

TEST REPORT

Product Name	:	E-drum monitor speaker
Model Number	:	SK-50
FCC ID	:	2BKFZ-SK-50

Prepared for Address	:	NINGBO HAMPBACK CULTURE TECHNOLOGY CO.,LTD. No. 335, Jingu Middle Road, Yinzhou District, Ningbo, China
Prepared by Address	::	EMTEK (NINGBO) CO., LTD. No. 8, Building 8, Lane 216, Qingyi Road, Ningbo Hi-Tech Zone, Ningbo, Zhejiang, China Tel: +86-574-27907998 Fax: +86-574-27721538
Report Number Date(s) of Tests Date of issue	:	ENB2407240027W00201R July 24, 2024 to August 13, 2024 August 19, 2024

 宁波市值测检测技术有限公司
 地址: 浙江省宁波市高新区清逸路216弄8幢8号
 网址: Http://www.emtek.com.cn
 邮箱: nb@emtek.com.cn

 EMTEK(Ningbo) Co., Ltd.
 Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China
 Http://www.emtek.com.cn
 E-mail: nb@emtek.com.cn

Table of Contents

1	TEST RESULT CERTIFICATION	3
2	EUT TECHNICAL DESCRIPTION	5
3	SUMMARY OF TEST RESULT	6
4	TEST METHODOLOGY	7
4.1	GENERAL DESCRIPTION OF APPLIED STANDARDS	7
4.2	MEASUREMENT EQUIPMENT USED	7
4.3		
	TEST SOFTWARE	
5	FACILITIES AND ACCREDITATIONS	10
5.1		
5.2	LABORATORY ACCREDITATIONS AND LISTINGS	10
6	TEST SYSTEM UNCERTAINTY	11
7	SETUP OF EQUIPMENT UNDER TEST	12
7.1	RADIO FREQUENCY TEST SETUP 1	12
7.2		
	CONDUCTED EMISSION TEST SETUP	
	SUPPORT EQUIPMENT	
8	FREQUENCY HOPPING SYSTEM REQUIREMENTS	
8.1		
8.2		
8.3		
	FREQUENCY HOPPING SYSTEM	
9	TEST REQUIREMENTS	
9.1		
9.3		29
9.4	AVERAGE TIME OF OCCUPANCY (DWELL TIME) MAXIMUM PEAK CONDUCTED OUTPUT POWER	31
9.6		
9.7		
9.8		
9.9	ANTENNA APPLICATION	

 宁波市值测检测技术有限公司
 地址: 浙江省宁波市高新区清逸路216弄8幢8号
 网址: Http://www.emtek.com.cn
 邮箱: nb@emtek.com.cn

 EMTEK(Ningbo) Co., Ltd.
 Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China
 Http://www.emtek.com.cn
 E-mail: nb@emtek.com.cn

1 TEST RESULT CERTIFICATION

Applicant	:	NINGBO HAMPBACK CULTURE TECHNOLOGY CO., LTD.
Address	:	No. 335, Jingu Middle Road, Yinzhou District, Ningbo, China
Manufacturer	:	NINGBO HAMPBACK CULTURE TECHNOLOGY CO., LTD.
Address	:	No. 335, Jingu Middle Road, Yinzhou District, Ningbo, China
EUT	:	E-drum monitor speaker
Model Name	:	SK-50
Trademark	:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C	PASS			

The above equipment was tested by EMTEK (NINGBO) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247.

The test results of this report relate only to the tested sample identified in this report.

Date of Test :	July 24, 2024 to August 13, 2024
	June Gao
Prepared by :	7
	June Gao /Engineer
Reviewer :	Lucas Xn MINGBO,
	Lucas Xu /Supervisor
Approve & Authorized Signer :	Tomy West PESTING *
	Tony wei/Manager

ingbo) Co., Ltd. Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

Modified History

Version	Report No.	Revision Date	Summary
/	ENB2407240027W00201R	/	Original report

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd. 地址: 浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description
Product Name	E-drum monitor speaker
Model number	SK-50
Sample number	ENB2407240027W002-1-1
Device Type	Bluetooth V5.0
Data Rate	1Mbps for GFSK modulation 2Mbps for pi/4-DQPSK modulation 3Mbps for 8DPSK modulation
Modulation	GFSK pi/4-DQPSK 8DPSK
Operating Frequency Range	2402-2480MHz
Number of Channels	79 channels
Max Transmit Power	1.53 dBm
Antenna Type	PCB Antenna
Gain	1.67 dBi
Test Voltage	AC 120V, 60Hz
Temperature Range	-10℃ to +45℃
Date of Received	July 24, 2024

Note: for more details, please refer to the User's manual of the EUT.

 宁波市值测检测技术有限公司
 地址: 浙江省宁波市高新区清逸路216弄8幢8号
 网址: Http://www.emtek.com.cn
 邮箱: nb@emtek.com.cn

 EMTEK(Ningbo) Co., Ltd.
 Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China
 Http://www.emtek.com.cn
 E-mail: nb@emtek.com.cn

3 SUMMARY OF TEST RESULT

FCC PartClause	Test Parameter	Verdict	Remark
15.247(a)(1)	20 dB Bandwidth	PASS	
15.247(a)(1)	Carrier Frequency Separation	PASS	
15.247(a)(1)	Number of Hopping Frequencies	PASS	
15.247(a)(1)	Average Time of Occupancy (Dwell Time)	PASS	
15.247(b)(1)	Maximum Peak Conducted Output Power	PASS	
15.247(c)	Conducted Spurious Emissions	PASS	
15.247(d) 15.209	Radiated Spurious Emissions	PASS	
15.207	Conducted Emission	PASS	
15.203	Antenna Application	PASS	

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2BKFZ-SK-50 filing to comply with Section 15.247 of the FCC Part 15, Subpart C.

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd.

地址: 浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

Equ.No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
ENE-001	EMI Test Receiver	R & S	ESCI	101108	Dec 14, 2023	1 Year
ENE-158	L.I.S.N	Schwarzbeck	NNLK 8129	0373	Nov 17, 2023	1 Year
ENE-004	L.I.S.N	Schwarzbeck	NSLK 8126	8126-462	July 02, 2024	1 Year
ENE-006	Pulse Limiter	MTS-systemtec hnik	IMP-136	2611115-001 -0033	July 02, 2024	1 Year
ENE-278	RF Switching Unit	HTEC	HRSU	222101	July 02, 2024	1 Year
ENE-083	RF Cable	Hubber Suhner/Swiss	CBL-RE-3	1	May 30, 2024	1 Year
ENE-162- 2	RF Cable	TIMES	2M(N-N)	605236-0002	May 30, 2024	1 Year
ENE-149	Conduction Test Room 1#	SKET	11.5*5*4m	/	Dec 17, 2021	3 Year

4.2.2 Radiated Emission Test Equipment

						Cal.
Equ. No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Interval
ENE-185	EMI Test Receiver	R&S	ESR7	102480	Apr 25, 2024	1 Year
ENE-190	Antenna Multiple	Schwarzbeck	VULB 9163	01499	May 18, 2024	2 Year
ENE-195	Pre-Amplifier	JS Denki	PA09K03-40	JSPA21019	Apr 25, 2024	1 Year
ENE-204	Low Frequency Notch Filter RF Switching	JS Denki	JSDSW-F	JSDSW2211D 02	Apr 25, 2024	1 Year
ENE-251	6dB Attenuator	Mini-Circuits	UNAT-6+	11542	July 02, 2024	1 Year
ENE-279- 1	RF Cable	Rosenberger	L17-C001-7000	/	May 30, 2024	1 Year
ENE-279- 2	RF Cable	Rosenberger	L17-C001-3500	/	May 30, 2024	1 Year
ENE-279- 3	RF Cable	Rosenberger	L17-C001-1500	/	May 30, 2024	1 Year
ENE-279- 4	RF Cable	Rosenberger	/	/	May 30, 2024	1 Year
ENE-279- 5	RF Cable	Rosenberger	1	/	May 30, 2024	1 Year
ENE-279- 6	RF Cable	Rosenberger	L08-C446-1500	/	May 30, 2024	1 Year

宁波市信测检测技术有限公司 FMTEK(Ningho) Co. Ltd 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

					Access to the	9 WOFIG
ENE-171	EXA Signal Analyzer	KEYSIGHT	N9010B	MY60242467	Dec 14, 2023	1 Year
ENE-191	Horn Antenna	Schwarzbeck	BBHA 9120 D	02588	May 18, 2024	2 Year
ENE-198	Pre-Amplifier	JS Denki	PA0118-50	JSPA21022	Apr 25, 2024	1 Year
ENE-281- 1	RF Cable	Rosenberger	LA2-C125-3500	1	May 30, 2024	1 Year
ENE-281- 2	RF Cable	Rosenberger	LA2-C125-1500	1	May 30, 2024	1 Year
ENE-281- 3	RF Cable	Rosenberger	LU7-C1511-120 0	1	May 30, 2024	1 Year
ENE-285- 1	RF Cable	Rosenberger	LA2-C199-6500	1	May 30, 2024	1 Year
ENE-206	High Frequency Notch FilterRf Switching	JS Denki	JSDSW-F	202083582	Apr 25, 2024	1 Year
ENE-144	3-Meter Anechoic Chamber 2#	SKET	9*6*6m	1	June 19, 2022	3 Year

4.2.3 Radio Frequency Test Equipment

Equ. No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
ENE-256	EXA Signal Anaalyzer	Keysight	N9010B	MY62060219	July 02, 2024	1 Year
ENE-172	RF Control Unit	Tonscend	JS0806-2(V.6E)	21L8060521	February 27, 2024	1 Year

宁波市信测检测技术有限公司

地址: 浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn EMTEK(Ningbo) Co., Ltd. Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

Report No. ENB2407240027W00201R

Ver. 1. 0

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for Bluetooth GFSK modulation; 2Mbps for Bluetooth pi/4-DQPSK modulation; 3Mbps for Bluetooth 8DPSK) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	39	2441		
1	2403	40	2442	76	2478
2	2404	41	2443	77	2479
				78	2480
Note: fc=2402MHz+(k-1)×1MHz k=1 to 79					

Frequency and Channel list for Bluetooth V5.0

Test Frequency and Channel for Bluetooth V5.0

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	39	2441	78	2480

4.4 TEST SOFTWARE

Item	Software
Radiated Emission:	FCC (V2.23)
Conducted Emission	FCC (V2.23)

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd. 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 8, Building 8, Lane 216, Qingyi Road, Ningbo Hi-Tech Zone, Ningbo, Zhejiang, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 32.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

	ACCREDITATIONS AND LISTINGS
Site Description EMC Lab.	: Accredited by CNAS The Certificate Registration Number is L6666. The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2018 (identical to ISO/IEC 17025:2017)
	Designation by FCC
	Designation Number: CN1354
	Test Firm Registration Number: 427606
	Accredited by A2LA
	The certificate is valid until May 31, 2025
	Accredited by Industry Canada
	The Conformity Assessment Body Identifier is CN0114
	Test Firm Registration Number: 9469A
Name of Firm	: EMTEK (NINGBO) CO., LTD.
Site Location	: No. 8, Building 8, Lane 216, Qingyi Road, Ningbo Hi-Tech Zone,
	Ningbo, Zhejiang, China

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd.

