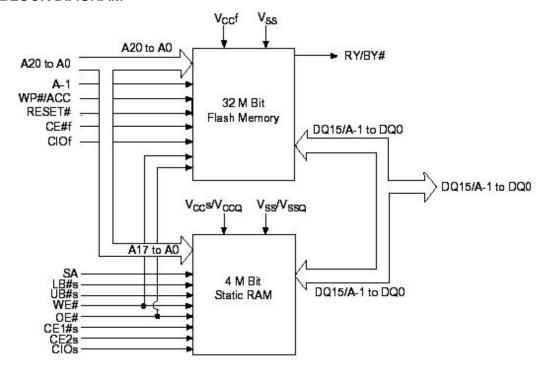
	-	Initial	Absolute Max	dmum Ratings	Description	
Name	Туре	Condition	Minimum Maximum Voltage Voltage			
		Digital Proces	sor Interface (22 te	rminals)		
Master Clock & Tir.	ning	25.	25.	200	353	
MCLK	digital input		DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	master clock	
MCLKEN	digital output	low	DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	master clock enable: idle (low) or active (high)	
Interrupt Logic	(V)	67	0.0	47	35 Y	
INT	digital output	low	DGND - 0.3 V	min(5.5 V, VEXT + 0.3 V)	processor interrupt: idle (low) or active (high)	
Baseband Transm	it & Receive Sections					
TXON	digital input		DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	baseband transmit section: idle (low) or active (high)	
RXON	digital input		DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	baseband receive section: idle (low) or active (high)	
ASM	digital input		DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	advance state machine	
Control Serial Port	pt 188	500	887	337		
CSFS	digital input	22	DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	control serial port framing signal: idle (low) or active (high)	
CSDI	digital input	i.	DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	control serial port data input	
CSDO	digital output	low	DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	control serial port data output	
Baseband Serial P	ort				-	
BSIFS	digital output	low	DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	baseband serial port input framing signal: idle (low) or active (high)	
BSDI	digital input		DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	baseband serial port data input	
BSOFS	digital output	low	DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	baseband serial port output framing signal: idle (low) or active (high)	
BSDO	digital output	low	DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	baseband serial port data output	
Audio Serial Port	8.6		75.	7. II.		
ASFS	digital output	low	DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	audio serial port framing signal: idle (low) or active (high)	
ASDI	digital input		DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	audio serial port data input	
ASDO	digital output	low	DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	audio serial port data output	
Ring Tone Input	94	08		AT TEACHINE Y	2007	
GPI	digital input		DGND - 0.3 V	min(5.5 V, VEXT + 0.3 V)	ring tone input	
Register Reset	84	- 63		£3.	200	
ABBRESET	digital input		DGND - 0.3 V	min(2.75 V, VCORE + 0.3 V)	reset input: active (low) or idle (high)	

		Initial	Absolute Max	imum Ratings	Description
Name	Туре	Condition	Minimum Voltage	Maximum Voltage	
Power Managemer	nt Section	6	86	24	66
RESET	digital output	low	DGND - 0.3 V	min(5.5 V, VMEM + 0.3 V)	reset output: active (low) or idle (high)
DBBON	DBBON digital input		AGND4 - 0.3 V	min(5.5 V, VRTC + 0.3 V)	digital supply regulators: idle (low) o active (high)
VCXOEN digital input			DGND - 0.3 V	min(5.5 V, VEXT + 0.3 V)	voltage-controlled crystal oscillator supply regulator: idle (low) or active (high)
Digital Ground	*		\$00 	85	Retrieve.
DGND	digital ground	r C	Transfer of the second		digital ground
		Test Acc	ess Port (4 termina	is)	
тск	digital input	58	DGND - 0.3 V	min(5.5 V, VEXT + 0.3 V)	test clock
TMS	MS digital input w/ pull- up		DGND - 0.3 V	min(5.5 V, VEXT + 0.3 V)	test mode select
TDI	digital input w/ pull- up		DGND - 0.3 V	min(5.5 V, VEXT + 0.3 V)	test data input
TDO	digital output	low	DGND - 0.3 V	min(5.5 V, VEXT + 0.3 V)	test data output
1112.0000000		Subs	strate (1 terminals)		W. 52- 6 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
AGND0	analog ground			1	substrate ground
•	50 VACOUR 1	Ther	mal (36 terminals)		85
AGND0 (36)	thermal / analog ground				thermal terminals arranged to form four 3 x 3 arrays in the center of the package

