

TESTING CENTRE TEC	TEST REPORT
FCC ID :	2A4JA-B033-2M
Test Report No:	TCT220217E005
Date of issue:	Feb. 24, 2022
Testing laboratory:	SHENZHEN TONGCE TESTING LAB
Testing location/ address:	TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China
Applicant's name: :	Zhongrun Huasheng Trading Co., Ltd.
Address:	Room 10H, Jiahua Pavilion, Guest Garden, No. 1050, Baoan South Road, Renmin Qiao Community, Guiyuan Street, Luohu District, Shenzhen, 518001 China
Manufacturer's name :	Shenzhen DZH Industrial Co., Ltd
Address:	3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D zone, Shajing, Shenzhen, China
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013
Test item description :	Wireless Keyboard
Trade Mark:	N/A
Model/Type reference :	B033-2M
Rating(s):	Rechargeable Li-ion Battery DC 3.7V
Date of receipt of test item	Feb. 17, 2022
Date (s) of performance of test:	Feb. 17, 2022 ~ Feb. 24, 2022
Tested by (+signature) :	Rieo LIU
Check by (+signature) :	Beryl ZHAO
Approved by (+signature):	Tomsin

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information		
1.1. EUT description	<u> </u>	
1.2. Model(s) list		3
1.3. Operation Frequency		
2. Test Result Summary		
3. General Information		
3.1. Test environment and mode		5
3.2. Description of Support Units		5
4. Facilities and Accreditations		
4.1. Facilities	<u>(</u> G)	6
4.2. Location		6
4.3. Measurement Uncertainty		
5. Test Results and Measurement Data		
5.1. Antenna requirement		7
5.2. Conducted Emission		
5.3. Conducted Output Power		
5.4. 20dB Occupy Bandwidth		
5.5. Carrier Frequencies Separation		
5.6. Hopping Channel Number		
5.7. Dwell Time		
5.8. Pseudorandom Frequency Hopping Se	quence	
5.9. Conducted Band Edge Measurement		
5.10.Conducted Spurious Emission Measur		
5.11.Radiated Spurious Emission Measurer	ment	
Appendix A: Test Result of Conducted	Test	
Appendix B: Photographs of Test Setup		
Appendix C: Photographs of EUT		

1. General Product Information

1.1. EUT description

Test item description:	Wireless Keyboard	$(\mathbf{c}^{\mathbf{A}})$
Model/Type reference:	B033-2M	
Sample Number	TCT220217E005-0101	
Bluetooth Version:	V3.0	
Operation Frequency:	2402MHz~2480MHz	
Transfer Rate:	1 Mbits/s	
Number of Channel:	79	
Modulation Type:	GFSK	
Modulation Technology:	FHSS	
Antenna Type:	PCB Antenna	
Antenna Gain:	0.55dBi	
Rating(s):	Rechargeable Li-ion Battery DC 3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
X	(X		×	/	X	(3
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
			(
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-

Remark: Channel 0, 39 &78 have been tested for GFSK modulation mode.

Report No.: TCT220217E005

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS (
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	25.0 °C	24 °C
Humidity:	55 % RH	45 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	fcc_test_tool v1.6	
Power Level:	Default	
T (N)		

Test Mode:

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery.

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	JD-050200	2012010907576735	/	/

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

FCT通测检测 4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 0.55dBi.

50

30

07

5.2. Conducted Emission

5.2.1. Test Specification

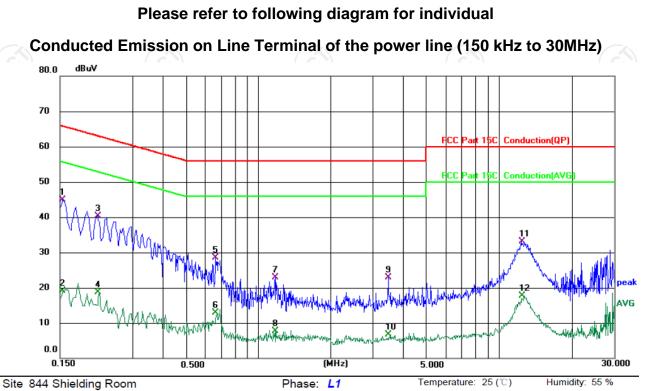
			6						
Test Requirement:	FCC Part15 C Section 15.207								
Test Method:	ANSI C63.10:2013								
Frequency Range:	150 kHz to 30 MHz		$\langle \zeta \rangle$						
Receiver setup:	RBW=9 kHz, VBW=30	0 kHz, Sweep time	e=auto						
	Frequency range	Limit (dBuV)						
	(MHz)	Quasi-peak	Average						
Limits:	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
	Reference	ce Plane							
Test Setup:	Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	letwork	AC power						
Test Mode:	Charging + Transmitti	ng Mode							
Test Procedure:	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all o the interface cables must be changed according to 								
	conducted interfere emission, the relative the interface cables	nce. In order to find ve positions of equinations of equinations of equinations of equinations of the section o	ipment and all of according to						
Test Result:	conducted interfere emission, the relativ	nce. In order to find ve positions of equinations of equinations of equinations of equinations of the section o	ipment and all of according to						

Page 8 of 59

Hotline: 400-6611-140 Tel: 86-755-27673339

Report No.: TCT220217E005

Page 9 of 59


http://www.tct-lab.com

Fax: 86-755-27673332

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)												
Equipment	Manufacturer	Calibration Due										
EMI Test Receiver	R&S	ESCI3	100898	Jul. 07, 2022								
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Mar. 11, 2022								
Line-5	Line-5 TCT		N/A	Jul. 07, 2022								
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A								

5.2.3. Test data

Limit: FCC Part 15C Conduction(QP) Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1539	35.37	9.59	44.96	65.79	-20.83	QP	
2		0.1539	9.52	9.59	19.11	55.79	-36.68	AVG	
3		0.2140	30.96	9.37	40.33	63.05	-22.72	QP	
4		0.2140	9.41	9.37	18.78	53.05	-34.27	AVG	
5		0.6660	19.36	9.18	28.54	56.00	-27.46	QP	
6		0.6660	3.71	9.18	12.89	46.00	-33.11	AVG	
7		1.1740	13.47	9.35	22.82	56.00	-33.18	QP	
8		1.1740	-1.62	9.35	7.73	46.00	-38.27	AVG	
9		3.4700	13.28	9.53	22.81	56.00	-33.19	QP	
10		3.4700	-2.88	9.53	6.65	46.00	-39.35	AVG	
11		12.4340	23.44	9.63	33.07	60.00	-26.93	QP	
12		12.4340	7.98	9.63	17.61	50.00	-32.39	AVG	

Note:

Freq. = Emission frequency in MHz

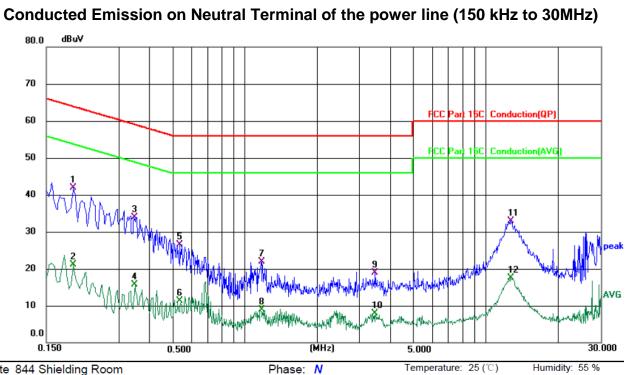
Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss

Cont. Factor (dB) = EISN factor + Cable loss

Measurement $(dB\mu V) = Reading level (dB\mu V) + Corr. Factor (dB)$

Limit (dB μ V) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 10 of 59

Report No.: TCT220217E005

Site 844 Shielding Room

Limit: FCC Part 15C Conduction(QP)

TCT通测检测 TESTING CENTRE TECHNOLOGY

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

Report No.: TCT220217E005

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1940	32.49	9.51	42.00	63.86	-21.86	QP	
2		0.1940	11.54	9.51	21.05	53.86	-32.81	AVG	
3		0.3459	24.61	9.31	33.92	59.06	-25.14	QP	
4		0.3459	6.40	9.31	15.71	49.06	-33.35	AVG	
5		0.5380	17.30	9.22	26.52	56.00	-29.48	QP	
6		0.5380	2.01	9.22	11.23	46.00	-34.77	AVG	
7		1.1779	12.65	9.33	21.98	56.00	-34.02	QP	
8		1.1779	-0.36	9.33	8.97	46.00	-37.03	AVG	
9		3.4780	9.55	9.43	18.98	56.00	-37.02	QP	
10		3.4780	-1.49	9.43	7.94	46.00	-38.06	AVG	
11		12.7820	23.33	9.65	32.98	60.00	-27.02	QP	
12		12.7820	7.81	9.65	17.46	50.00	-32.54	AVG	