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%

 宁波市信测检测技术有限公司
 地址: 浙江省宁波市高新区清逸路216弄8幢8号
 网址: Http://www.emtek.com.cn
 邮箱: nb@emtek.com.cn


 EMTEK(Ningbo) Co., Ltd.
 Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China
 Http://www.emtek.com.cn
 E-mail: nb@emtek.com.cn

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

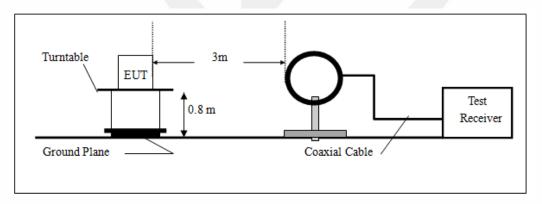
The Bluetooth component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2014 and CAN/CSA-CEI/IEC CISPR 22.

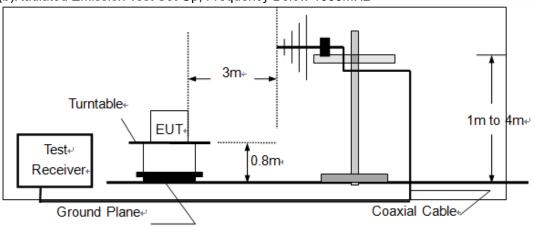
Below 30MHz:

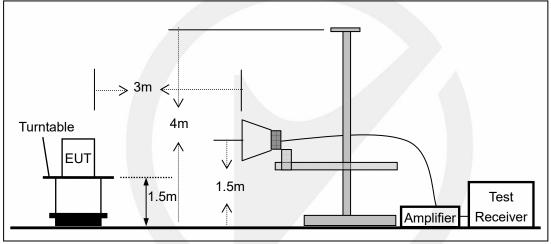
The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT androtated about its vertical axis formaximum response at each azimuth about the EUT. The center of the loopshall be 1 m above the ground. For certain applications, the loop antennaplane may also need to be positioned horizontally at the specified distance from the EUT.


30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:


The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

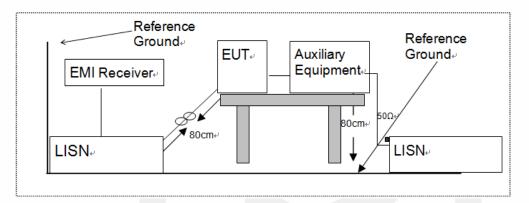

地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn 宁波市信测检测技术有限公司

(b)Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz

 宁波市信测检测技术有限公司
 地址: 浙江省宁波市高新区清逸路216弄8幢8号
 网址: Http://www.emtek.com.cn
 邮箱: nb@emtek.com.cn

 EMTEK(Ningbo) Co., Ltd.
 Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China
 Http://www.emtek.com.cn
 E-mail: nb@emtek.com.cn



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (Game fitness board) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2014 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 SUPPORT EQUIPMENT

EUT Cable List and Details					
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite		
1	1	1	1		

Auxiliary Cable List and Details					
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite		
/	1	1	/		

Auxiliary Equipment List and Details

Auxiliary Equipment Liet and Dotalio					
Description	Manufacturer	Model	Serial Number		
1	/	1	/		

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd. 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

8 FREQUENCY HOPPING SYSTEM REQUIREMENTS

8.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

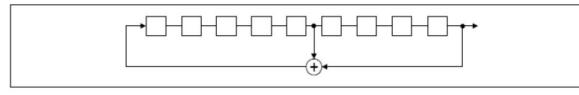
(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

8.2 EUT Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels.

The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; thephase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divide into time slots where each slot corresponds to an RF hop frequency. Consecutive hopscorrespond to different RF hop frequencies. The normal hop is 1 600 hops/s.


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage, and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9

Length of pseudo-random sequence: 29-1 = 524 bits

Longest sequence of zeros: 8 (non-inverted signal)

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

Linear Feedback Shift Register for Generation of the PRBS sequence

0246	62 64 78 1	73 75 77

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8.3 Equal Hopping Frequency Use

All Bluetooth units participating in the piconet are time and hop-synchronized to the channel.

Example of a 79 hopping sequence in data mode:

35, 27, 6, 44, 14, 61, 74, 32, 1, 11, 23, 2, 55, 65, 29, 3, 9, 52, 78, 58, 40, 25, 0, 7, 18, 26, 76, 60, 47, 50, 2, 5, 16, 37, 70, 63, 66, 54, 20, 13, 4, 8, 15, 21, 26, 10, 73, 77, 67, 69, 43, 24, 57, 39, 46, 72, 48, 33, 17, 31, 75, 19, 41, 62, 68, 28, 51, 66, 30, 56, 34, 59, 71, 22, 49, 64, 38, 45, 36, 42, 53 Each Frequency used equally on the average by each transmitter

8.4 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH- enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

9 TEST REQUIREMENTS

9.1 20DB BANDWIDTH

Applicable Standard

According to FCC Part 15.247(a)(1) and 558074 D01 15.247 Meas Guidance V05r02

Conformance Limit

No limit requirement.

Test Configuration

Test according to clause 7.1 radio frequency test setup 1

Test Procedure

The EUT was operating in Bluetooth V5.0 and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 30 kHz.

Set the video bandwidth (VBW) =100kHz.

Set Span= approximately 2 to 3 times the 20 dB bandwidth

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize.Use the marker-to-peak function to set the marker to the peak of the emission. Use themarker-delta function to measure 20 dB down one side of the emission. Reset the markerdeltafunction, and move the marker to the other side of the emission, until it is (asclose as possible to) even with the reference marker level. The marker-delta reading atthis point is the 20 dB bandwidth of the emission.

If this value varies with differentmodes of operation (e.g., data rate, modulation format, etc.), repeat this test for eachvariation.

Measure and record the results in the test report.

Test Results

Temperature: Humidity:	26 ℃ 60%	Test D Test B	, ,)24
Modulation Mode	Channel Number	Channel Frequency (MHz)	20dB Ba (Mł	
GFSK	0 39	2402 2441	0.83 0.93	
	78	2480	0.92	
pi/4-DQPSK	0 39	2402 2441	<u> </u>	
	78 0	2480 2402	<u> </u>	
8DPSK	39	2402	1.2	
	78	2480	1.2	770

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd. 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

20dB Bandwidth Test Model Channel 0: 2402MHz **GFSK Modulation** Spectrum Analyzer 1 Occupied BW Ö + Frequency ・除る Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 30 dB Trig: Free Run µW Path: Standard Gate: Off Center Freq: 2.402000000 GHz Avg|Hold:>10/10 Radio Std: None KEYSIGHT Input: RF Center Frequency Settings Align: Auto 2.402000000 GHz #IF Gain: Low Da Spar 1 Graph Ref LvI Offset 11.00 dB Ref Value 20.00 dBm 3.0000 MHz Scale/Div 10.0 dB CF Step 1.000000 MHz Auto Man Freq Offset 0 Hz Center 2.402000 GHz #Video BW 100.00 kHz Span 3 MHz #Res BW 30.000 kHz Sweep 3.20 ms (1001 pts) 2 Metrics ۷ Measure Trace Trace 1 Occupied Bandwidth 851.32 kHz Total Power 1.71 dBm 99.00 % -20.00 dB Transmit Freq Error -16.877 kHz % of OBW Power 837.6 kHz x dB Bandwidth x dB **?** Jul 31, 2024 1:32:31 PM \gtrsim ょう 20dB Bandwidth **Test Model** Channel 39: 2441MHz **GFSK Modulation** Spectrum Analyzer 1 Occupied BW Ö + Frequency Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 30 dB Trig: Free Run µW Path: Standard Gate: Off #IF Gain: Low Center Freq: 2.441000000 GHz KEYSIGHT Input: RF Center Frequency 2.441000000 GHz Avg|Hold:>10/10 Radio Std: None Settings Align: Auto L)(I Span 3.0000 MHz 1 Granh ۷ Ref LvI Offset 11.00 dB Ref Value 20.00 dBm Scale/Div 10.0 dB CF Step 1.000000 MHz Auto Man Freq Offset Center 2.441000 GHz #Res BW 30.000 kHz Span 3 MHz Sweep 3.20 ms (1001 pts) #Video BW 100.00 kHz 2 Metrics ۷ Measure Trace Trace 1 Occupied Bandwidth 3.90 dBm 868.33 kHz Total Power Transmit Freq Error x dB Bandwidth % of OBW Power -17.146 kHz 99.00 % 930.5 kHz -20.00 dB x dB Jul 31, 2024 1:33:02 PM \gtrsim ? ッペー

宁波市信测检测技术有限公司 FMTFK(Ningbo) Co. Ltd 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

宁波市信测检测技术有限公司 地址:浙江省宁波

地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd. 地址: 浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

9.2 CARRIER FREQUENCY SEPARATION

Applicable Standard

According to FCC Part 15.247(a)(1) and 558074 D01 15.247 Meas Guidance V05r02

Conformance Limit

Frequency hopping systems operating in the 2400-2483.5MHz band shall have hoppingchannel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

In case of an output power less than 125mW, the frequency hopping system may have channels separated by a minimum of 25kHz ortwo-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

Test according to clause 7.1 radio frequency test setup 1

Test Procedure

According to FCC Part15.247(a)(1)

The EUT must have its hopping function enabled. Use the following spectrum analyzersettings: Set the RBW =100kHz. Set VBW =300kHz.

Set the span = wide enough to capture the peaks of two adjacent channels

Set Sweep time = auto couple.

Set Detector = peak. Set Trace mode = max hold.

