

TEST REPORT

Product Name: CD soundmachine

Trade Mark:

PHILIPS

or PHILIPS

Model No. / HVIN: AZ797T/37

Add. Model No: AZ797TAQ/37, AZ797Txx/yy(x=A-Z or

nil,yy=00-99 or Nil, for country code)

Report No.: 2209021334RFC-1

Report Number: 2209021334RFC-1

Test Standards: FCC 47 CFR Part 15 Subpart C

RSS-247 Issue 2 RSS-Gen Issue 5

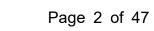
FCC ID: 2AR2SAZ797T37

IC: 24589-AZ797T37

Test Result: PASS

Date of Issue: October 28, 2022

Prepared for:


MMD Hong Kong Holding Limited
Unit 1006, 10th Floor, C-Bons International Center, 108 Wai Yip
Street, Kwun Tong, Kowloon, Hong Kong

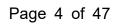
Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd.
Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Prepared by:	KERLY LLO	Reviewed by:	Brux	
_	Kieron Luo		Eric Yu	
	Project Engineer		Project Supervisor	
Approved by:	Kevin Liang Assistant Manager	Date:	October 28, 2022	_

Version


Version No.	Date	Description
V1.0	October 28, 2022	Original

1.	GENE	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	EUT Information	
		1.2.1 GENERAL DESCRIPTION OF EUT	4
		1.2.2 DESCRIPTION OF ACCESSORIES	4
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	OTHER INFORMATION	
	1.5	DESCRIPTION OF SUPPORT UNITS	
	1.6	TEST LOCATION	
	1.7	TEST FACILITY	
	1.8	DEVIATION FROM STANDARDS	
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS	
		OTHER INFORMATION REQUESTED BY THE CUSTOMER	
2.		SUMMARY	
3.		PMENT LIST	
4.	IESI	CONFIGURATION	
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	
		4.1.2 RECORD OF NORMAL ENVIRONMENT AND TEST SAMPLE	
	4.2	TEST CHANNELS	
	4.3	EUT TEST STATUS	
	4.4	PRE-SCAN	
		4.4.1 PRE-SCAN UNDER ALL PACKETS AT MIDDLE CHANNEL	
		4.4.2 WORST-CASE DATA PACKETS	
	4.5	4.4.3 TESTED CHANNEL DETAIL TEST SETUP	
	4.5	4.5.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.5.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.5.3 FOR CONDUCTED RF TEST SETUP	
	4.6	SYSTEM TEST CONFIGURATION	
	4.7	DUTY CYCLE	
5.		O TECHNICAL REQUIREMENTS SPECIFICATION	
5 .	KADI		
	5.1	REFERENCE DOCUMENTS FOR TESTING	
	5.2	ANTENNA REQUIREMENT	
	5.3	CONDUCTED PEAK OUTPUT POWER	
	5.4	20 DB BANDWIDTH & OCCUPIED BANDWIDTH	
	5.5	CARRIER FREQUENCIES SEPARATION	
	5.6	NUMBER OF HOPPING CHANNEL	
	5.7 5.8	DWELL TIMECONDUCTED OUT OF BAND EMISSION	
	5.8 5.9	RADIATED SPURIOUS EMISSIONS	
		BAND EDGE MEASUREMENTS (RADIATED)	
		CONDUCTED EMISSION	
AΡΙ	PENDI PENDI	X 1 PHOTOS OF TEST SETUP	47 47

1. GENERAL INFORMATION
1.1 CLIENT INFORMATION

Applicant:	MMD Hong Kong Holding Limited	
Address of Applicants	Unit 1006, 10th Floor, C-Bons International Center, 108 Wai Yip Street, Kwun	
Address of Applicant:	Tong, Kowloon, Hong Kong	
Manufacturer:	MMD Hong Kong Holding Limited	
Address of Manufacturer:	Unit 1006, 10th Floor, C-Bons International Center, 108 Wai Yip Street, Kwun	
Address of Manufacturer.	Tong, Kowloon, Hong Kong	