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$ Limit $(dB\mu V) = Limit$ stated in standard Margin (dB) = Measurement (dB μ V) – Limits (dB μ V) Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and the worst case Mode (Lowest channel) was submitted only.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Section 15.247 (b) The maximum peak conducted ou power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operat in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 wat For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.			
Test Setup:	Spectrum Analyzer	EUT		
Test Mode:	Transmitting mode with m	nodulation		
Test Procedure:	centered on a hopping ch RBW > the 20 dB bandwi measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize	i times the 20 dB bandwidth, annel dth of the emission being		
Test Result:	PASS			

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	N/A			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
Test Result:	PASS			

5.4.2. Test Instruments

Manufacturer	Model No.	Serial Number	Calibration Due
Agilent	N9020A	MY49100619	Jul. 18, 2022
Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)					
Test Method:	KDB 558074 D01 v05r02					
Limit:	Frequency hopping systems shall have hopping char carrier frequencies separated by a minimum of 25 kl the 20 dB bandwidth of the hopping channel, which is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separa by 25 kHz or two-thirds of the 20 dB bandwidth of th hopping channel, whichever is greater, provided the systems operate with an output power no greater th 125 mW.					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Hopping mode					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 					
Test Result:	PASS					

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due		
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022		
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022		

Page 14 of 59

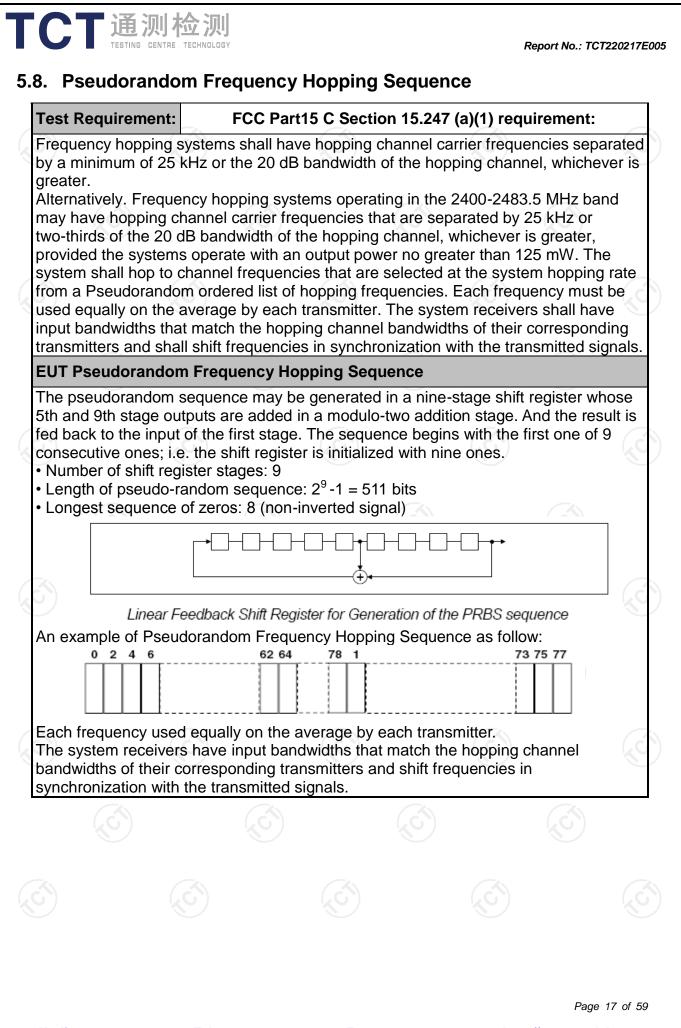
5.6. Hopping Channel Number

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.			
Test Setup:		•		
	Spectrum Analyzer	EUT		
Test Mode:	Hopping mode			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. 		tor. The or each ble the s: Span = W to less dB V; Sweep ax hold.	
Test Result:	PASS			

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022
(G)	66		G)	(.c)


5.7. Dwell Time

5.7.1. Test Specification

FCC Part15 C Section 15.247 (a)(1)			
KDB 558074 D01 v05r02			
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.			
Spectrum Analyzer EUT			
Hopping mode			
 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
PASS			

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	KDB 558074 D01 v05r02	
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fal in the restricted bands must also comply with the radiated emission limits.	
Test Setup:	Spectrum Analyzer EUT	
Test Mode:	Transmitting mode with modulation	
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 3 kHz (≥RBW). Band edge emissions must be at lea 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure used. Enable hopping function of the EUT and then reperstep 2 and 3. Measure and record the results in the test report. 	
Test Result:	PASS	

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022
	(G)) ()	(G [*])	(\mathcal{G})

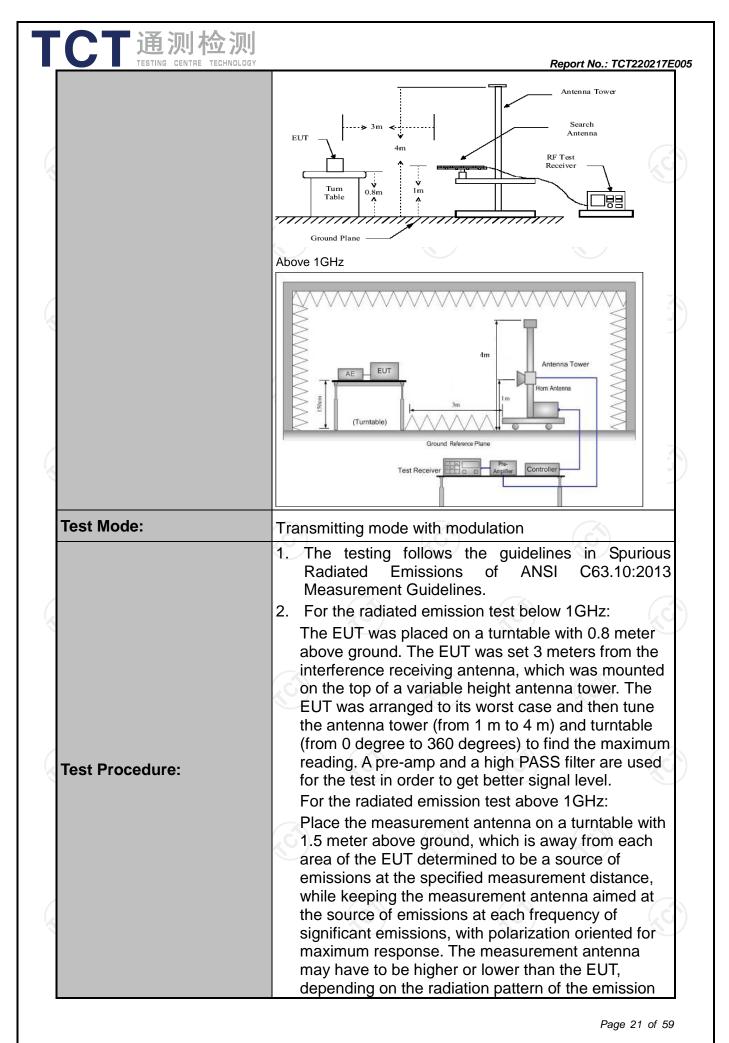
5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022