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

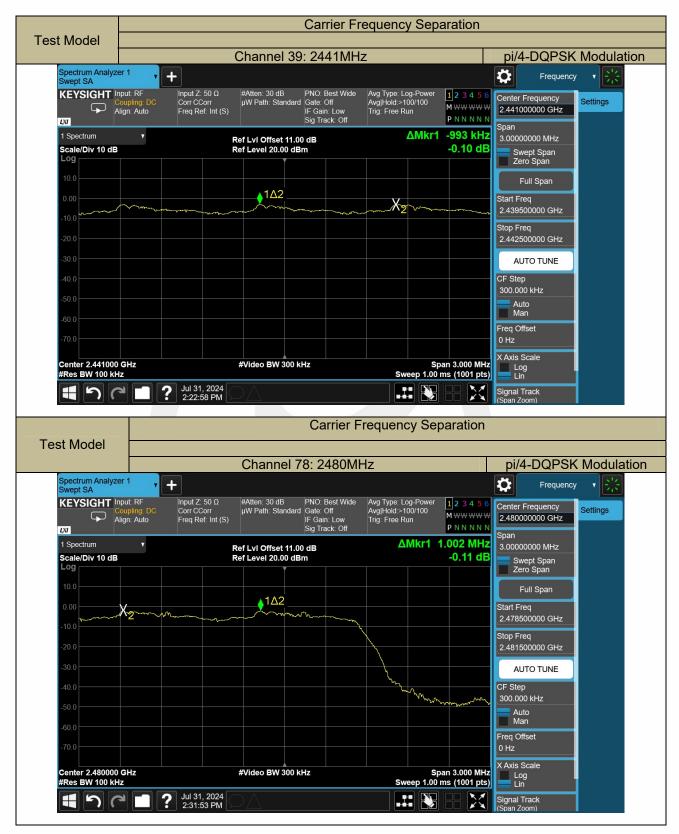
Test Results

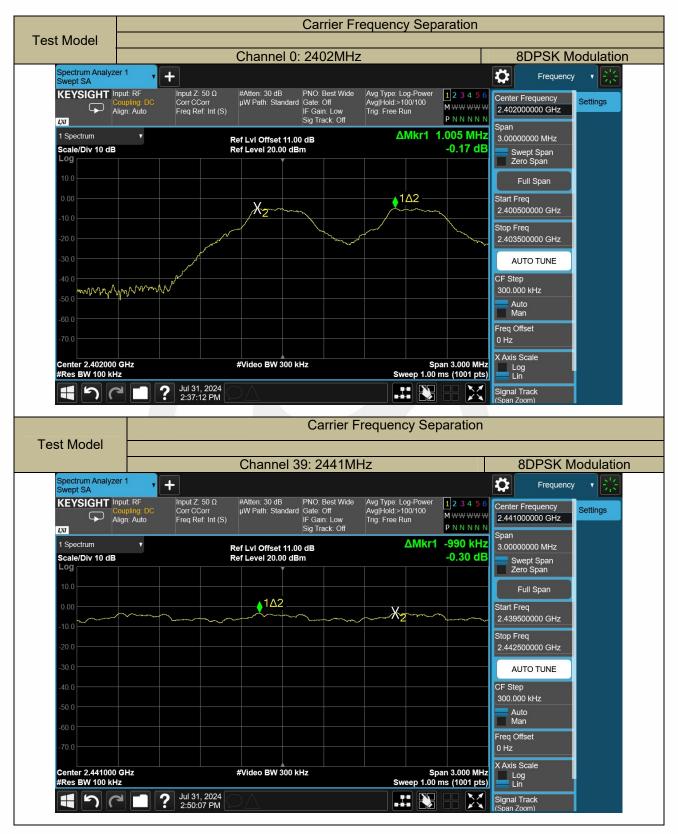
Temperature:	25 ℃	Test Date:	July 31, 2024
Humidity:	60%	Test By:	Lucas Xu

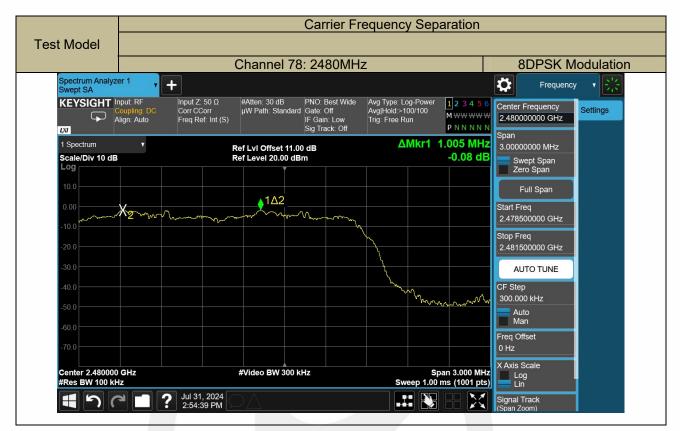
Modulation Mode	Channel Number	Channel Frequency (MHz)	Measurement Bandwidth (MHz)	Limit (MHz)	Verdict	
	0	2402	0.996	>0.56	PASS	
GFSK	39	2441	1.014	>0.62	PASS	
	78	2480	0.999	>0.62	PASS	
pi/4-DQPSK	0	2402	0.999	>0.84	PASS	
	39	2441	0.993	>0.85	PASS	
	78	2480	1.002	>0.86	PASS	
	0	2402	1.005	>0.82	PASS	
8DPSK	39	2441	0.990	>0.86	PASS	
	78	2480	1.005	>0.85	PASS	
Note: Limit = 20dB bandwidth * 2/3, if it is greater than 25kHz and the output power is less than						

125mW (21dBm).

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd. 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn


宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn


宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn


宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd. 地址: 浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

9.3 NUMBER OF HOPPING FREQUENCIES

Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and 558074 D01 15.247 Meas Guidance V05r02

Conformance Limit

Frequency hopping systems operating in the 2400-2483.5MHz band shall use at least15 channels.

Test Configuration

Test according to clause 7.1 radio frequency test setup 1

Note: Both BR & EDR mode has same result .

Test Procedure

According to FCC Part15.247(a)(1)(iii)
 The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:
 Span = the frequency band of operation
 RBW = 100kHz
 VBW ≥ RBW
 Sweep = auto
 Detector function = peak
 Trace = max hold
 Allow the trace to stabilize. It may prove necessary to break the span up to sections, inorder to clearly show all of the hopping frequencies.

Test Results

Temperature: Humidity:	25 ℃ 60%		Test Date: Test By:		July 31, 2024 Lucas Xu
Hopping Channel Frequency Range		Quantity	y of Hopping C	hannel	Quantity of Hopping Channel limit
2402-2480	0		79		>15

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

EMTEK(Ningbo) Co., Ltd. Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

	Number Of Hopping Frequencies						
Fest Model		S	GFSK				
Spectrum Analyze Swept SA	er 1 ү 🗖	÷				Frequency v	
	iput: RF oupling: DC lign: Auto	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	#Atten: 30 dB PNO: Fas µW Path: Standard Gate: Off IF Gain: I Sig Track	Avg Hold:>100 _ow Trig: Free Run	/100	2.441750000 GHz	
1 Spectrum Scale/Div 10 dB	T		ef LvI Offset 11.00 dB ef Level 20.00 dBm	ΔMkr1	-78.991 0 MHz -3.99 dE	Swept Span	
Log 10.0 -10.0 -20.0	ኢኒኯይላንጽኢላሳ	waxawa	wananan	wwwwww	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	Zero Span Full Span Start Freq 2.400000000 GHz Stop Freq 2.483500000 GHz	
-30.0						AUTO TUNE CF Step 8.350000 MHz Auto	
-60.0			#Video BW 300 kHz		Stop 2.48350 GH	LOg	
#Res BW 100 kH		Jul 31, 2024 3:01:42 PM		Swee	ep 1.00 ms (1001 pts	Lin Signal Track (Span Zoom)	

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd.

地址: 浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

9.4 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and 558074 D01 15.247 Meas Guidance V05r02

Conformance Limit

For frequency hopping systems operating in the 2400-2483.5MHz band, the averagetime of occupancy on any channel shall not be greater than 0.4s within a period of 0.4smultiplied by the number of hopping channels employed.

Test Configuration

Test according to clause 7.1 radio frequency test setup 1

Test Procedure

According to FCC Part15.247(a)(1)(iii)

The EUT must have its hopping function enabled. Use the following spectrum analyzersettings:

Span = zero span, centered on a hopping channel

RBW = 1 MHz

VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

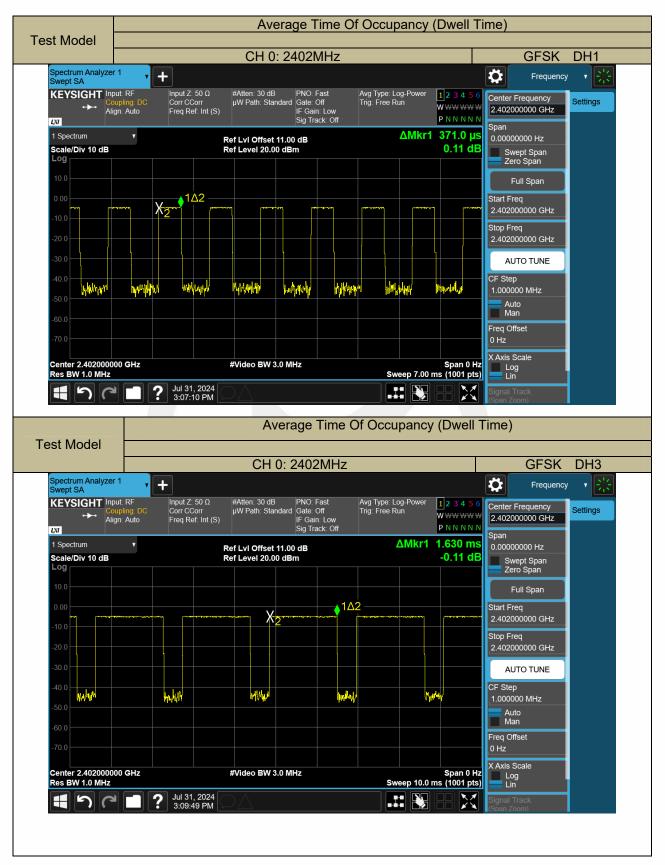
Detector function = peak

Trace = max hold

If possible, use the marker-delta function to determine the dwell time. If this value

varies with different modes of operation (e.g., data rate, modulation format, etc.),

repeat this test for each variation. The limit is specified in one of the subparagraphsof this Section.


Test Results

Temperature:	25 ℃	Test Date:	July 31, 2024
Humidity:	60%	Test By:	Lucas Xu

Modulation	Channel	Packet	Pluse width	DwellTime	Limit	Verdict	
Mode	Number	type	(ms)	(ms)	(ms)	verdict	
	0	DH1	0.371	118.72	<400	PASS	
GFSK	0	DH3	1.630	260.80	<400	PASS	
	0	DH5	2.880	307.20	<400	PASS	
Note1: DwellTime(DH1)=PW*(1600/2/79)*31.6							
DwellTime(DH3)=PW*(1600/4/79)*31.6							
DwellTime(DH5)=PW*(1600/6/79)*31.6							
Note2: Bluetooth (GFSK, pi/4-DQPSK, 8DPSK)mode have been tested, and the worst results has							
been recorded on the follow page.							