Pins Description of AD6525:

			PIN FU	NCTIO	NALITY (NORMAL MODE)			
Group	³ Pin Name (Reset)	Pins	{I/O}	Supply	Default (Alternative Function)			
CONTROL	CLKIN	1	1	V_{cc}	13 MHz or 26 MHz XTAL System Clock Input (Auto Detect)			
	CLKON (H)	1	0	$V_{\rm EXT}$	Oscillator Power Control Signal (on/off)			
	nRESET	1	I	V_{MEM}	System Reset Input			
	OSCIN	1	-1	V_{DDRTC}	32.768 kHz Crystal Input - Inverted (GND if no Crystal)			
	OSCOUT (n/a)	1	0	V_{DDRTC}	32.768 kHz Oscillator Output and Feedback to Crystal			
	PWRON (L)	1	О	$\mathbf{V}_{\text{DDRTC}}$	Power ON/OFF Control			
EBUS I/F	nDISPLAYCS (H)	-1	I/O	V_{MEM}	Processor Address - 8M Words (GPO_14 ADD[23] LCDCTL µSM-14)			
	ADD[22] (L)	1	I/O	V_{MEM}	Processor Address - 4M Words (GPO_15 LCDCTL LCDCTL µSM-15)			
	ADD[21] (L)	1	I/O	V_{MEM}	Processor Address - 2M Words (GPO_27 µSM-21)			
	ADD[20:1] (L)	20	1/0	\mathbf{V}_{MEM}	Processor Address Bus			
	ADD[0] (L)	1	I/O	V_{MEM}	Processor Address Bus (GPO_28 LCDCTL)			
	DATA[15:8] (L)	8	I/O	V_{MEM}	Processor Data Bus			
	DATA[7:0] (L)	8	I/O	V_{MEM}	Processor Data Bus			
	nRD (H)	1	I/O	V_{MEM}	Processor Read Strobe			
	nHWR / nUBS (H)	1	I/O	V_{MEM}	Processor High Write Strobe (GPO_29)			
	nLWR / nLBS (H)	1	I/O	V_{MEM}	Processor Low Write Strobe (GPO_30)			
	nWE (H)	-1	Tri-O	V_{MEM}	Processor Write Strobe (nWR)			
	nROMCS (H)	1	0	V_{MEM}	External ROM Chip Select			
	nRAMCS (H)	1	Tri-O	V_{MEM}	(GPO_31)			
	nGPCS0 (H)	1	Tri-O	V_{MEM}	(GPO_12 RNGOUT[0] µSM-12)			
	nGPCS1 (H)	1	Tri-O	V_{MEM}	(GPO_13 RNGOUT[1] nDISPLAYCS μSM-13)			
	GPIO_32	1	I/O	V_{MEM}	(DBGACK {O} µSM-31 {O})			
SIM	SIMDATAOP (L)	1	1/0	V_{SIM}	SIM Data Output			
	GPIO_22	1	I/O	V_{SIM}	SIM Data Input SIMDATAIP/SIMPROG {I} (µSM-22 {O})			
	SIMCLK (L)	1	0	V_{SIM}	SIM Clock			
	GPIO_23 (L)	1	I/O	\mathbf{V}_{SIM}	SIM Reset SIMRESET {O} (µSM-23 {O})			
	GPIO_24 (L)	1	I/O	V_{MEM}	SIM Supply Enable SIMSUPPLY {O} (µSM-24 {O})			