5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Section	15.209						
Test Method:	ANSI C63.10):2013							
Frequency Range:	9 kHz to 25 (GHz			C	6			
Measurement Distance:	3 m	3 m							
Antenna Polarization:	Horizontal & Vertical								
	Frequency	Detector	RBW	VBW		Remark			
	9kHz- 150kHz	Quasi-peak		1kHz		si-peak Value			
Receiver Setup:	150kHz- 30MHz	Quasi-peak	k 9kHz	30kHz	Quas	si-peak Value			
	30MHz-1GHz	Quasi-peak		300KHz	1 100	i-peak Value			
	Above 1GHz	Peak	1MHz	3MHz		eak Value			
		Peak	1MHz	10Hz	Ave	erage Value			
	Frequen	су	Field Str (microvolts	-		asurement nce (meters)			
	0.009-0.4	190	2400/F(300			
	0.490-1.7		24000/F			30			
	1.705-3		30			30			
	30-88	1	100			3			
Limit:	<u>88-216</u> 216-96	1	150 200		1	3 3			
	Above 9		200 500		3				
	Frequency	(micro	ovolts/meter) 500	Distan (meter 3		Detector Average			
	Above 1GHz	2	5000	3		Peak			
Test setup:	For radiated emis	stance = 3m			Compu				
S) (S)			(,						
						Page 20 of s			

	receiving the ma measurement at maximizes the e antenna elevation restricted to a rate above the ground 3. Set to the max EUT transmit cond 4. Use the following (1) Span shall we emission be (2) Set RBW=1 for f>1GHz Sweep = at = max hold (3) For average correction	ng spectrum analyzer settin wide enough to fully capture eing measured; 20 kHz for f < 1 GHz, RBW ; VBW≥RBW; uuto; Detector function = pe	or hat which nt shall be to 4 m e. nable the gs: e the /=1MHz hak; Trace cycle liseconds
	Where N1 length of ty Average E Level + 20 Corrected F	is number of type 1 pulses /pe 1 pulses, etc. mission Level = Peak Emis *log(Duty cycle) Reading: Antenna Factor + 0 d Level - Preamp Factor =	ssion Cable
Test results:	Where N1 length of ty Average E Level + 20 Corrected F	/pe 1 pulses, etc. mission Level = Peak Emis *log(Duty cycle) Reading: Antenna Factor + 0	ssion Cable
Test results:	Where N1 length of ty Average E Level + 20 Corrected F Loss + Rea	/pe 1 pulses, etc. mission Level = Peak Emis *log(Duty cycle) Reading: Antenna Factor + 0	ssion Cable
Test results:	Where N1 length of ty Average E Level + 20 Corrected F Loss + Rea	/pe 1 pulses, etc. mission Level = Peak Emis *log(Duty cycle) Reading: Antenna Factor + 0	ssion Cable
Test results:	Where N1 length of ty Average E Level + 20 Corrected F Loss + Rea	/pe 1 pulses, etc. mission Level = Peak Emis *log(Duty cycle) Reading: Antenna Factor + 0	ssion Cable


5.11.2. Test Instruments

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Mar. 11, 2022
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Apr. 08, 2022
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023
Antenna Mast	Keleto	RE-AM	N/A	N/A
Coaxial cable	SKET	RC_DC18G-N	N/A	Apr. 08, 2022
Coaxial cable	SKET	RC-DC18G-N	N/A	Apr. 08, 2022
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A
)	

Page 23 of 59

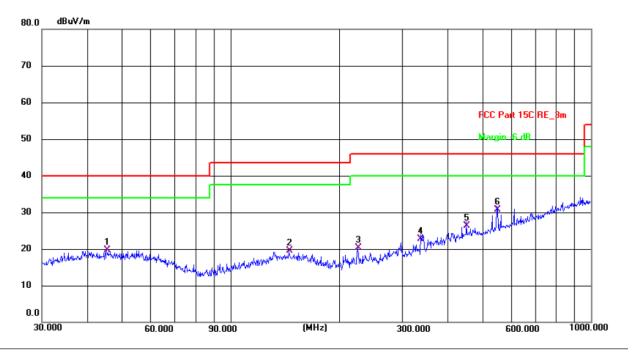
5.11.3. **Test Data**

Please refer to following diagram for individual

Site #2 3m Anechoic Chamber Limit: FCC Part 15C RE_3m

Polarization: Horizontal Power: DC 3.7 V

Temperature: 24(C) Humidity: 45 %


Report No.: TCT220217E005

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	96.7749	12.56	10.02	22.58	43.50	-20.92	QP	Ρ	
	2	208.5803	12.67	10.77	23.44	43.50	-20.06	QP	Ρ	
Γ	3	234.9909	14.46	12.44	26.90	46.00	-19.10	QP	Ρ	
	4	296.1836	16.07	13.83	29.90	46.00	-16.10	QP	Ρ	
	5	337.2155	16.05	15.05	31.10	46.00	-14.90	QP	Ρ	
	6 *	547.0977	11.33	20.27	31.60	46.00	-14.40	QP	Ρ	

Page 24 of 59

Vertical:

TCT通测检测 TCT通测检测

Site #	2 3m Anechoi	c Chambe	r	Polarization: Vertical					Temperature: 24(C) Humidity			
Limit:	FCC Part 150	RE_3m		Power: DC 3.7 V								
No.	Frequency (MHz)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark				
1	45.3755	5.83	13.88	19.71	40.00	-20.29	QP	Ρ				
2	145.3506	6.13	13.29	19.42	43.50	-24.08	QP	Р				
3	225.3080	8.46	11.79	20.25	46.00	-25.75	QP	Р				
4	337.2155	7.75	15.05	22.80	46.00	-23.20	QP	Р				
5	451.1350	8.05	26.40	46.00	-19.60	QP	Р					
6 *	549.0195	10.40	20.30	30.70	46.00	-15.30	QP	Р				

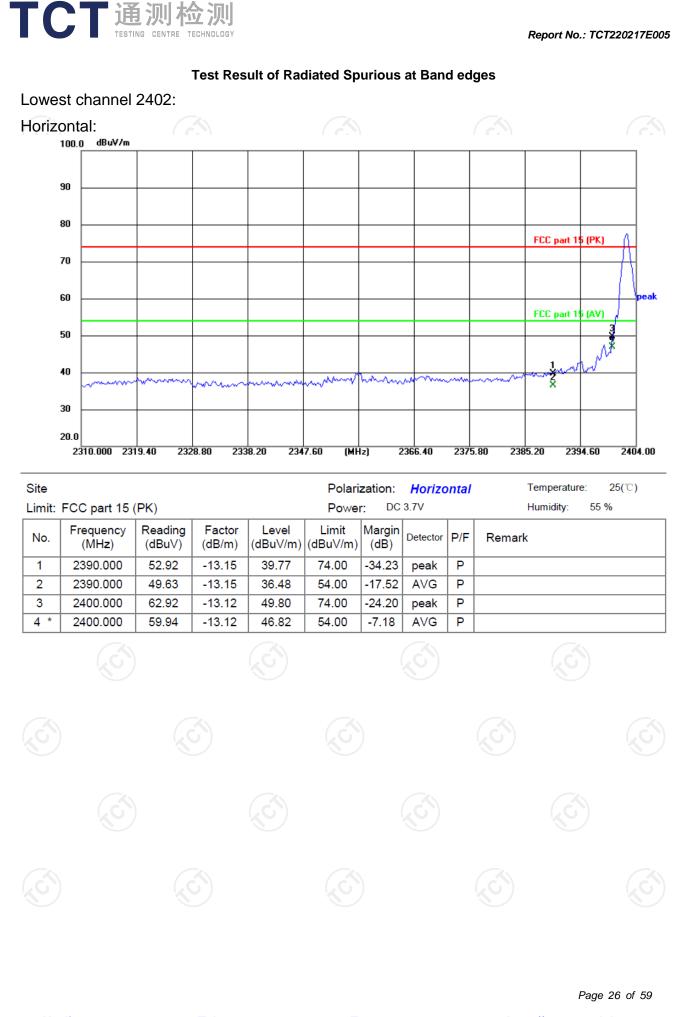
Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Lowest channel) was submitted only.

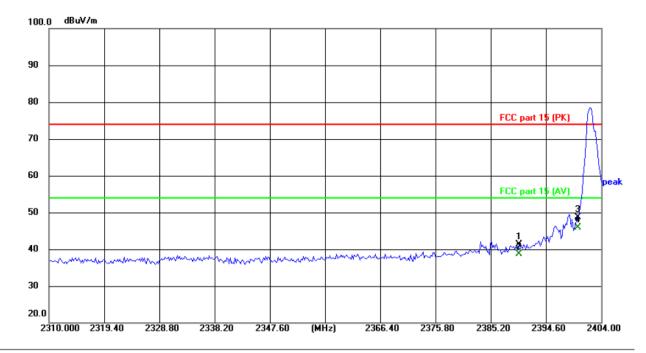
3. Freq. = Emission frequency in MHz

Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$

Correction Factor= Antenna Factor + Cable loss – Pre-amplifier


Limit $(dB\mu V/m) = Limit$ stated in standard

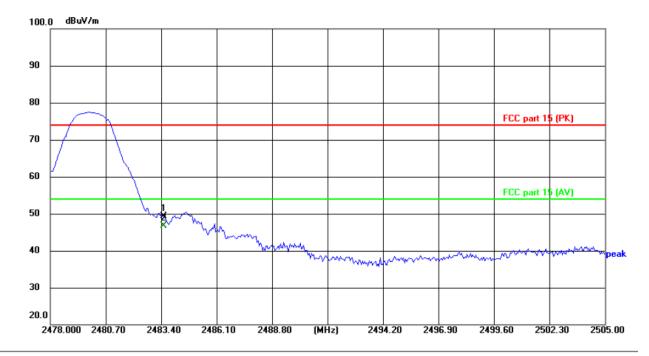
 $Over (dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$


* is meaning the worst frequency has been tested in the test frequency range.

