

FCC ID:	M6E-ALW301W				
Test Report No::	TCT250414E033	(c ¹)	(C)		
Date of issue::	Apr. 30, 2025				
Testing laboratory::	SHENZHEN TONGCE TESTIN	IG LAB			
Testing location/ address:	2101 & 2201, Zhenchang Factor Fuhai Subdistrict, Bao'an Distri 518103, People's Republic of C	ct, Shenzhen, Guangdon			
Applicant's name::	Cheng Uei Precision Industry Co Ltd				
Address::	No.18, Chung Shan Road, Tu Cheng District, New Taipei City, Taiwan, R.O.C., 23680 Taiwan				
Manufacturer's name:	Cheng Uei Precision Industry Co Ltd				
Address::	No.18, Chung Shan Road, Tu Cheng District, New Taipei City, Taiwan, R.O.C., 23680 Taiwan				
Standard(s):	FCC CFR Title 47 Part 1.1307				
Product Name::	2K Window Camera				
Trade Mark:	FOXLINK, AMCREST LINK				
Model/Type reference:	AL-W301W, AL-W302W, W301	IW, W302W, F-CW8341/	4		
Rating(s):	Adapter Information: MODEL: BS05A-0501000US INPUT: AC 100-240V, 50/60Hz OUTPUT: DC 5V, 1000mA	z, 0.25A Max			
Date of receipt of test item :	Apr. 14, 2025				
Date (s) of performance of test:	Apr. 14, 2025 ~ Apr. 30, 2025				
Tested by (+signature):	Onnado YE	Onnao Bagge			
Check by (+signature):	Beryl ZHAO	Boyl PETOT			
Approved by (+signature):	Tomein	Tomas & Sal			

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

2. (2. (3. (3. (4. (4. (4. (4. (4. (4. (4. (4. (4. (4	General Production 1.1. EUT description 1.2. Model(s) General Info 2.1. Test enviolation 2.2. Description 1.2. Facilities around 1.2. Location	listormation armation of Sup	and mode.			
5.	Test Result	s and Me	easuremo	ent Data		

Report No.: TCT250414E033

1. General Product Information

1.1. EUT description

Product Name:	2K Window Camera	(C)
Model/Type reference:	AL-W301W	
Sample Number:	TCT250414E006-0101	
Operation Frequency:	For BLE: 2402MHz~2480MHz For 2.4G WIFI: 2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)/802.11ax(HE20)) 2422MHz~2452MHz (802.11n(HT40)/802.11ax(HE40)) For 5G WIFI: Band 1: 5180 MHz ~ 5240 MHz Band 3: 5745 MHz ~ 5825 MHz	
Modulation Type:	For BLE: GFSK For 2.4G WIFI: 802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n/802.11ax: Orthogonal Frequency Division Multiplexing(OFDM) For 5G WIFI: 256QAM, 64QAM, 16QAM, BPSK, QPSK	
Antenna Type:	Chip Antenna	
Antenna Gain:	For BLE/2.4G WIFI: 1.14dBi For 5G WIFI: Band 1: 2.61dBi Band 3: 3.76dBi	
Rating(s):	Adapter Information: MODEL: BS05A-0501000US INPUT: AC 100-240V, 50/60Hz, 0.25A Max OUTPUT: DC 5V, 1000mA	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	AL-W301W	
Other models	AL-W302W, W301W, W302W, F-CW8341A	

Note: AL-W301W is tested model, other models are derivative models. The models are identical in circuit and PCB layout, different on the model names, image pixel and color. So the test data of AL-W301W can represent the remaining models.

Page 3 of 7

Report No.: TCT250414E033

2. General Information

2.1. Test environment and mode

Item	Normal condition				
Temperature	+25°C				
Voltage	AC 120V				
Humidity	56%				
Atmospheric Pressure:	1008 mbar				
Test Mode:					
Transmitting Mode:	Keep the EUT in continuous transmitting by select channel				

2.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1		1	1	1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 4 of 7

IG CENTRE TECHNOLOGY Report No.: TCT250414E033

3. Facilities and Accreditations

3.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

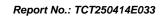
IC - Registration No.: 10668A

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

3.2. Location


SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

Page 5 of 7

4. Limit

According to §1.1310, the limit is as follow,

TABLE 1 TO § 1.1310(E)(1)—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
	(i) Limits for Oc	ccupational/Controlled Expos	URE	
0.3-3.0	614	1.63	*(100)	<i>≤</i> 6
3.0-30	1842/f	4.89/f	*(900/f ²)	<6
30-300	61.4	0.163	1.0	<6
300-1,500			f/300	<6
1,500-100,000			5	<6
	(II) LIMITS FOR GENERA	AL POPULATION/UNCONTROLLED E	XPOSURE	
0.3-1.34	614	1.63	*(100)	<30
1.34-30	824/f	2.19/f	*(180/f ²)	<30
30-300	27.5	0.073	0.2	<30
300-1,500			f/1500	<30
1,500-100,000			1.0	<30

f = frequency in MHz. * = Plane-wave equivalent power density.

Report No.: TCT250414E033

5. Test Results and Measurement Data

According to §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Remark: 1) For BLE: The maximum output power for antenna is -1.93dBm (0.64mW) at 2440MHz, 1.14dBi antenna gain(with 1.30 numeric antenna gain.)

For 2.4G WIFI: The maximum output power for antenna is 15.98dBm (39.63mW) at 2437MHz, 1.14dBi antenna gain(with 1.30 numeric antenna gain.) **For 5G WIFI:** The maximum output power for antenna is 13.65dBm (23.17mW) at 5745MHz, 3.76dBi antenna gain(with 2.38 numeric antenna gain.)

2) For mobile or fixed location transmitters, no SAR consideration applied. The minimum separation generally be used is at least 20cm, even if the calculation indicate that the MPE distance would be lesser.

Calculation

Given

$$E = \sqrt{\frac{30 \times P \times G}{d}} \quad \& \quad S = \frac{E^2}{3770}$$

Where

E = Field Strength in Volts / meter

P = Power in Watts

G=Numeric antenna gain

d=Distance in meters

S=Power Density in milliwatts / square centimeter

Substituting the MPE safe distance using d=20cm into above equation.

Yields: S=0.000199*P*G

Mode	Power(mW)	numeric antenna gain	Power density (mW/cm²)	Limit (mW/cm²)	Result
BLE	0.64	1.30	0.000166		
2.4G WIFI	39.63	1.30	0.010252	1.0	PASS
5G WIFI	23.17	2.38	0.010974		

*****END OF REPORT****