Group	³ Pin Name (Reset)	Pins	{I/O}	Supply	Default (Alternative Function)
RADIO	GPO_0 (L)	1	0	V_{PEG}	Receiver On RxOn (µSM-0)
	GPO_1 (L)	1	0	V_{PEG}	TxOn (μSM-1)
	GPO_2 (L)	1	0	V_{EXT}	OTH_TX_PA TXEN (µSM-2)
	GPO_3 (L)	1	0	V_{EXT}	RXON1(PONRX1) (µSM-3)
	GPO_4 (L)	1	0	$V_{\rm EXT}$	OTH_PA_NEGBIAS RXON2(PONRX2) (µSM-4)
	GPO_5 (L)	1	0	V_{PEG}	ARMSM (µSM-5)
	GPO_6 (L)	1	0	V_{PEG}	ATSM (μSM-6)
	GPO_7 (H)	1	0	$V_{\rm EXT}$	TXPHASE (µSM-7)
	GPO_8 (H)	1	0	$V_{\rm EXT}$	OTH_DCS_SWITCH (µSM-8)
	GPO_9 (L)	1	0	V_{EXT}	OTH_DCS_SWITCH VSYNTHEN (not(GPO_8) µSM-9)
	GPO_10 (H)	1	0	V_{EXT}	OTH_GSM_SWITCH (µSM-10)
	GPO_11 (L)	1	0	V_{EXT}	OTH_GSM_SWITCH TxPA (not(GPO_9) µSM-11)
(Synths)	GPO_16 (L)	1	I/O	V_{EXT}	OTH_TX_GSM BSEL1/GSMSEL (GSPe_EN2 DSP PF[5] {1/O} µSM-16)
	GPO_17 (L)	1	0	V_{EXT}	OTH_TX_DCS BSEL2/DCSSEL (GSPc_EN3 µSM-17)
	GPO_18 (L)	1	0	$V_{\rm EXT}$	OTH_EN B3-LE/SYNTHEN (GSPe_EN0 µSM-18)
	GPO_19 (L)	1	0	V_{EXT}	OTH_VLO_EN AGCEN (GSPe_EN1)
	GPO_20 (L)	1	I/O	$V_{\rm EXT}$	OTH_DATA B3-DATA/SDATA (GSPc_DATA DSP PF[6] {I/O})
	GPO_21 (L)	1	I/O	V_{EXT}	OTH_CLK B3-CLK/SCLK (GSPe_CLK DSP PF[7] {1/O})
(VBC)	CLKOUT (L)	1	I/O	V_{PEG}	Clock Output to VBC
	CLKOUT_GATE	1	I	$V_{\rm PEG}$	Hardware CLKOUT On/Off Switching
	GPO_24 (L)	1	I/O	V_{PEG}	Reset Output VBCRESET
(A-Sport)	ASDI	1	I	V_{PEG}	Auxiliary Serial Port Data Input
	ASFS (L)	1	0	V_{PEG}	Auxiliary Serial Port Framing Signal
	ASDO (L)	1	Tri-O	V_{PEG}	Auxiliary Serial Port Data Output
(B-Sport)	BSDO (L)	1	I/O	V_{PEG}	Baseband Serial Port Data Output
	BSOFS	1	I/O	\mathbf{V}_{PEG}	Baseband Serial Port Output Framing Signal
	BSDI	1	I	\mathbf{V}_{PEG}	Baseband Serial Port Data Input
	BSIFS	1	I/O	V_{PEG}	Baseband Serial Port Input Framing Signal
(V-Sport)	VSDO (L)	1	I/O	V_{PEG}	Voiceband Serial Port Data Output
	VSDI	1	I/O	V_{PEG}	Voiceband Serial Port Data Input
	VSFS	1	I/O	V_{PEG}	Voiceband Serial Port Framing Signal
Jniversal	USC[0]	1	I/O	V_{EXT}	See USC Pin Out Table (HSLCLK {O} TCK {I})
System	USC[1]	1	I/O	$V_{\rm EXT}$	See USC Pin Out Table (HSLD[0] {O} TDI {I})
Connector	USC[2]	1	I/O	$\mathbf{V}_{\mathrm{EXT}}$	See USC Pin Out Table (HSLD[1] {O} TDO {O})
	USC[3]	1	I/O	V_{EXT}	See USC Pin Out Table (HSLD[2] {O} TMS / TCK {I})
	USC[4]	1	I/O	$\mathbf{V}_{\mathrm{EXT}}$	See USC Pin Out Table (HSLD[3] {O} TDI {I} PF[0] {O})
	USC[5]	1	I/O	V_{EXT}	See USC Pin Out Table (HSLD[4] {O} TDO {O} PF[1] {O})
	USC[6]	1	I/O	V_{EXT}	See USC Pin Out Table (TMS {I} PF[2] {I})


