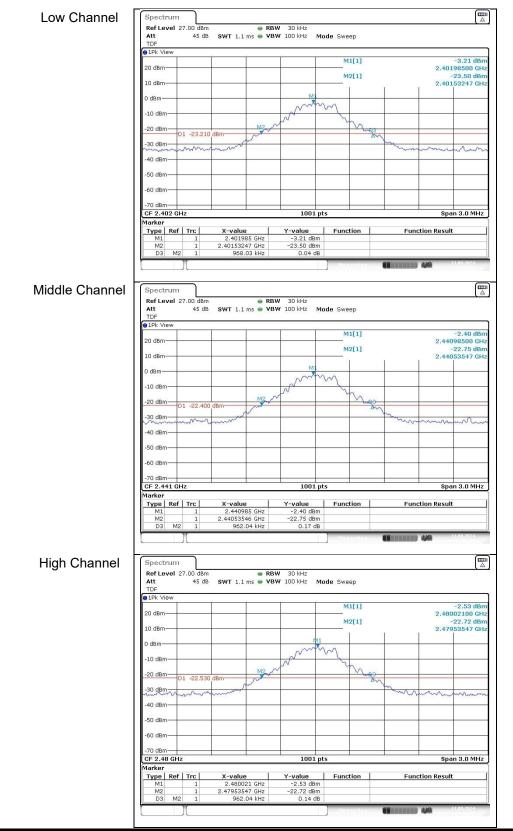


Report Number: F690501-RF-RTL005566

## 3.4. Test Results

Ambient temperature:  $(23 \pm 1)$  °CRelative humidity: 47 % R.H.

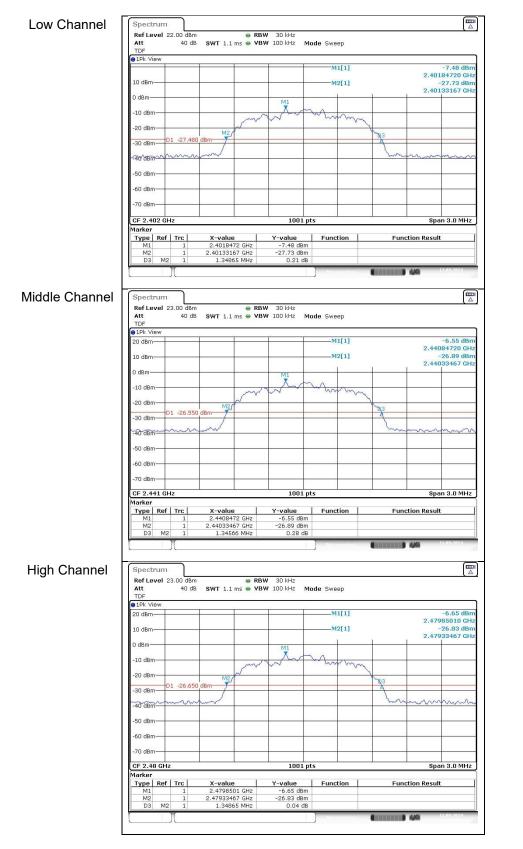
| Operation<br>Mode | Data Rate<br>(Mbps) | Channel | Frequency<br>(₩z) | 20 dB Bandwidth<br>(₩z) | 99 % Bandwidth<br>(쌘) |
|-------------------|---------------------|---------|-------------------|-------------------------|-----------------------|
|                   |                     | Low     | 2 402             | 0.968                   | 1.019                 |
| GFSK              | 1                   | Middle  | 2 441             | 0.962                   | 0.986                 |
|                   |                     | High    | 2 480             | 0.962                   | 0.998                 |
|                   | 2                   | Low     | 2 402             | 1.349                   | 1.214                 |
| π/4DQPSK          |                     | Middle  | 2 441             | 1.346                   | 1.208                 |
|                   |                     | High    | 2 480             | 1.349                   | 1.211                 |
|                   |                     | Low     | 2 402             | 1.340                   | 1.220                 |
| 8DPSK             | 3                   | Middle  | 2 441             | 1.337                   | 1.217                 |
|                   |                     | High    | 2 480             | 1.340                   | 1.217                 |