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd. 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd. 地址: 浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

9.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC Part 15.247(b)(1) and 558074 D01 15.247 Meas Guidance V05r02

Conformance Limit

The max For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

Test Configuration

Test according to clause 7.1 radio frequency test setup 1

Test Procedure

According to FCC Part15.247(b)(1)

As an alternative to a peak power measurement, compliance with the limit can be based on a measurement of the maximum conducted output power.

Use the following spectrum analyzer settings:

Set Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel(about 10MHz) Set RBW > the 20 dB bandwidth of the emission being measured(about 3MHz)

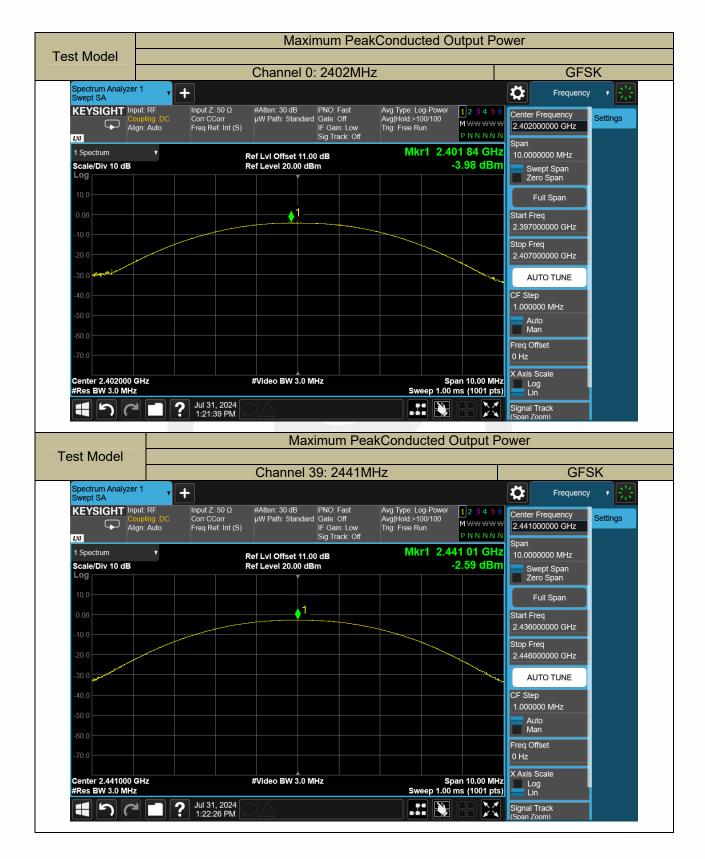
Set VBW \geq RBW

Set Sweep = auto

Set Detector function = peak

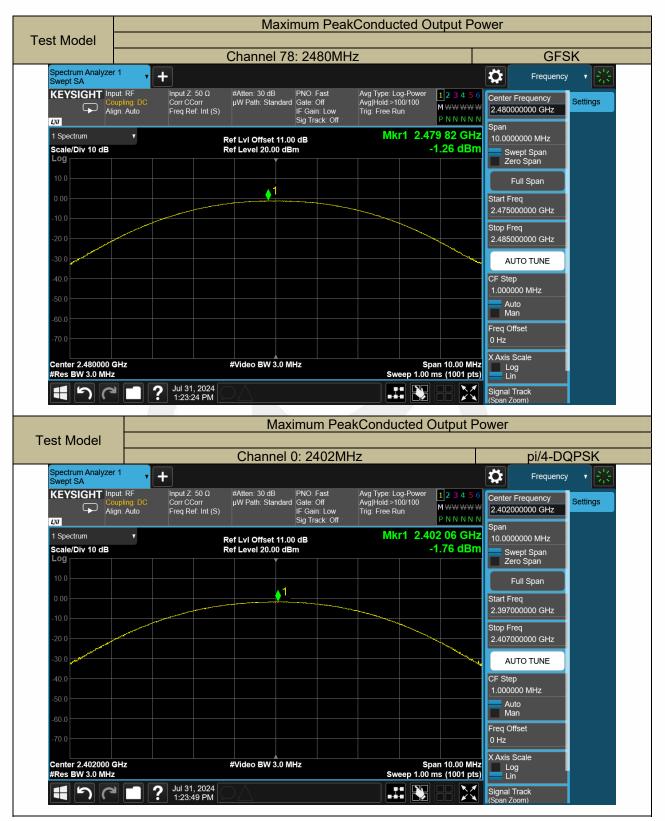
Set Trace = max hold

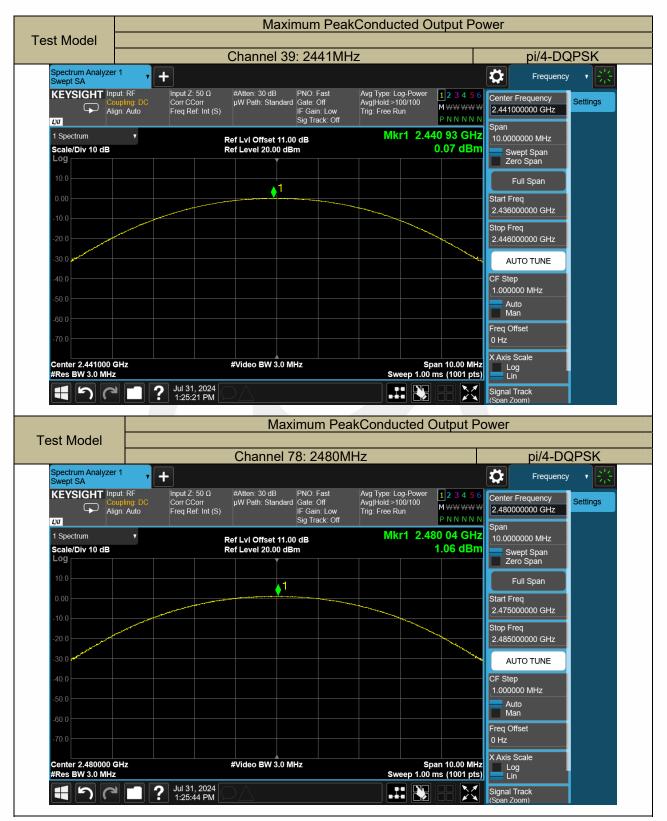
Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emissionto determine the peak amplitude level.

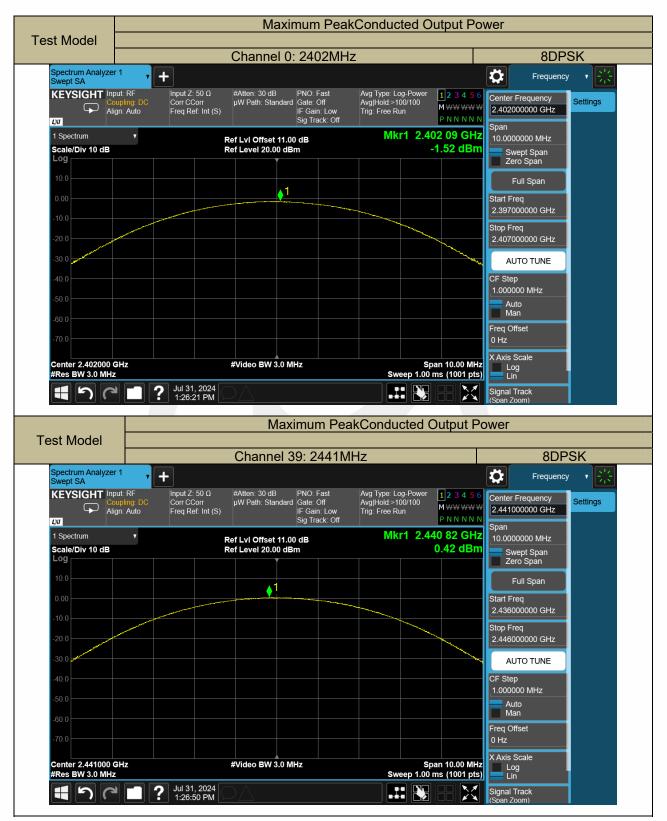

Test Results

Temperature:	25 ℃	Test Date:	July 31, 2024
Humidity:	60%	Test By:	Lucas Xu

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	Limit (dBm)	Verdict
	0	2402	-3.98	21	PASS
GFSK	39	2441	-2.59	21	PASS
	78	2480	-1.26	21	PASS
pi/4-DQP SK	0	2402	-1.76	21	PASS
	39	2441	0.07	21	PASS
	78	2480	1.06	21	PASS
8DPSK	0	2402	-1.52	21	PASS
	39	2441	0.42	21	PASS
	78	2480	1.53	21	PASS
Note:N/A					


宁波市信测检测技术有限公司 FMTFK(Ningbo) Co. Ltd 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn


宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn


宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd. 地址: 浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

9.6 CONDUCTED SUPRIOUS EMISSION

Applicable Standard

According to FCC Part 15.247(d) and 558074 D01 15.247 Meas Guidance V05r02

Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Configuration

Test according to clause 7.1 radio frequency test setup 1

Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DSS channel center frequency.

Set Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel.

Set the RBW = 100 kHz. Set the VBW \ge 3 x RBW.

Set Detector = peak. Set Sweep time = auto couple.

Set Trace mode = max hold. Allow trace to fully stabilize.

Use the peak marker function to determine the maximum Maximum conduceted level.

Note that the channel found to contain the maximum conduceted level can be used to establish the reference level.

Band-edge Compliance of RF Conducted Emissions

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation Set RBW $\ge 1\%$ of the span=100kHzSet VBW $\ge RBW$

Set Sweep = autoSetDetector function = peakSetTrace = max hold

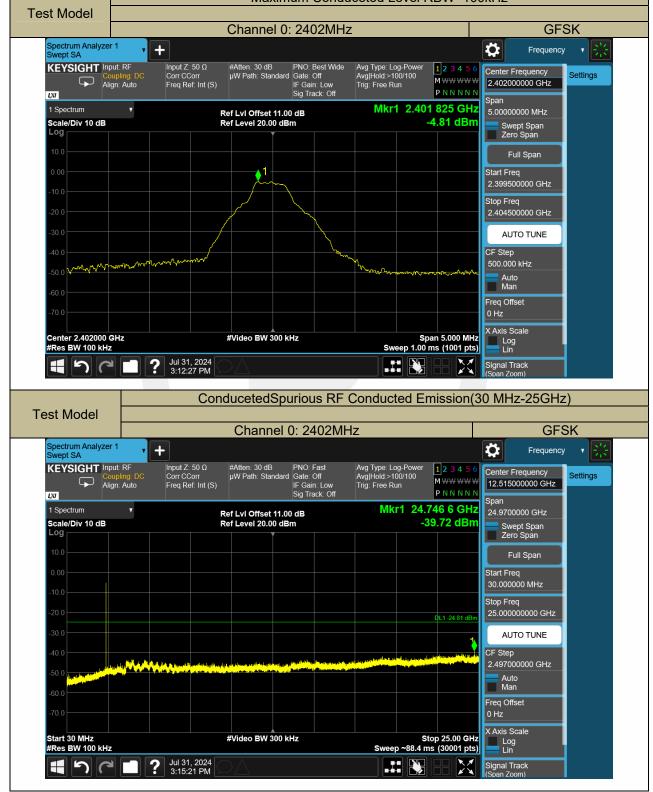
Allow the trace to stabilize. Set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. The marker-delta value now displayed must comply with the limit specified in this Section.

Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

ConducetedSpurious RF Conducted Emission

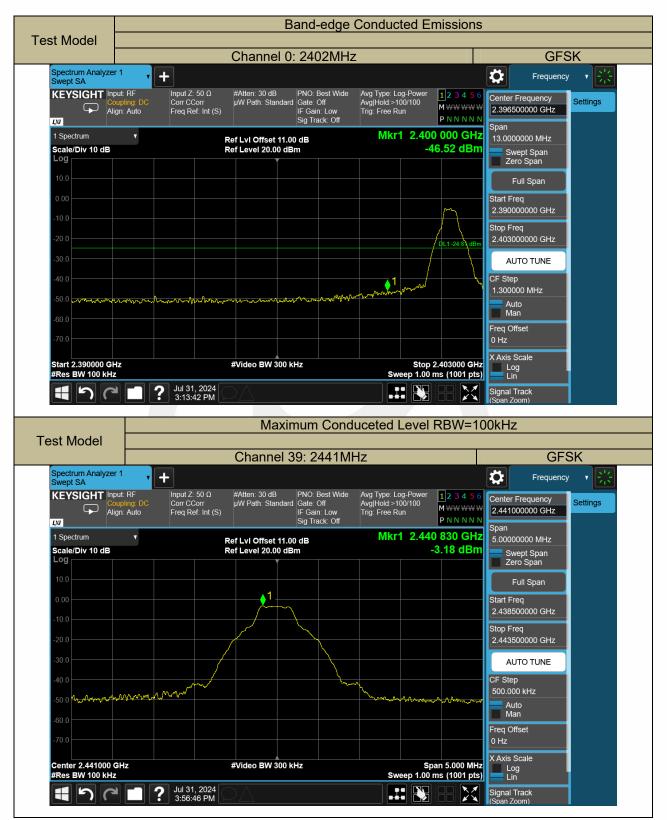
Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic.(30MHz to 25GHz).Set RBW = 100 kHzSetVBW \geq RBW

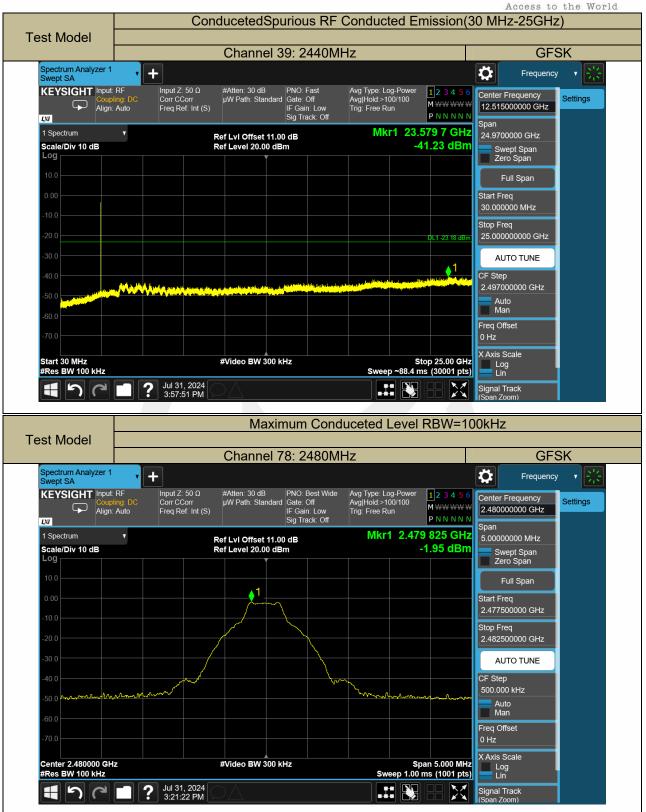

Set Sweep = autoSetDetector function = peakSetTrace = max hold

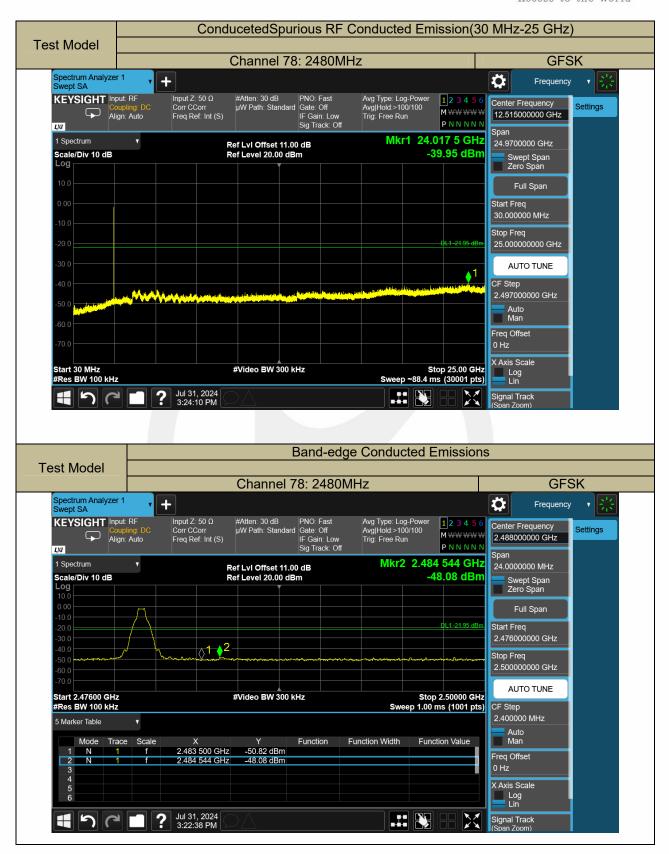
Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.

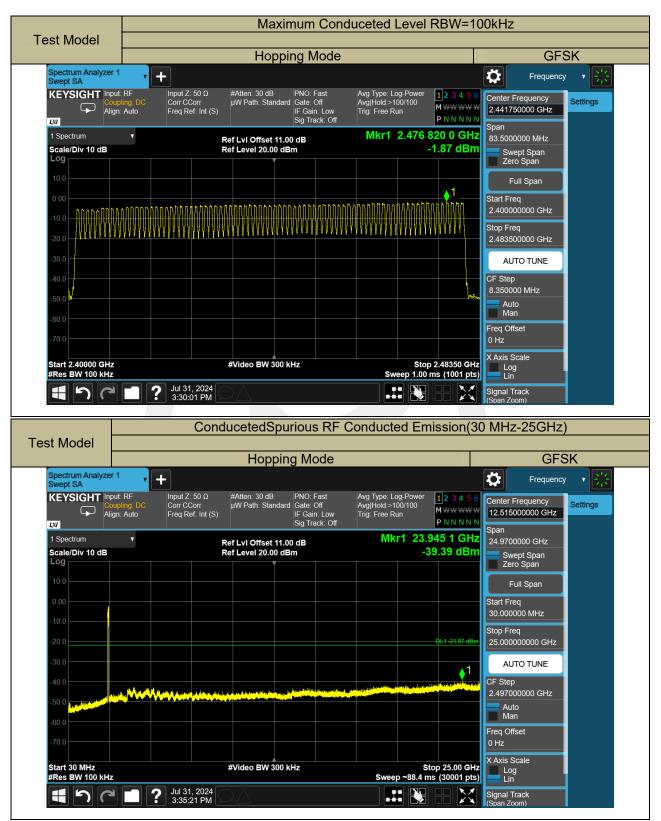
宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn


Test Results

Bluetooth (GFSK, pi/4-DQPSK,8DPSK) mode have been tested, and the worst result(GFSK)was report as below: Maximum Conduceted Level RBW=100kHz


宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd. 地址: 浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn


宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn


地址: 浙江省宁波市高新区清逸路216弄8幢8号 网址: Http://www.emtek.com.cn 邮箱: nb@emtek.com.cn 宁波市信测检测技术有限公司