Group	³ Pin Name (Reset)	Pins	{I/O}	Supply	Default (Alternative Function)
MMI	GPIO_0	1	I/O	V_{EXT}	USC7 (GSPb_CLK MONITOR[0] {O} μSM-32 {O})
	GPIO_1	1	I/O	V_{EXT}	USC8/(b_RX) (GSPb_OUT/D1 MONITOR[1] {O} μSM-33 {O})
	GPIO_2	1	I/O	V_{EXT}	(GSPb_EN/FS BUZZER1{O} MONITOR[2] {O} µSM-34 {O})
	GPIO_3	1	I/O	V_{EXT}	USC9/(b_TX / DATA) (GSPb_DO/DI MONITOR[3] µSM-35)
	GPIO_4	1	I/O	V_{EXT}	(μSM-TimeOut {O} MONITOR[4] {O} μSM-36 {O})
	GPIO_5	1	I/O	V_{EXT}	(CLK17ON {O} MONITOR[5] {O} μSM-37 {O})
	GPIO_6	1	I/O	$V_{\rm EXT}$	(GSPdb_RX) (GSPdb_OUT/DI MONITOR[6] {O} μSM-38 {O})
	GPIO_7	-1	I/O	V_{EXT}	$(GSPdb_CLK \mid \mu SM-TimerIn \mid \{I\} \mid MONITOR \mid \{7\} \mid \{O\} \mid \mu SM-39 \mid \{O\})$
	GPIO_8	1	I/O	V_{EXT}	(GSPdb_EN/FS BUZZER2 {O} MONITOR[8] {O} μSM-40 {O})
	GPIO_9	1	I/O	V_{EXT}	(GSPdb_TX / DATA) (GSPdb_DO/DI MONITOR[9] µSM-41)
	GPIO_10	14	I/O	V_{EXT}	GPIO or E2-CLK (GSPda_CLK CacheMiss {O} MONITOR[10] µSM-42)
	GPIO_11	1	I/O	$V_{\rm ENT}$	Digital Temp (GSPda_DATA) or E2-DATA (GSPda_OUT/DI MONITOR[11] μSM-43)
	GPIO_12 (L)	1	I/O	V_{EXT}	Service Light or E2-EN (GSPda_EN/FS BACKLIGHT2 {O} MONITOR[12] µSM-44)
	GPIO_13	-1	I/O	V_{EXT}	BATDI (GSPda_DATA) (GSPda_DO/DI)
	GPIO_14 (L)	1	I/O	V_{EXT}	DISPCLK {O} (GSPc_CLK µSM-45 {O})
	GPIO_15 (L)	1	I/O	V_{EXT}	DISPA0 {O} (GSPc_OUT/DI μSM-46 {O})
	GPIO_16 (L)	1	I/O	V_{EXT}	DISPEN {O} (GSPc_EN/FS μSM-47 {O})
	GPIO_17 (L)	1	I/O	V_{EXT}	DISPD0 (GSPc_DO/DI)
	GPO_22 (L)	1	Tri-O	V_{EXT}	Backlight Display (BACKLIGHTO)
	GPO_23 (L)	1	I/O	V_{EXT}	Backlight Keyboard (BACKLIGHT1) DBGRQ {I}
	KEYPADROW[4]	-11	I	V_{EXT}	(GPI)
	KEYPADROW[3]	1	I/O	$V_{\rm EXT}$	(GPI) (GSPda_CLK {VO})
	KEYPADROW[2]	1	I/O	$V_{\rm EXT}$	(GPI) (GSPda_OUT/DI {I/O})
	KEYPADROW[1]	1	I/O	$V_{\rm EXT}$	(GPI) (GSPda_EN/FS {I/O})
	KEYPADROW[0]	1	I/O	V_{EXT}	(GPI) (GSPda_DO/DI {I/O})
	KEYPADCOL[4] (T)	1	I/O	V_{EXT}	(GPO)
	KEYPADCOL[3] (T)	1	I/O	V_{EXT}	(GPO) (GSPdb_CLK {VO})
	KEYPADCOL[2] (T)	1	I/O	V_{EXT}	(GPO) (GSPdb_OUT/DI {I/O})
	KEYPADCOL[1] (T)	1	I/O	$V_{\rm EXT}$	(GPO) (GSPdb_EN/FS {I/O})
	KEYPADCOL[0] (T)	1	I/O	V_{EXT}	(GPO) (GSPdb_DO/DI {I/O})