Page 25 of 59

Report No.: TCT220217E005

Vertical:

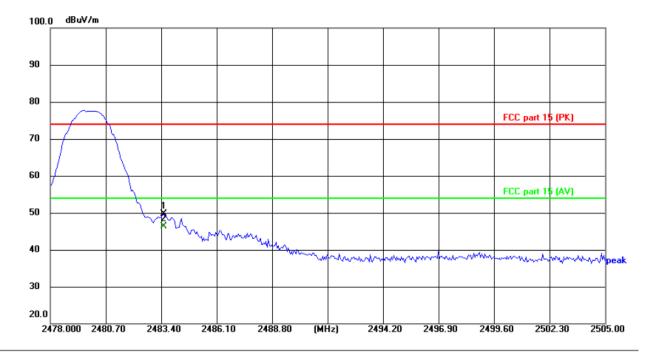

Site					Polari	zation:	Vertica	al	Temperature: 25(°℃)		
Limit:	FCC part 15	(PK)			Power	r: DC	3.7V	Humidity: 55 %			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark		
1	2390.000	54.54	-13.15	41.39	74.00	-32.61	peak	Ρ			
2	2390.000	51.91	-13.15	38.76	54.00	-15.24	AVG	Ρ			
3	2400.000	61.81	-13.12	48.69	74.00	-25.31	peak	Ρ			
4 *	2400.000	59.04	-13.12	45.92	54.00	-8.08	AVG	Ρ			
X		X	5,		X.	/					

Report No.: TCT220217E005

Page 27 of 59

Highest channel 2480:

Horizontal:



Site					Polarization: Horizontal				Temperature: 25(°⊂)		
Limit: F	CC part 15 (PK)			Power: DC 3.7V				Humidity: 55 %		
No.	Frequency (MHz)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark			
1	2483.500	62.19	-12.84	49.35	74.00	-24.65	peak	Ρ			
2 *	2483.500	59.59	-12.84	46.75	54.00	-7.25	AVG	Ρ			

Page 28 of 59

Report No.: TCT220217E005

Vertical:

Site					Polarization: Vertical				Temperature: 25(℃)		
Limit:	FCC part 15 (PK)		: DC	3.7V		Humidity: 55 %				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)					Remark		
1	2483.500	62.53	-12.84	49.69	74.00	-24.31	peak	Ρ			
2 *	2483.500	59.22	-12.84	46.38	54.00	-7.62	AVG	Ρ			

Page 29 of 59

Report No.: TCT220217E005

Above 1GHz

Modula	ation	Type: GF	SK							
Low cl	hann	el: 2402 N	IHz							
Freque (MH		Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
480)4	Н	45.89		0.66	46.55		74	54	-7.45
720)6	Н	37.24		9.50	46.74		74	54	-7.26
	-	H				/				
	(()		J.J	`)	(,	· ()		(\mathcal{O})	
480)4	V	46.95		0.66	47.61		74	54	-6.39
720)6	V	35.87		9.50	45.37		74	54	-8.63
	-	V								

Middle cha	nnel: 2441	MHz)			k	
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)			AV	Peak limit (dBµV/m)	Margin (dB)		
4882	Н	45.08		0.99	46.07	·	74	54	-7.93
7323	KOH)	35.79	1.0	9.87	45.66		74	54	-8.34
	Ĥ								
4882	V	47.83		0.99	48.82		74	54	-5.18
7323	V	36.94		9.87	46.81		74	54	-7.19
7	V			'\	//				

High channel: 2480 MHz

Frequency Ant. Pol.		AV	Correction	Emissio	on Level	Poak limit	AV/ limit	Margin
				Peak	AV	(dBuV/m)	(dBu)/m	(dB)
11/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(abp v/m)	(abp v/m)	(UD)
Н	46.14)	1.33	47.47		74	54	-6.53
Н	35.50		10.22	45.72		74	54	-8.28
Н								
V	47.54		1.33	48.87		74	54	-5.13
V	35.66		10.22	45.88		74	54	-8.12
V								
	Ant. Pol. H/V H H H V	Ant. Pol. H/V Peak reading (dBµV) H 46.14 H 35.50 H V 47.54 V 35.66	Ant. Pol. H/V Peak reading (dBμV) AV reading (dBμV) H 46.14 H 35.50 H V 47.54 V 35.66	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) H 46.14 1.33 H 35.50 10.22 H 10.22 V 47.54 1.33 V 35.66 10.22	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emission Peak (dBµV/m) H 46.14 1.33 47.47 H 35.50 10.22 45.72 H V 47.54 1.33 48.87 V 35.66 10.22 45.88	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emission Level Peak (dBµV/m) Peak limit (dBµV/m) H 46.14 1.33 47.47 74 H 35.50 10.22 45.72 74 H 1.33 48.87 74 V 47.54 1.33 48.87 74 V 35.66 10.22 45.88 74	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

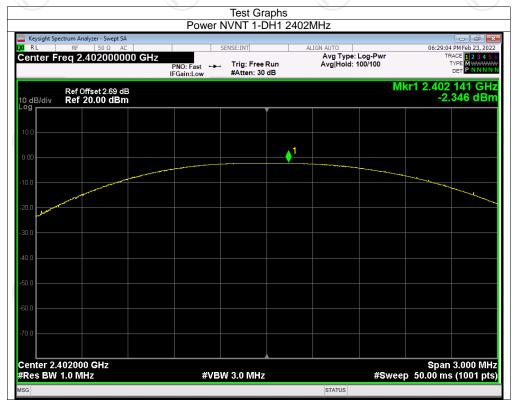
Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.


5. Data of measurement shown "----"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

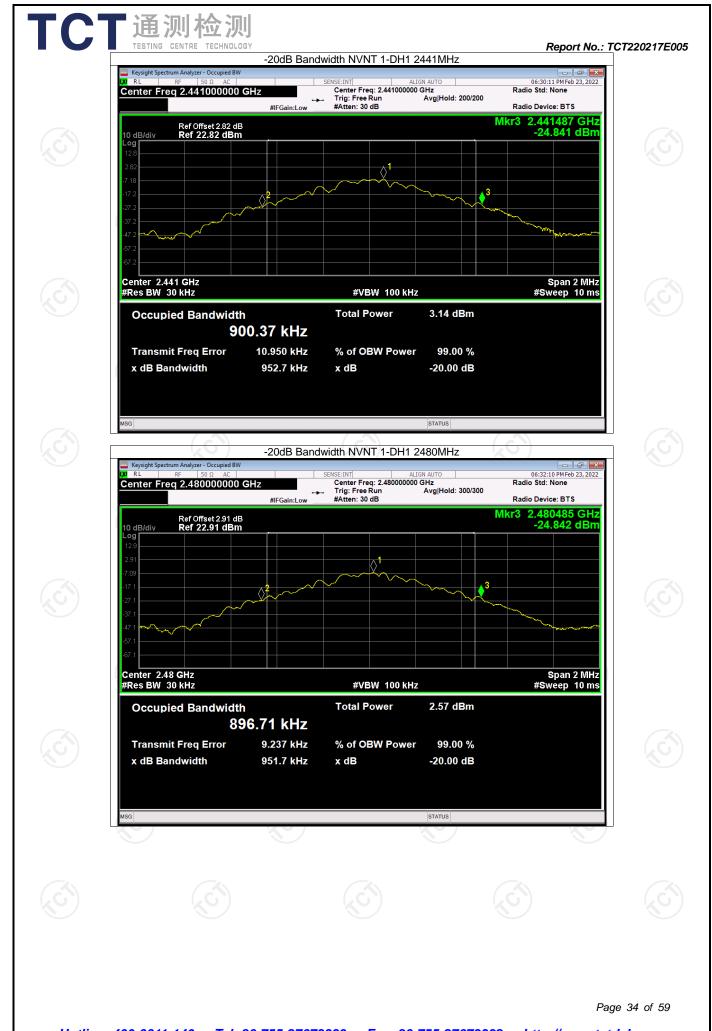
Maximum Conducted Output Power								
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict			
NVNT	1-DH1	2402	-2.35	30	Pass			
NVNT	1-DH1	2441	-2.59	30	Pass			
NVNT	1-DH1	2480	-3.20	30	Pass			