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

Stackturn Analyzer 1 + CFSK KEVYSIGHT Inget RF Inget Z: 50 0.0 Index: 50 dB PN0. Beat Wide Avg Type: Log Power [2:3:4:5:6] Call and the context of the	st Model	Band-edg	e Conducted Emissions	3
Spectrum Analyzer 1 Frequency Frequency Frequency Frequency Frequency Frequency Frequency Frequency Frequency Frequ		Hopping Mode		GESK
KEYSIGHT Judd RE Dipul Z.500 Attent 308 dis Very base to the provided of the prov				
1 Spectrum Analyzer 1 1 Spectrum Analyzer 1	KEYSIGHT Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω #Atten: 30 dB PNO: Best Wide Corr CCorr μW Path: Standard Gate: Off Freq Ref: Int (S) IF Gain: Low	Avg Hold:>100/100 Trig: Free Run	Center Frequency 2.396500000 GHz
0.00 0.00	Scale/Div 10 dB			13.0000000 MHz
200 4100 410 410	0.00			Start Freq
40.0 40.0	-20.0		OL1-21 AV/Bm	2.403000000 GHz
600 Auto 700 Freq Offset 700 Freq Offset 700 Hand Start 2.390000 GHz #Video BW 300 kHz Stop 2.403000 GHz Axis Scale Log Lin Stop 2.403000 GHz Sweep 1.00 ms (1001 pts) Stop 2.403000 GHz Signal Track (Soan Zoom) Signal Track Signal Track (Soan Zoom) Signal Track Signal Track (Soan Zoom) Signal Track Offset 11.00 dB Augr Auto Frequency Scale/Div 10 dB Ref Lvi Offset 11.00 dB Start 2.47600 GHz #Video BW 300 kHz Start 2.47600 GHz #Video BW 300 kHz <td>-40.0</td> <td>an muratic for the former and the former</td> <td>MA MARA</td> <td>CF Step 1.300000 MHz</td>	-40.0	an muratic for the former and the former	MA MARA	CF Step 1.300000 MHz
Start 2.390000 GHz #Res BW 100 kHz Sweep 1.00 ms (1001 pts) Spectrum Analyzer 1 Sweep 1.00 ms (1001 pts) Spectrum Analyzer 1 Spectrum Analyzer 1 Sweep 1.00 ms (1001 pts) Spectrum Analyzer 1 Spectrum Analyzer 1 Spectrum Analyzer 1 Spectrum Analyzer 1 Start 2.47600 GHz #Weet Start 2.47600 GHz #Wideo BW 300 kHz Sweep 1.00 ms (1001 pts) Start 2.47600 GHz #Wideo BW 300 kHz Sweep 1.00 ms (1001 pts) Start 2.47600 GHz #Wideo BW 300 kHz Sweep 1.00 ms (1001 pts) Start 2.476000 Hz Start 2.47600 GHz #Wideo BW 300 kHz Sweep 1.00 ms (1001 pts) Start 2.476000 Hz Sweep 1.00 ms (1001 pts) Start 2.47600 Hz Sweep 1.00 ms (1001 pts)	-60.0			Man Freq Offset
Spectrum Analyzer 1 Swept SA KEYSIGHT Input RF Corr Ccorr Freq Ref. Int (s) Ref Lvi Offset 11.00 dB Ref Lvi Offset	#Res BW 100 kHz		Sweep 1.00 ms (1001 pts)	Log
Coupling DC Align: Auto Corr CCorr Freq Ref: Int (S) JW Path: Standard (Gate: Off BF Gain: Low Sig Track: Off Avg Hold:>100/100 Trg: Free Run Mwwwww P N N N N Path: Standard (Gate: Off P N N N N Standard (Gate: Off P Aug(D N U Aug) Standard (Gate: Off)P Aug(D N U Aug) Stand	Spectrum Analyzer 1 Swept SA			
Scale/Div 10 dB Ref Level 20.00 dBm -48.12 dBm Log	Coupling: DC Align: Auto	Corr CCorr	Avg Hold:>100/100 Trig: Free Run P N N N N N	2.488000000 GHz
100 0 0 0 0 0 0 Start Freq 2.47600000 GHz 2.47600000 GHz Start Freq 2.476000000 GHz Stop Freq 2.50000000 GHz Stop Freq 2.50000000 GHz Stop Freq 2.50000000 GHz Stop Freq 2.50000000 GHz CF Step CF Step 2.50000000 GHz CF Step 2.400000 MHz CF Step 2.400000 MHz 2.400000 MHz 2.400000 MHz 3.400000 MHz 3.40000000 MHz <td>Scale/Div 10 dB</td> <td></td> <td></td> <td>Swept Span Zero Span</td>	Scale/Div 10 dB			Swept Span Zero Span
500 2.50000000 GHz -000 -000 -700 -000 Start 2.47600 GHz #Video BW 300 kHz Start 2.47600 GHz CF Step 2.0000000 GHz -000 -000 -000 -000 -000 -000 -000 -00000 0 GHz -00000 0 GHz	-10.0 -20.0 -30.0		DL1-21.87 dBm	Start Freq 2.476000000 GHz
#Res BW 100 kHz Sweep 1.00 ms (1001 pts) CF Step	-60.0			2.500000000 GHz
		#Video BW 300 kHz		2.400000 MHz
Mode Trace Scale X Y Function Function Width Function Value Man 1 N 1 f 2.483 500 GHz -49.54 dBm Freq Offset Freq Offset 0 Hz 2 N 1 f 2.485 312 GHz -48.12 dBm 0 Hz Freq Offset 0 Hz	1 N 1 f 2 N 1 f 3	2.483 500 GHz -49.54 dBm	Function Width Function Value	Man Freq Offset
4 XAxis Scale 6 Log Image: Contract state Log Image: Signal Track (Span Toron) Signal Track (Span Toron)	5			Log Lin

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

9.7 RADIATED SPURIOUS EMISSION

Applicable Standard

According to FCC Part 15.247(d) and 15.209 and 558074 D01 15.247 Meas Guidance V05r02

Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5			
6.215-6.218	5-6.218 74.8-75.2 1660-1710		10.6-12.7			
6.26775-6.26825	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
12.57675-12.57725	322-335.4	3600-4400	(2)			
13.36-13.41						

According to FCC Part15.209, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted	Field Strength (µV/m)	Field Strength	Measurement
Frequency(MHz)		(dBµV/m)	Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Test Configuration

Test according to clause 7.2 radio frequency test setup 2

Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

```
\begin{array}{l} \mathsf{RBW} = 1 \; \mathsf{MHz} \; \mathsf{for} \; f \geq 1 \; \mathsf{GHz}(1\mathsf{GHz} \; \mathsf{to} \; 25\mathsf{GHz}), \; 100 \; \mathsf{kHz} \; \mathsf{for} \; \mathsf{f} < 1 \; \mathsf{GHz}(30\mathsf{MHz} \; \mathsf{to} \; 1\mathsf{GHz}) \\ \mathsf{VBW} \geq \mathsf{RBW} \\ \mathsf{Sweep} = \mathsf{auto} \\ \mathsf{Detector} \; \mathsf{function} = \mathsf{peak} \\ \mathsf{Trace} = \mathsf{max} \; \mathsf{hold} \end{array}
```

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

Follow the guidelines in ANSI C63.10-2014 respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

Test Results

Spurious Emission below 30MHz(9KHz to 30MHz)

Temperature:	21 ℃	Test Date:	August 02, 2024
Humidity:	66%	Test By:	Lucas Xu
Test mode:	TX Mode		

Freq.	Ant.Pol.		sion BuV/m)	Limit 3m	(dBuV/m)	Ονε	er(dB)
(MHz)	H/V	PK È	ÁÝ	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

宁波市信测检测技术有限公司 地址: 浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

EMTEK(Ningbo) Co., Ltd. Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

Spurious Emission Above 1GHz(1GHz to 25GHz)

Bluetooth (GFSK, pi/4-DQPSK,8DPSK, non hopping) mode have been tested, and the worst result(GFSK)was report as below:

Нι	mperature: umidity: st mode:	21 ℃ 66% GFSK		Test Dat Test By: Frequen		August 02 Lucas Xu Channel 0		1Hz	
	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
	4804.000	52.58	-8.8	43.78	74.00	30.22	PK+	V	PASS
	4804.000	37.27	-8.8	28.47	54.00	25.53	AVG	V	PASS
	11011.000	44.71	6.67	51.38	74.00	22.62	PK+	V	PASS
	11011.000	30.58	6.67	37.25	54.00	16.75	AVG	V	PASS
	17982.000	40.95	13.44	54.39	74.00	19.61	PK+	V	PASS
	17982.000	26.85	13.44	40.29	54.00	13.71	AVG	V	PASS
	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
	4804.000	51.31	-8.8	42.51	74.00	31.49	PK+	Н	PASS
	4804.000	36.44	-8.8	27.64	54.00	26.36	AVG	Н	PASS
	9608.000	48.50	2.53	51.03	74.00	22.97	PK+	Н	PASS
	9608.000	31.86	2.53	34.39	54.00	19.61	AVG	Н	PASS
	17905.500	42.81	12.51	55.32	74.00	18.68	PK+	Н	PASS
	17905.500	27.60	12.51	40.11	54.00	13.89	AVG	Н	PASS
	mperature: umidity:	21 ℃ 66%		Test Dat Test By:		August 02 Lucas Xu	, 2024		

Test mode:

GFSK

Frequency:

Channel 39: 2441MHz

Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
4881.900	51.43	-8.22	43.21	74.00	30.79	PK+	V	PASS
4881.900	37.43	-8.22	29.21	54.00	24.79	AVG	V	PASS
14247.000	43.41	8.99	52.40	74.00	21.60	PK+	V	PASS
14247.000	28.47	8.99	37.46	54.00	16.54	AVG	V	PASS
17929.500	41.32	12.8	54.12	74.00	19.88	PK+	V	PASS
17929.500	28.52	12.8	41.32	54.00	12.68	AVG	V	PASS
Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
4881.900	52.55	-8.22	44.33	74.00	29.67	PK+	Н	PASS
4881.900	38.45	-8.22	30.23	54.00	23.77	AVG	Н	PASS
13965.000	43.19	9.16	52.35	74.00	21.65	PK+	Н	PASS
13965.000	28.32	9.16	37.48	54.00	16.52	AVG	Н	PASS
17970.000	41.25	13.3	54.55	74.00	19.45	PK+	Н	PASS
17970.000	27.39	13.3	40.69	54.00	13.31	AVG	Н	PASS

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd.

地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

-								Access	to the wo
	mperature:	21 ℃		Test Dat		August 02	, 2024		
	umidity:	66%		Test By:		Lucas Xu			
Te	st mode:	GFSK		Frequen	icy:	Channel 7	8: 2480	MHz	
i				r	r				I
	Freq.	Reading	Corr.	Meas.	Limit	Margin	Det.	Pol.	Verdict
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Det.	1 01.	Vertilet
	4960.000	51.10	-7.41	43.69	74.00	30.31	PK+	V	PASS
	4960.000	36.90	-7.41	29.49	54.00	24.51	AVG	V	PASS
	7787.500	47.53	0.86	48.39	74.00	25.61	PK+	V	PASS
	7787.500	32.75	0.86	33.61	54.00	20.39	AVG	V	PASS
	17983.500	41.00	13.46	54.46	74.00	19.54	PK+	V	PASS
	17983.500	27.69	13.46	41.15	54.00	12.85	AVG	V	PASS
	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
	4960.000	53.71	-7.41	46.30	74.00	27.70	PK+	Н	PASS
	4960.000	38.46	-7.41	31.05	54.00	22.95	AVG	Н	PASS
	14100.500	44.00	9.07	53.07	74.00	20.93	PK+	Н	PASS
	14100.500	31.21	9.07	40.28	54.00	13.72	AVG	Н	PASS
	17980.000	41.11	13.42	54.53	74.00	19.47	PK+	Н	PASS
	17980.000	28.15	13.42	41.57	54.00	12.43	AVG	Н	PASS

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Reading Level+Correct Factor +Cable Loss.