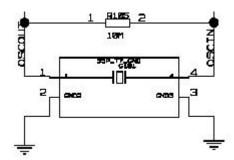
Group	³ Pin Name (Reset)	Pins	{I/O}	Supply	Default (Alternative Function)
JTAG	JTAGEN	1	I	V_{EXT}	JTAG Enable Pull Down
	GPIO_18	1	1/0	$V_{\rm EXT}$	JTAG Test Clock (TCK {I})
	GPIO_19	10	I/O	V_{EXT}	JTAG Test Mode Select (TMS {I} DAIRESET)
	GPIO_20	1	I/O	V_{EXT}	JTAG Test Data Input (TDI {I} DAI[I])
	GPIO_21	1	I/O	V_{EXT}	JTAG Test Data Output (TDO {O} DAI[0])
POWER	Vcc[4:1]	4	PWR	N/A	Core Power Supply Voltage 1.7V to 1.9V
	V_{DDRTC}	1	PWR	N/A	RTC Power Supply 1.0V to 2.0V
	V_{SSRTC}	1	PWR	N/A	RTC Power Supply Return
	V_{SIM}	1	PWR	N/A	SIM Power Supply 1.7V to 3.3V
	$V_{MEM}[4:1]$	4	PWR	N/A	Memory Power Supply 1.7V to 1.9V and 2.7V to 3.15V Memory Suppor
	$V_{EXT}[4;1]$	4	PWR	N/A	External Device Power Supply 2.4V to 3.3V
	V_{PEG1}	1	PWR	N/A	AD6521 Interface Power Supply 1.7V to 3.3V
	GND[11:1]	11	PWR	N/A	Ground (7 Periphery and 4 Core)

<u>**D501**</u>: Memory chip adopts K5A3240YTCT755. It integrates with 32M Bit Fla sh Memory and 4M Bit SRAM.

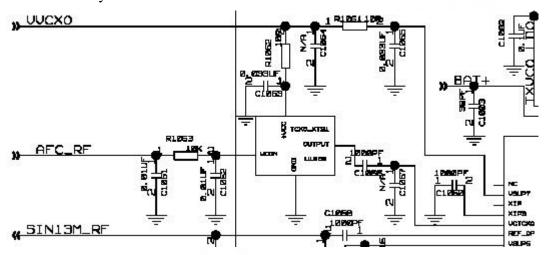
BLOCK DIAGRAM

Pins description is as below:

BALL DESCRIPTION

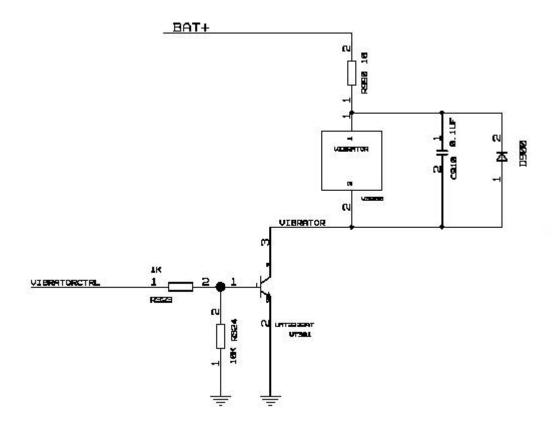

Ball Name	Description			
Ao to A17	Address Input Balls (Common)			
A-1, A18 to A20	Address Input Balls (Flash Memory)			
DQo to DQ15	Data Input/Output Balls (Common)			
RESET	Hardware Reset (Flash Memory)			
WP/ACC	Write Protection / Acceleration Program (Flash Memory)			
Vccs	Power Supply (SRAM)			
VccF	Power Supply (Flash Memory)			
Vss	Ground (Common)			
UB	Upper Byte Enable (SRAM)			
LB	Lower Byte Enable (SRAM)			
BYTES	BYTE _S Control (SRAM)			
BYTE _F	BYTE _F Control (Flash Memory)			
SA	Address Inputs (SRAM)			
CEF	Chip Enable (Flash Memory)			
CS1 _S	Chip Enable (SRAM Low Active)			
CS2 _S	Chip Enable (SRAM High Active)			
WE	Write Enable (Common)			
OE	Output Enable (Common)			
RY/BY	Ready/Busy (Flash memory)			
N.C	No Connection			

3.3.2 Logic circuit tuning up:


Cannot power on

- a. Turn on power supply, test the pin-VBAT of D201, if the voltage is not co rrect, chick the battery or the power supply voltage.
- b. Check the battery contacts and see if it was cold soldered or unsoldered.
- c. Check the Baseband supply and RF power supply of D201, change another D201 if necessary.
- d. Test if 32KHz crystal oscillator clock works, otherwise change G101, and c heck R105.

e. Check if 26M oscillator works, otherwise change U1060 and check with C 1066, C1068, L1061 and C135; Check VVCXO signal; change another U10 60 if necessary.



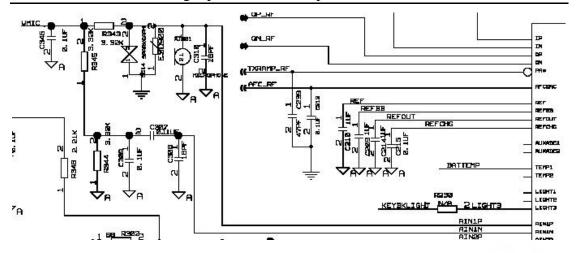
f. Check the signal from Memory or change another D101, D201, D501 step by step.

Do not vibrate

- 1. Check with the vibrator. And change it, if necessary.
- 2. Check if R323, R324, C910, D900, VT301 are cold soldered or unsold ered.
- 3. Check with the supply voltage VBAT; Check the VIB of D900.

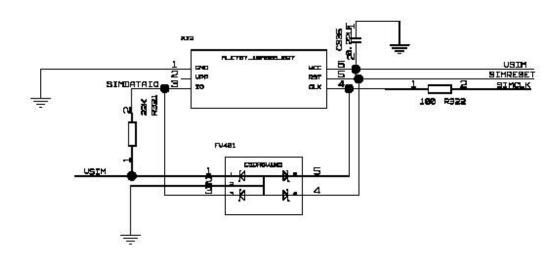
No keypad function:

- 1. Check the signals on the main PCB.
- 2. Check if the contacts of the keypad are being oxygenated or not smooth.
- 3. If the signal is incorrect, it might be the problem of the D101.

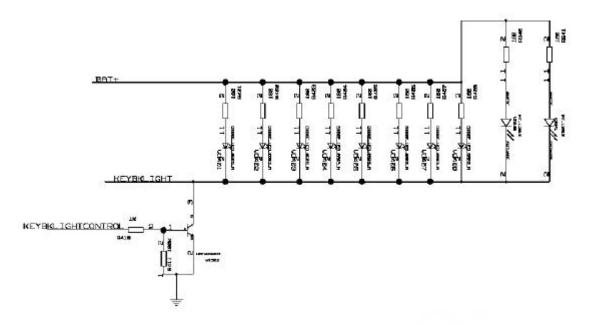

No hands free function

- 1. Check if the pieces are cold soldered? unsoldered or damaged.
- 2. Check with the control signals.
- 3. Check with the relevant chipset.
- 4. Check if the problem with earpiece's contact or other component.