Page 31 of 59

	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Center Freq 2.441000000 GH	Z PNO: Fast ++- Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 200/200	06:29:54 PM Feb 23, 2022 TRACE 1 2 3 4 3 6 TYPE MAXANNY DET P N N N N N	
	Ref Offset 2.82 dB 10 dB/div Ref 20.00 dBm		Mkr	1 2.441 132 GHz -2.586 dBm	
	10.0				
	0.00	↓ 1			
	-20.0			- Alman - Alma - Alman - A - Alman - A	
	-30.0				
	-40.0				
	-50.0				
	-70.0				
	Center 2.441000 GHz			Span 3.000 MHz 10.00 ms (1001 pts)	
	#Res BW 1.0 MHz	#VBW 3.0 MHz	#Sweep	10.00 ms (1001 pts)	
	Keysight Spectrum Analyzer - Swept SA	Power NVNT 1-DH1 24	80MHz		
	x/ RL RF 50 Ω AC Center Freq 2.480000000 GH	PNO: Fast ++++ Irig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	06:31:50 PM Feb 23, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	
	Ref Offset 2.91 dB 10 dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	Mkr	1 2.479 853 GHz -3.203 dBm	
	0.00	1			
	-10.0		La martina de la comparison de la comparis	Mart II aller	
	-20.0			Y~	
(-40.0				
	-50.0				
$(\mathbf{c}^{(1)})$	-60.0				
	-70.0				
	Center 2.480000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep	Span 3.000 MHz 1.000 ms (1001 pts)	

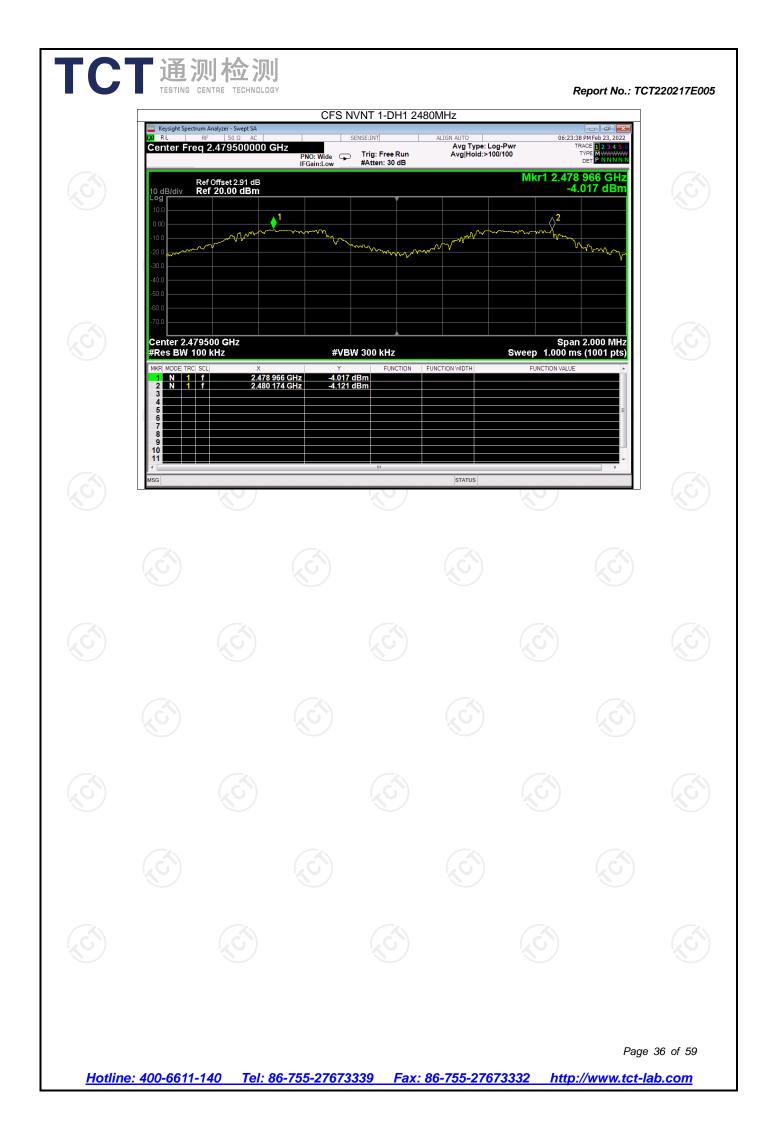
(C)

Condition	dition Mode Frequ		-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.954	Pass
NVNT	1-DH1	2441	0.953	Pass
NVNT	1-DH1	2480	0.952	Pass


6

STATUS

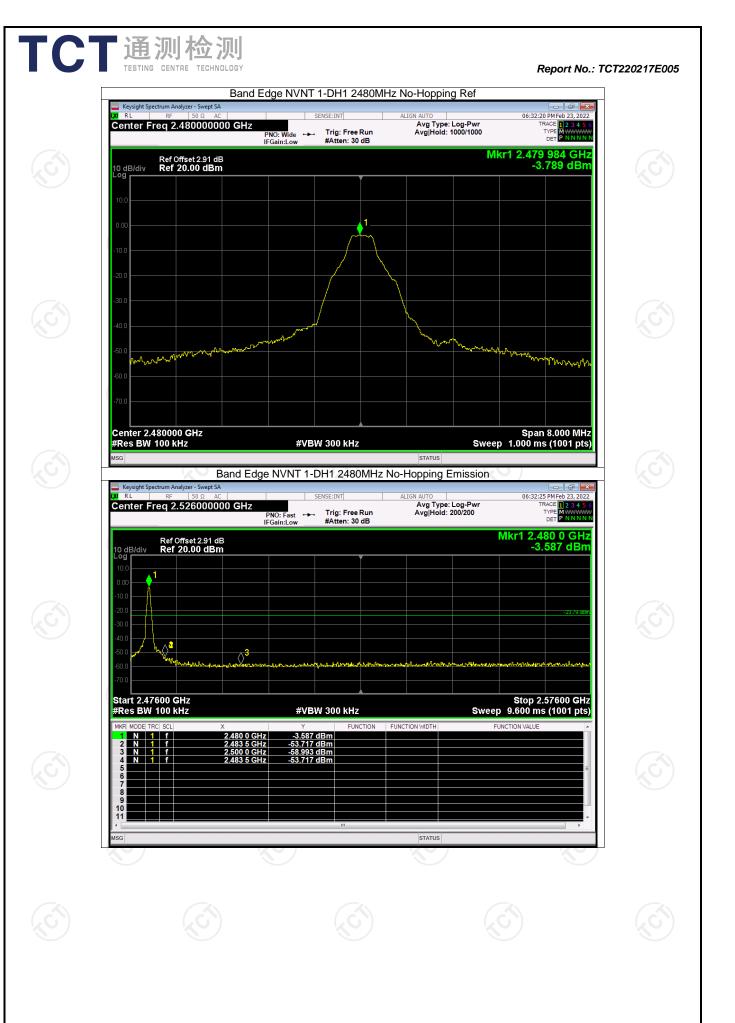
Page 33 of 59



Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.962	2403.078	1.116	0.954	Pass
NVNT	1-DH1	2441.080	2442.060	0.980	0.954	Pass
NVNT	1-DH1	2478.966	2480.174	1.208	0.954	Pass

Page 35 of 59

TCT 通测检测 TCT 通测检测


Condition	Mode	Frequency (MHz)	Band Edge Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdic
NVNT	1-DH1	2402	No-Hopping	-53.90	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-49.92	-20	Pass
	···· Keysight Spectrum Ana		Test Graphs /NT 1-DH1 2402MHz No-	Hopping Ref		
	KIRL RF	50 Ω AC 402000000 GHz PNO: Wide IFGain:Low	🛶 Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 1000/1000	27:44 PM Feb 23, 2022 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N	
		fset 2.69 dB 2 0.00 dBm		Mkr1 2.4	01 976 GHz -2.939 dBm	
	10.0		1			
	0.00					
	-10.0					
	-20.0					
	-30.0					
	-40.0			\sim		
	-50.0	Very the war		man and a second a	www.www.wyr	
	-60.0				··· •₩1~~ ₩1	
	-70.0					
	Center 2.402000 #Res BW 100 kl	I GHz Iz 3	#VBW 300 kHz	Sweep 1.000	pan 8.000 MHz) ms (1001 pts)	
	ISG	Band Edge NVN	Г 1-DH1 2402MHz No-Ho	pping Emission		
G)	Keysight Spectrum Ana KIRL RF	lyzer - Swept SA 50 Ω AC	SENSE:INT ALIGN	AUTO 06	27:48 PM Feb 23, 2022	
	Center Freq 2.	356000000 GHz PNO: Fast IFGain:Low	🛶 Trig: Free Run 🛛	Avg Type: Log-Pwr Avg Hold: 200/200	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N	
		ffset 2.69 dB		Mkr1 :	2.402 1 GHz -3.000 dBm	
	10 dB/div Ref 2 Log 10.0	20.00 dBm				
	-10.0					
	-20.0				-22.94 dDm	
	-30.0				2	
	-50.0	4	and the stand of the second date		- Arman Marken -	
	-70.0					
	Start 2.30600 G #Res BW 100 ki		#VBW 300 kHz		p 2.40600 GHz ms (1001 pts)	
		X	Y FUNCTION FUNCTION	-		
	2 N 1 f 3 N 1 f 4 N 1 f	2.400 0 GHz -49 2.390 0 GHz -59	0.419 dBm 0.024 dBm 0.849 dBm			
					=	
G)	8					
~	10					