(3) Correct Factor= Ant_F + Cab_L - Preamp

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz Bluetooth (GFSK, pi/4-DQPSK,8DPSK) mode have been tested, and the worst result(GFSK, Hopping) was report as below:

Temperature: Humidity: Test mode:	: 21 °0 66% GFS		Test Date: Test By: Frequency:	Lu	gust 02, 2024 cas Xu annel 0: 2402MI	Ηz	
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over (dB)
2329.080	Н	57.68	74.00	-16.32	44.98	54.00	-9.02
2385.600	V	58.19	74.00	-15.81	43.67	54.00	-10.33
Temperature: Humidity: Test mode:	: 21 ° 66% GFS		Test Date: Test By: Frequency:	Lue	gust 02, 2024 cas Xu annel 78: 2480N	ЛНz	
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over (dB)
2496.321	Н	57.76	74.00	-16.24	43.57	54.00	-10.43
2493.334	V	58.93	74.00	-15.07	43.28	54.00	-10.72
Temperature: Humidity: Test mode:	: 21 °0 66% GFS		Test Date: Test By: Frequency:	Lu	gust 02, 2024 cas Xu pping		
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over (dB)
2400.000	Н	55.65	74.00	-18.35	42.95	54.00	-11.05
2483.500	Н	55.67	74.00	-18.33	41.33	54.00	-12.67
2400.000	V	56.09	74.00	-17.91	43.37	54.00	-10.63
0400 500	N /		74.00	40.00	10.04	E 4 00	44.00

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

74.00

(2) Emission Level= Reading Level+Correct Factor +Cable Loss.

(3) Correct Factor= Ant_F + Cab_L - Preamp

55.77

V

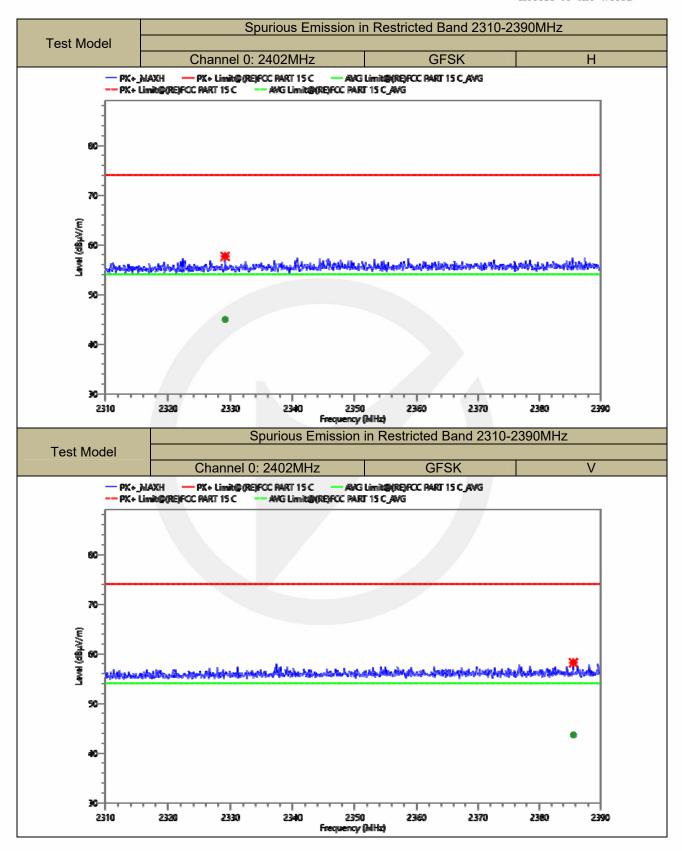
2483.500

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-18.23

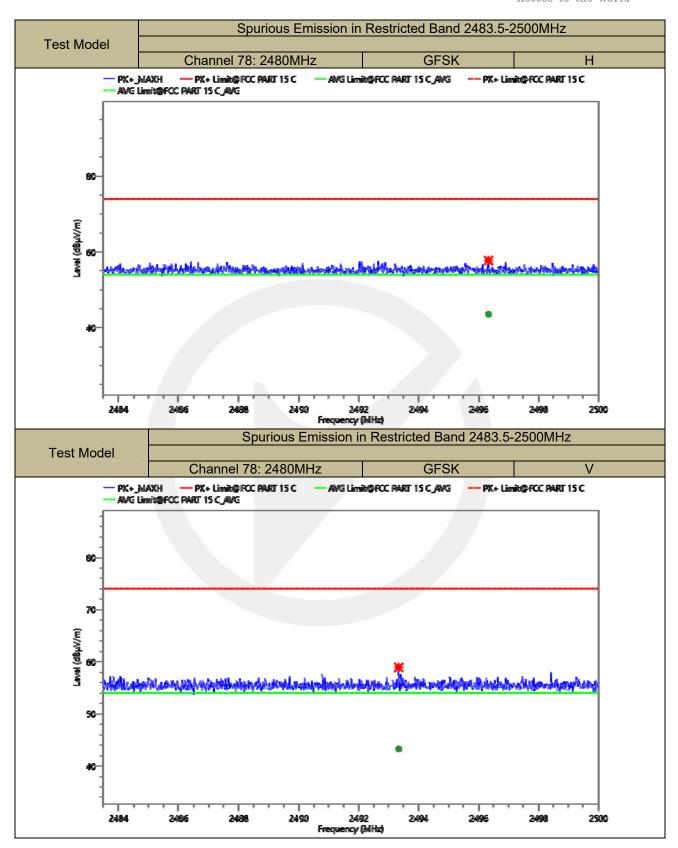
42.64

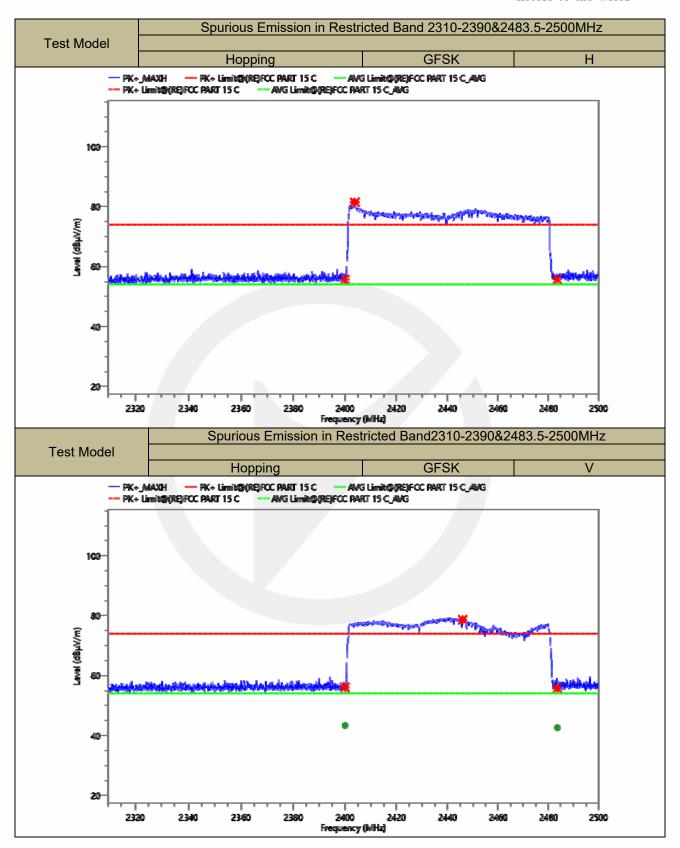
宁波市信测检测技术有限公司


地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

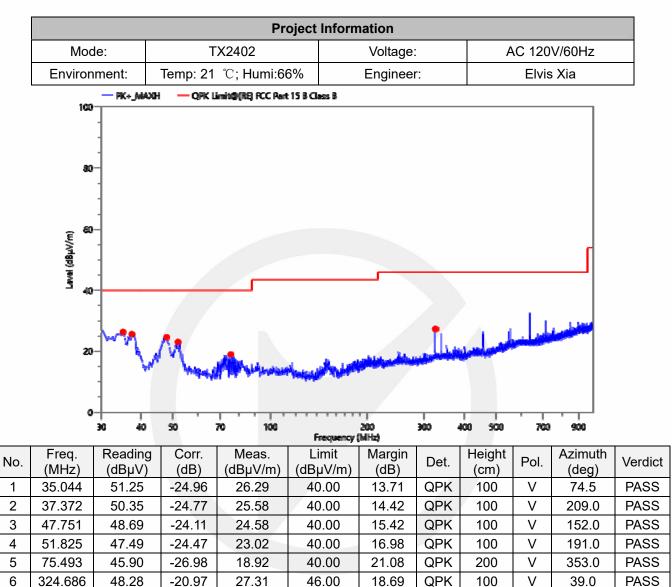
EMTEK(Ningbo) Co., Ltd. Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

-11.36

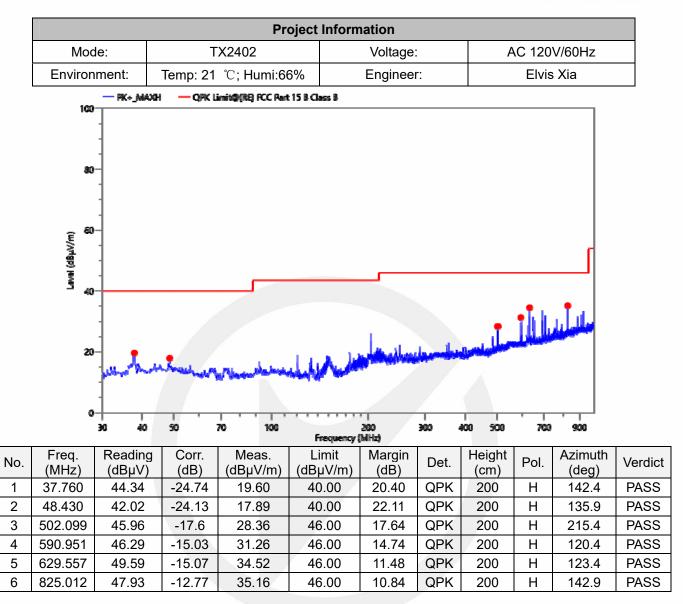

54.00


宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

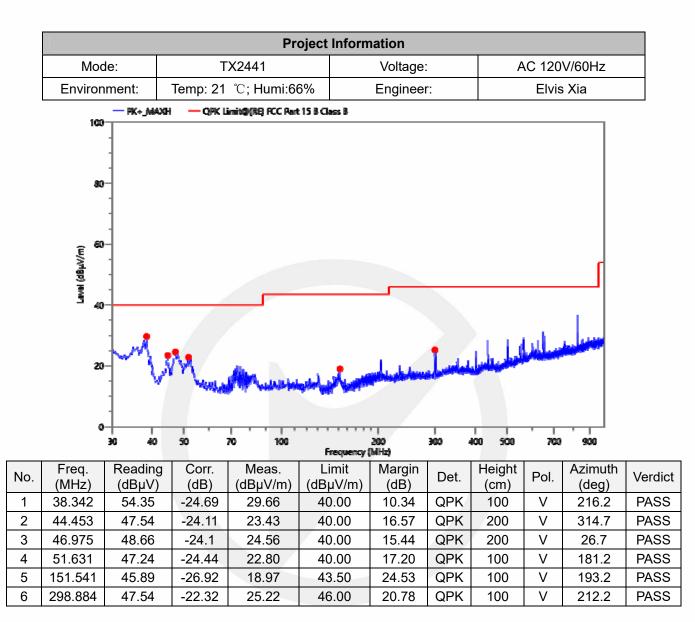


宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn


Spurious Emission below 1GHz(30MHz to 1GHz)