## Report Number: F690501-RF-RTL005566

#### - Test plots

#### $20 \hspace{0.1 cm} \mathrm{d} \mathbb{B} \hspace{0.1 cm} \text{Bandwidth}$


#### **Operating Mode: GFSK**





Report Number: F690501-RF-RTL005566

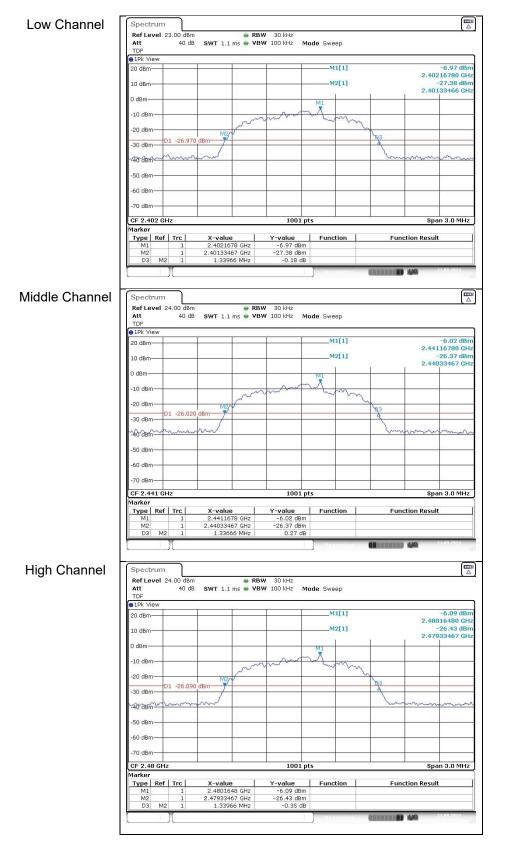
#### Operating Mode: π/4DQPSK



55



Page:

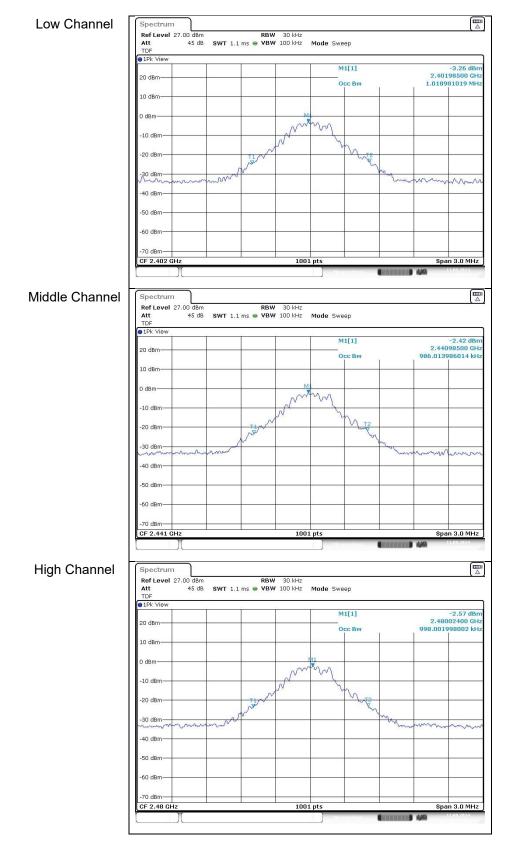

37

of

55

#### Report Number: F690501-RF-RTL005566

#### **Operating Mode: 8DPSK**






Report Number: F690501-RF-RTL005566

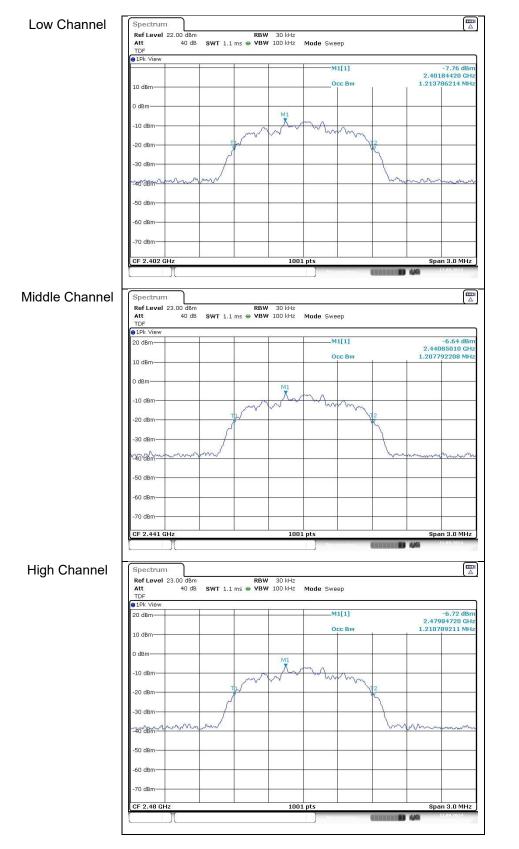
#### 99 % Bandwidth

#### **Operating Mode: GFSK**





Page:


39

of

55

Report Number: F690501-RF-RTL005566

#### Operating Mode: π/4DQPSK