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 37 of 59

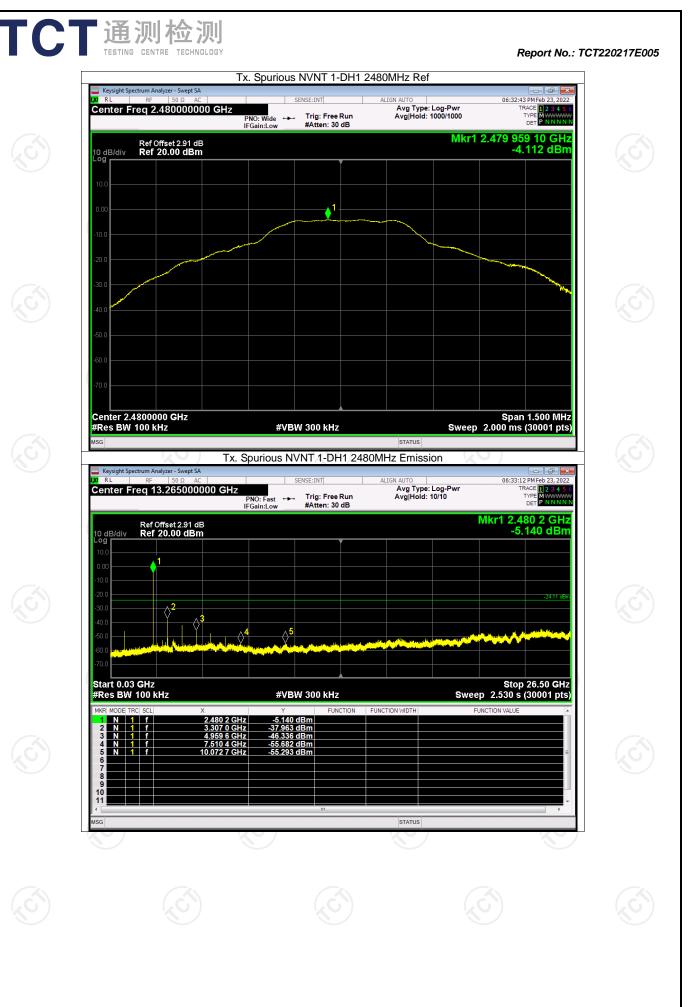
Report No.: TCT220217E005

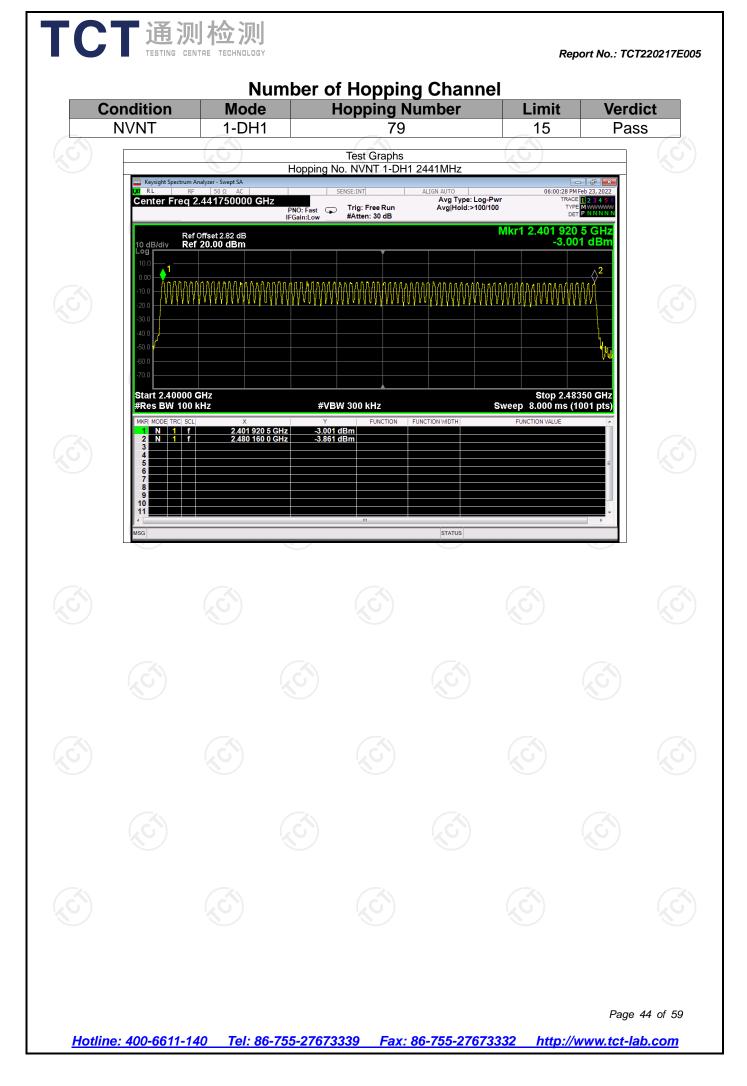
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

ondition	Mode	Frequency (MHz)	d Edge(Hopp Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdic
NVNT	1-DH1	2402	Hopping	-52.97	-20	Pass
NVNT	1-DH1	2480	Hopping	-51.77	-20	Pass
		Dond Edge/Llong	Test Graphs ing) NVNT 1-DH1 2402N	ALIZ LIODDING Dof		
	Keysight Spectrum A	Analyzer - Swept SA			53:55 PM Feb 23, 2022	
	Center Freq 2	2.402000000 GHz PNO: Wide	Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 2000/2000	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N	
	Ref	Offset 2.69 dB 5 20.00 dB m	, wAtten: 30 dB		05 120 GHz -3.491 dBm	
	10 dB/div Ref	7 20.00 aBm			-5.451 0.011	
	10.0					
	0.00				1	
	-10.0			ha Man M	M AM	
	-20.0		- M M A			
	-30.0				Y	
~	-40.0					
<u>6</u>)	-50.0					
	-60.0 x M ~ M ~ M	mammamman	Ϋ́. Ι			
	-70.0					
	Center 2.4020 #Res BW 100		#VBW 300 kHz	Sweep 1.000	oan 8.000 MHz ms (1001 pts)	
	ISG	Band Edge(Hopping) NVNT 1-DH1 2402MH;	z Hopping Emission		
	Keysight Spectrum A	50 Ω AC	SENSE:INT ALIG	SN AUTO 05:5	55:14 PM Feb 23, 2022	
	Center Freq 2	2.356000000 GHz PNO: Fast IFGain:Lov	→→ Trig: Free Run , #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 5000/5000	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN	
	Ref 10 dB/div Ref	Offset 2.69 dB f 20.00 dBm			.401 9 GHz -3.356 dBm	
	10.0				1	
	-10.0				AAAAA	
	-20.0				-27.49 ubm	
ර	-40.0				2	
	-50.0		energy and synthesis and a second second	4 3	mand	
	-70.0					
	Start 2.30600 #Res BW 100		#VBW 300 kHz	Stop Sweep 9.600	2.40600 GHz ms (1001 pts)	
	MKR MODE TRC SCL 1 N 1 f 2 N 1 f	2.401 9 GHz -	3.356 dBm	DN WIDTH FUNCTION VAL	UE	
		2.400 0 GHz -5 2.390 0 GHz -5	7.514 dBm 6.468 dBm			
	3 N 1 f 4 N 1 f	2.379 3 GHz -5	5.468 dBm			
	3 N 1 f 4 N 1 f 5 6 7 7	2.379 3 GHz -5	5.468 dBm		E	