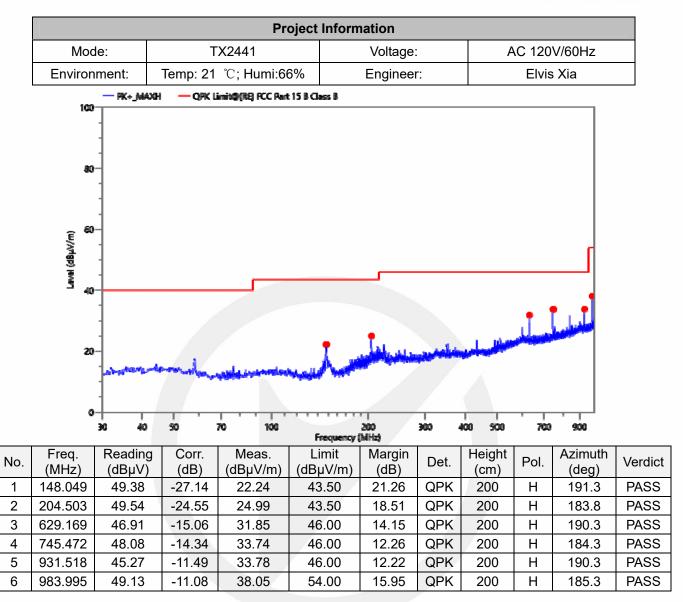
Bluetooth (GFSK, pi/4-DQPSK, 8DPSK)mode have been tested, and the worst result was report as below:

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

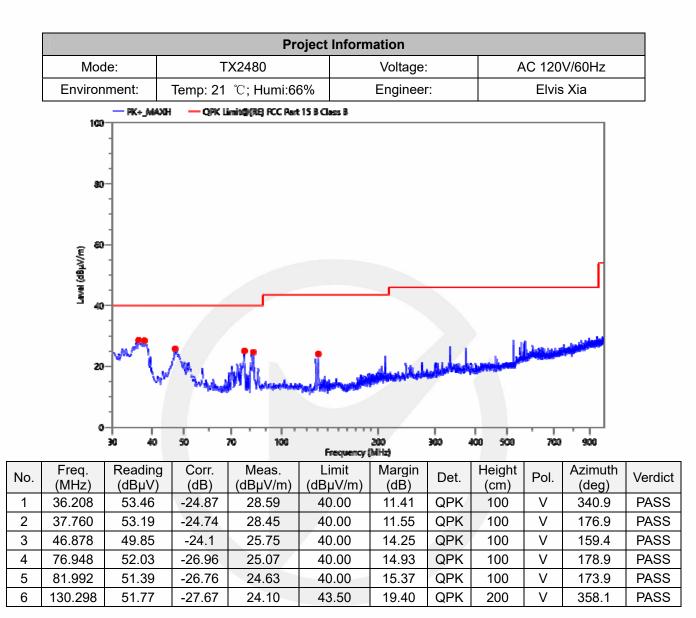

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd. 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

Report No. ENB2407240027W00201R

Page 56 of 65

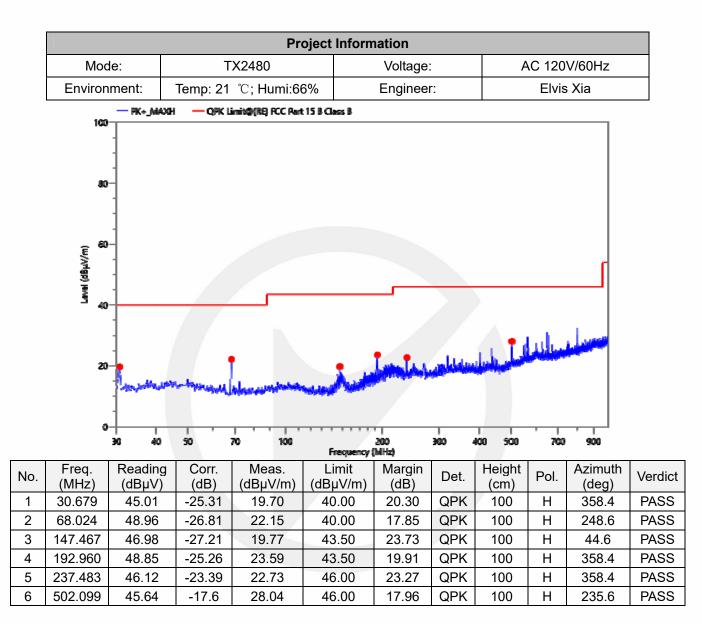

Ver. 1.0

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn


宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd.

Report No. ENB2407240027W00201R

Page 58 of 65


Ver. 1.0

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

9.8 CONDUCTED EMISSION TEST

Applicable Standard

According to FCC Part 15.207(a)

Conformance Limit

Conducted Emission Limit							
Frequency(MHz)	Quasi-peak	Average					
0.15-0.5	66-56	56-46					
0.5-5.0	56	46					
5.0-30.0	60	50					

Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

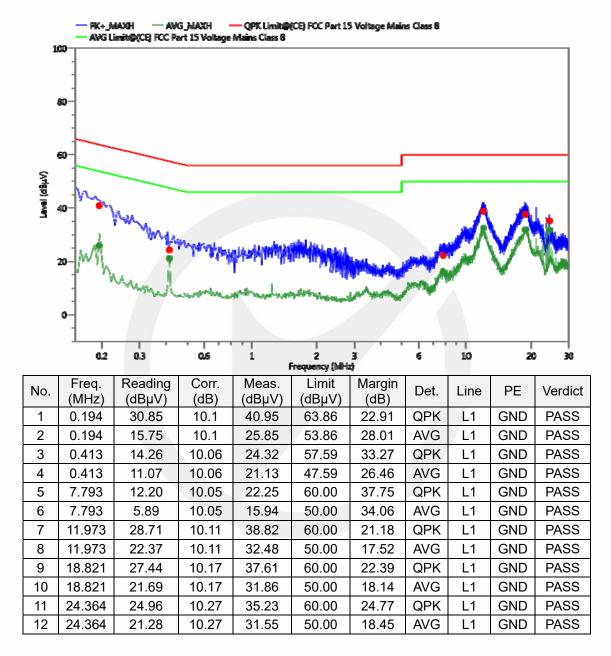
Test Configuration

Test according to clause 7.3 conducted emission test setup

Test Procedure

The EUT was placed on a table which is 0.1m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

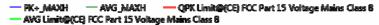
Test Results

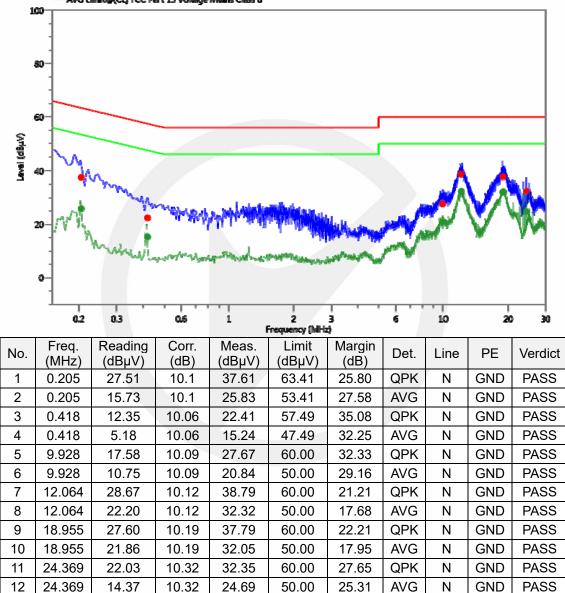

Pass.

Bluetooth (GFSK, pi/4-DQPSK, 8DPSK)mode have been tested, and the worst result was report as below:

宁波市信测检测技术有限公司

Project Information								
Mode:	TX2402	Voltage:	AC 120V/60Hz					
Environment:	Temp: 24 ℃; Humi:69%	Engineer:	Ace Li					




宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd. 地址: 浙江省宁波市高新区清逸路216弄8幢8号 网址: Http://www.emtek.com.cn 邮箱: nb@emtek.com.cn Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

Report No. ENB2407240027W00201R

Project Information								
Mode:	TX2402	Voltage:	AC 120V/60Hz					
Environment:	Temp: 24 ℃; Humi:69c%	Engineer:	Ace Li					

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd.

地址: 浙江省宁波市高新区清逸路216弄8幢8号 网址: Http://www.emtek.com.cn 邮箱: nb@emtek.com.cn Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn

Report No. ENB2407240027W00201R

9.9 ANTENNA APPLICATION

Antenna Requirement

<u> </u>	
Standard	Requirement
FCC CRF Part15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217,§15.219, or §15.221. Further, this requirement does not apply to intentionalradiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Result

Pass.

Note:

The EUT has 1 PCB Antenna: The PCB Antenna Gain is 1.67 dBi;

Antenna use a permanently attached antenna which is not replaceable.

Not using a standard antenna jack or electrical connector for antenna replacement The antenna has to be professionally installed (please provide method of installation)

which in accordance to section 15.203, please refer to the internal photos.

*** End of Report ***

宁波市信测检测技术有限公司 EMTEK(Ningbo) Co., Ltd. 地址: 浙江省宁波市高新区清逸路216弄8幢8号 网址: Http://www.emtek.com.cn 邮箱: nb@emtek.com.cn

声 明

Statement

1. 本报告无授权批准人签字及"检验检测专用章"无效;

This report will be void without authorized signature or special seal for testing report.

2. 未经许可本报告不得部分复制;

This report shall not be copied partly without authorization.

- 本报告的检测结果仅对送测样品有效,委托方对样品的代表性和资料的真实性负责;
 The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material.
- 本检测报告中检测项目标注有特殊符号则该项目不在资质认定范围内,仅作为客户委托、科研、教 学或内部质量控制等目的使用;

The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc.

 本检测报告以实测值进行符合性判定,未考虑不确定度所带来的风险,本实验室不承担相关责任, 特别约定、标准或规范中有明确规定的除外;

The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards or regulations, EMTEK shall not assume any responsibility.

6. 对本检测报告若有异议,请于收到报告之日起 20 日内提出;

Objections shall be raised within 20 days from the date receiving the report.

宁波市信测检测技术有限公司 地址:浙江省宁波市高新区清逸路216弄8幢8号 网址:Http://www.emtek.com.cn 邮箱:nb@emtek.com.cn

EMTEK(Ningbo) Co., Ltd. Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China Http://www.emtek.com.cn E-mail: nb@emtek.com.cn