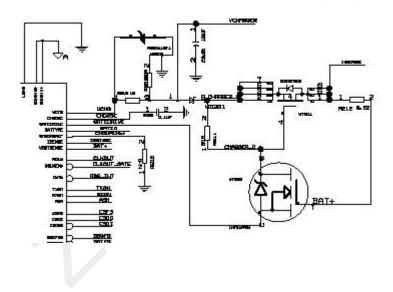
MIC does not work

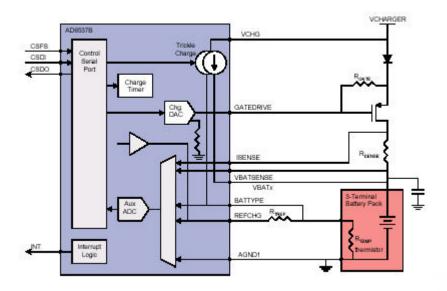

- 1. Check if the MIC is place nicely.
- 2. Test if the signal of MIC contact is right or not.
- 3. If the signal is incorrect, check the component of the path are soldered well or not.
- 4. Check if voltage of MIC-BIAS is correct or not.
- 5. In the end check with the relevant chipset.

SIM card invalid


- 1. Check if the SIM can work.
- 2. Check if the SIM holder is soldered well.
- 3. Check if the contacts of the SIM can be touched.
- 4. Check if the contacts of the SIM with the same level.
- 5. Check the signal of the power supply.
- 6. Check the clock of the SIM.
- 7. Check if the data information is correct

No key backlight or LCD backlight:


- 1. Check if the backlight is a good one.
- 2. Check with the revelant component, R410, R411, VT302.


Can not charge:

- 1. Check with the battery contacts.
- 2. Check with the charge control chipset D201.
- 3. Check with the relevant components.

Block diagram of the charging circuit:

冷焊	CS (Cold Solder)	多余焊锡	ES	(Excess Solder)	元件歪斜	SP (Skewed Part)
连焊	SS (Solder Short)	元件翘起	TP	(Tombstone Part)	元件移动	MP (Misaligned Part)
开路	OT (Open Trace)	元件放反	RP	(Reversed Part)	元件丢失	PM (Part Missing)
短路	DS (Direct Short)	多余元件	EP	(Extra Part)	元件损坏	DP (Damaged Part)
错件	WP (Wrong Part)	管脚弯曲	BP	(Bent Pin)	元件缺陷	CD(Component Defect)
虚焊	PS (Pretense Solde	er) 焊锡不	足	IS (Insufficien	t Solder)	•

4. Antenna Feature of A12

Return Loss

Frequency	880MHz	1880MHz
Return Loss	-4.11	-12.18

Gain

Frequency(MHZ)	nency(MHZ) A12 Antenna						
	E1	E2	Н				
824MHz	-2.56	-1.37	-1.33				
880MHz	-0.74	0.14	0.13				
1880MHz	1.86	-1.54	0.98				
1990MHz	1.39	-1.38	0.39				

XY plane is the **E1** plane, that means the Theta=90 degree.

XZ plane is the **E2** plane, that means the Phi = 0 degree.

YZ plane is the **H** plane, that means the Phi = 90 degree.

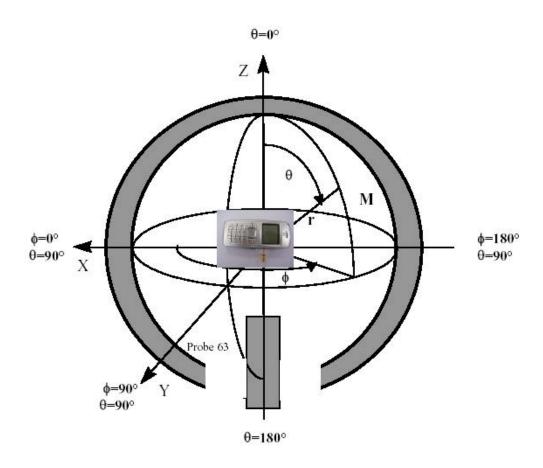


Figure 3: Coordinate System

Efficiency

Frequency	Frequency 824		1880	1990
(MHz)				
Efficiency	34%	51%	61%	57%