Page 39 of 59

Page 40 of 59


Condition	Mada					Verdiet
Condition NVNT	Mode 1-DH1	Frequency 0		x Value (dBc) -33.13	Limit (dBc) -20	Verdict Pass
NVNT	1-DH1	2402		-33.88	-20	Pass
	-			1		
NVNT	Reprint Spectrum Analyzer - RL RF 50 Ref Offset2 Ref Offset2 000	2480 Tx. Spul 2480	Test Graphs rious NVNT 1-DH1 SENSE:INT e → Trig: Free Run #Atten: 30 dB	-33.85 2402MHz Ref Aug Type: Log-Pwr Avg]Hold: 1000/1000	-20	Pass
	Keysight Spectrum Analyzer - :	Tx. Spuriou Swept SA AC 50000000 GHz PNO: Fas IFGain:Lo 2.69 dB	#VBW 300 KHz US NVNT 1-DH1 24 SENSE:INT t → Trig: Free Run W #Atten: 30 dB	STATUS	Span 1.500 MHz 2.000 ms (30001 pts) 06:28:37 PMreb 23,202 TRACE 12.34 5 6 DET P. NINNIN Mkr1 2.402 6 GHz -3.326 dBm	Ś
1 -1 -2 -3 -4 -5 -6 -6 -7 7 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1		5 5 #VBW 300 kHz	Swe	-2327 (6m -2327 (6m 	Ś
	Image: Node triangle Triangle<	3.202 9 GHz -3 4.804 3 GHz -4 7.116 9 GHz -5	Y FUNCTION 3.326 dBm 16.406 dBm 16.736 dBm 14.412 dBm 16.027 dBm			Ś


. .

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Page 41 of 59

Keysight Spectrum Analyzer - Swep			
IX RL RF 50 Ω Center Freq 2.441000		ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	06:30:29 PM Feb 23, 2022 TRACE 1 2 3 4 5 6 TYPE MANAGEMAN DET P N N N N N
Ref Offset 2.82 10 dB/div Ref 20.00 dl		Mkr1 2.4	41 157 50 GHz -3.517 dBm
Log			
0.00		1	
-10.0			
-20.0			
-30.0			
-40.0			
-60.0			
-70.0			
Center 2.4410000 GHz	49/DW 200 kHz		Span 1.500 MHz
#Res BW 100 kHz	#VBW 300 kHz	STATUS	000 ms (30001 pts)
Keysight Spectrum Analyzer - Swep		ALIGN AUTO	06:30:59 PM Feb 23, 2022
Center Freq 13.26500		Avg Type: Log-Pwr Avg Hold: 10/10	TRACE 123456 TYPE M MARAMAN DET P N N N N N
Ref Offset 2.82 10 dB/div Ref 20.00 di	dB Bm	Mk	r1 2.441 4 GHz -4.363 dBm
10.0 0.00			
-10.0 -20.0			-23-52 dBm
-30.0 -40.0			
-50.0 -60.0			
-70.0 Start 0.03 GHz	41/DW 200 LU		Stop 26.50 GHz
#Res BW 100 kHz MKR MODE TRC SCL 1 N 1 f	#VBW 300 kHz X Y FUNCTION 2.441 4 GHz -4.363 dBm	-	2.530 s (30001 pts)
2 N 1 F 3 N 1 F 4 N 1 F 5 N 1 F	3.254 9 GHz -37.400 dBm 4.882 0 GHz -46.607 dBm 7.521 0 GHz -55.843 dBm 9.571 6 GHz -56.254 dBm		
6 7 8 9			
			~
MSG		STATUS	

			(115)	(ms)		(115)		
NVNT	1-DH1	2441	0.43	24.08	56	31600	400	Pass
NVNT	1-DH3	2441	1.63	83.13	51	31600	400	Pass
NVNT	1-DH5	2441	2.83	130.18	46	31600	400	Pass
			Dwell NVNT 1-DI		NAUTO AVI TYPE: Log-Pwr	06:25:51 PM F	1 2 3 4 5 6 WWWWW P N N N N N	
	0.00	1Δ2 2 0 000 GHz Iz	#VBW 3.0		Sw.	A definition of scolar a	THE LVL an 0 Hz 001 pts)	
	MKR MODE TRC ScL 1 42 1 t (2 F 1 t 3 4 5 6 7 7 8 9 9 9 10 11 4 7 8 9 9 9 10 11 4 7 8 9 9 9 10 10 10 10 10 10 10 10 10 10	X Δ) 430.0 j 493.5 j	Υ us (Δ) 1.52 dB us -10.99 dBm	FUNCTION FUNCTIO	STATUS	FUNCTION VALUE		

Dwell Time Total

Dwell

Time

Pulse

Time

(ms)

Frequency (MHz) Report No.: TCT220217E005

Limit

(ms)

Verdict

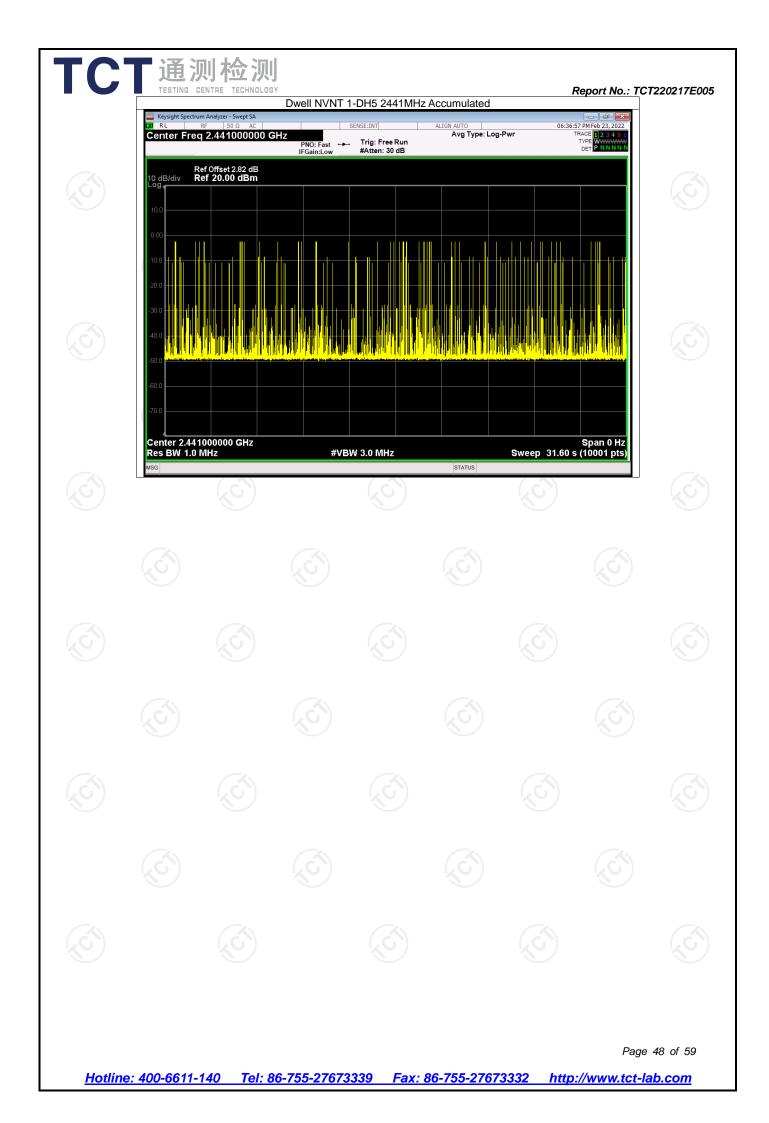
Period

Time

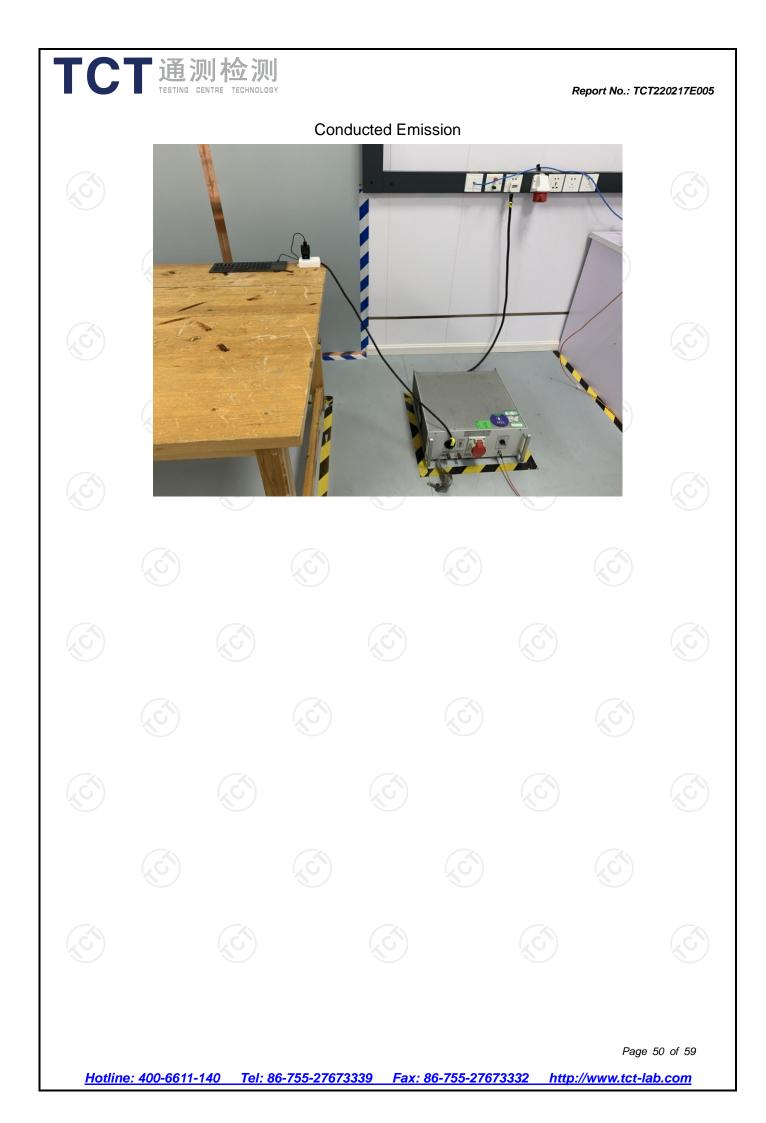
(ms)

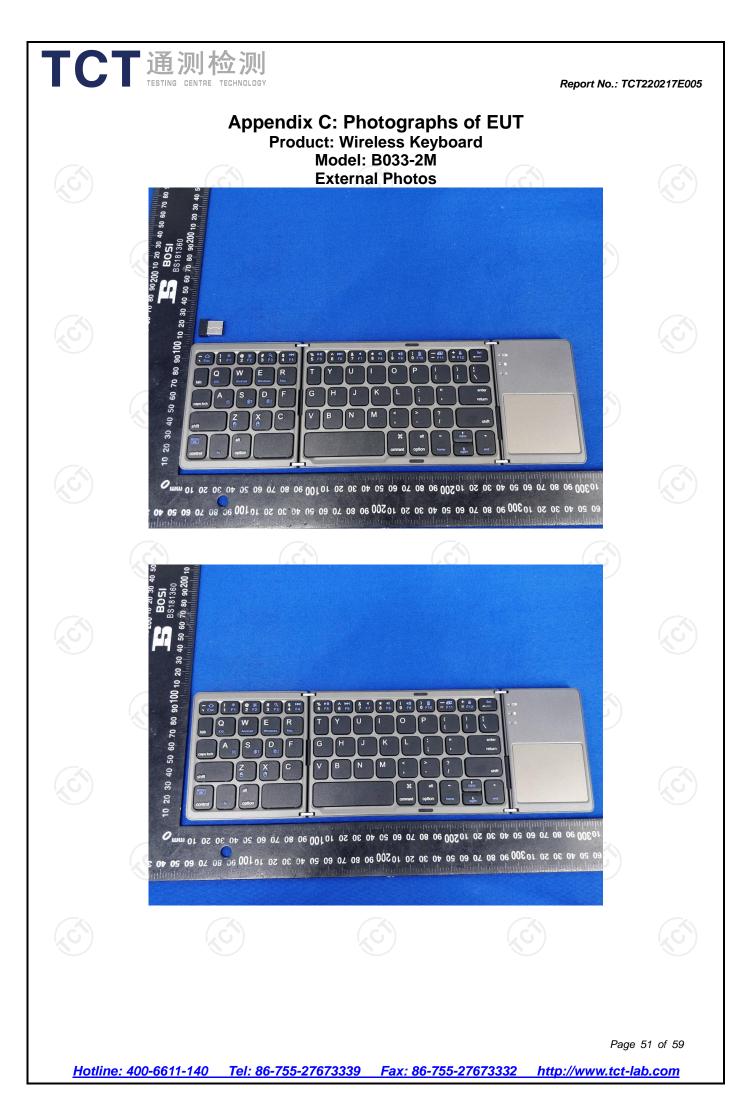
Burst

Count



Mode


Condition


	TESTING CENTRE TECHNOLOGY	BII NVNT 1-DH1 2441MHz Accumu	06:26:25 PM Feb 23, 2022	CT220217E0
	Ref Offset 2.82 dB	NO: Fast →→ Trig: Free Run Gain:Low #Atten: 30 dB	Type: Log-Pwr TRACE 12 2 4 5 6 Type WWWWWW DET PINNNN	. ć*
10				
-10				
-40	<mark>aline hanna, k indiana hannaha</mark> i			S
-60				
		#VBW 3.0 MHz		
L)XI	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Inter Freq	vell NVNT 1-DH3 2441MHz One B SENSE:INT ALIGN AUTO Trig Delay-500.0 µs Avg Trig: Video gain:Low #Atten: 30 dB		
10 Lo 10	.0		ΔMkr1 1.630 ms 0.93 dB	
-10 -22 -30 -40	0 X2			S
-60 -70	.0 <mark>Japan Japan Ja</mark>	nder mit de le ser se de la constance de la con Métalement de la constance de la Métalement de la constance de la		
Re	SBW 1.0 MHz MODE TRC SCL X Δ2 1 t (Δ) 1.630 ms F 1 t 498.0 μs	Y Function Function widt (Δ) 0.93 dB -9.91 dBm -9.91 dBm	Sweep 10.00 ms (10001 pts)	
	· · · · · · · · · · · · · · · · · · ·	III STAT	TUS	

Entropy of the state of th		ESTING CENTRE TECHNOLOGY Report No.: TCT220217E Dwell NVNT 1-DH3 2441MHz Accumulated Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Figure Sense:INT ALIGN AUTO 06:35:11 PMFeb 23, 2022 Center Freq 2.441000000 GHz PNO: Fast +++ Trig: Free Run FigGain:Low +++ Trig: Free Run #Atten: 30 dB Figure Sense:INT Align AUTO Det Title
Image: Section 1.1 Image: Se		10 dB/div Ref 20.00 dBm
Center 2.441000000 GHz #VEW 3.0 MHz Sweep 31.60 s (10001 pts) Woi Intrace Dwell NVNT 1-DH5 2441MHz One Burst Center F. Reg 2.411000000 GHz Stress Intl Res BW 7.0 MHz Sweep 31.60 s (10001 pts) Note: Sweep 30.60 stress Intl Center F. Reg 2.411000000 GHz Stress Intl Alter AVD October 2.82 at the base 2021 The Web 30.0 46 Stress Intl Avg Type: Log-P.Wr The Base 1000000 GHz The Video Center F. Reg 2.411000000 GHz Trig: Video Avg Type: Log-P.Wr The Base 100000 GHz Trig: Video Official data to stress to the base 1000 get to the base 10000 get to the base 100000 get to the base 1000000 get to the base 100000000 get to the base 1000000 get to the base 10000000 g		
Knycky Spectra Matrices - Swerg SM SENCE SMIT ALION AUTO OB::::::::::::::::::::::::::::::::::::	(E)	.70.0 Span 0 Hz Center 2.441000000 GHz #VBW 3.0 MHz Sweep 31.60 s (10001 pts) MSG STATUS
Log 1Δ2 The tree 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <		Keysight Spectrum Analyzer - Swept SA Image: Sense:INT ALIGN AUTO 06:36:24 PMFeb 23,2022 Center Freq 2.441000000 GHz Trig Delay-500.0 µs Avg Type: Log-Pwr TRACE D23 43 6 Trig: Video Trig: Video Trig: Video Ref Offset 2.82 dB AMKr1 2.830 m5
Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) MKR MODE TRC SCL X Y Function Function Width Function Value 1 A2 F 1 t (A) 2.03 dB I 3 4 -10.59 dBm -10.59 dBm I		
		Center 2.44 1000000 GHz Res BW 1.0 MHz Span 0 Hz #VBW 3.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 Δ2 1 t (Δ) 2.830 ms (Δ) 2.03 dB
	Ś	