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	CD soundmachine		
Model No. / HVIN:	AZ797T/37		
Add. Model No. / HVIN:	AZ797TAQ/37, AZ797Txx/yy(x=A-Z or nil,yy=00-99 or Nil, for country code)		
Trade Mark:	or PHILIPS		
DUT Stage:	Production Unit		
EUT Supports Function: (Provided by the customer)	2.4 GHz ISM Band: Bluetooth 5.0		
Software Version:	1.0 (Provided by the customer)		
Hardware Version:	1.0 (Provided by the customer)		
Sample Received Date:	September 2, 2022		
Sample Tested Date:	September 8, 2022 to September 20, 2022		
Note: The additional model AZ797TAQ/37, AZ797Txx/yy(x=A-Z or nil,yy=00-99 or Nil , for country code) is identical with the test model AZ797T/37 except the model number for marketing purpose.			

1.2.2 Description of Accessories

Tiziz Boodi ption of Acodecomico				
Cable				
Description: AC Cable				
Cable Type: Unshielded without ferrite				
Length:	1.50 Meter			

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Band:	2400 MHz to 2483.5 MHz	
Frequency Range:	2402 MHz to 2480 MHz	
Bluetooth Version:	Bluetooth BR + EDR	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Type of Modulation:	GFSK, π/4DQPSK, 8DPSK	
Number of Channels:	79	
Channel Separation:	1 MHz	
Hopping Channel Type:	Adaptive Frequency Hopping Systems	
Antenna Type: (Provided by the customer)	PCB Antenna	
Antenna Gain: (Provided by the customer)	2 dBi	
Maximum Peak Power:	0.71 dBm	
Normal Test Voltage:	120 Vac	

1.4 OTHER INFORMATION

Operation Frequency Each of Channel

Report No.: 2209021334RFC-1

f = 2402 + k MHz, k = 0,...,78

Note:

f is the operating frequency (MHz);

k is the operating channel.

Modulation Configure				
Modulation	Packet Size			
	1-DH1	4	27	
GFSK	1-DH3	11	183	
	1-DH5	15	339	
	2-DH1	20	54	
π/4 DQPSK	2-DH3	26	367	
	2-DH5	30	679	
8DPSK	3-DH1	24	83	
	3-DH3	27	552	
	3-DH5	31	1021	

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by	
Notebook	DELL	Latitude3400	16238087894	UnionTrust	
Headphone	HYUNDAI	CJC-8213	1.8m	UnionTrust	
tablet	HUAWEI	JDN2-W09	N/A	UnionTrust	

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.30 Meter	UnionTrust
2	AUX Cable	Audio port	0.5 Meter	UnionTrust

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district,

Shenzhen, China, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 6 of 47 Report No.: 2209021334RFC-1

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB
8	Occupied Bandwidth	±1.86%
9	RF power, conducted ±0.68dB	
10	RF conducted test with spectrum ±2.7dB	
11	Transmission Time ±0.19%	
12	Radio Frequency ± 6.5 x 10-8	

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart C Test Cases					
Test Item Test Requirement		Test Method	Result		
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (b)(4) RSS-Gen Issue 5, Section 6.8	N/A	PASS		
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207 RSS-Gen Issue 5, Section 8.8	ANSI C63.10-2013 Section 6.2	PASS		
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1) RSS-247 Issue 2, Section 5.4(b)	ANSI C63.10-2013 Section 7.8.5	PASS		
20 dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) RSS-247 Issue 2, Section 5.1(a)	ANSI C63.10-2013 Section 6.9.2	PASS		
Occupied Bandwidth	RSS-Gen section 6.7 RSS-Gen section 6.		PASS		
Carrier Frequencies Separation	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) RSS-247 Issue 2, Section 5.1(b)	ANSI C63.10-2013 Section 7.8.2	PASS		
Number of Hopping Channel	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1) RSS-247 Issue 2, Section 5.1(d)	ANSI C63.10-2013 Section 7.8.3	PASS		
Dwell Time	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) RSS-247 Issue 2, Section 5.1(d)	ANSI C63.10-2013 Section 7.8.4	PASS		
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d) RSS-247 Issue 2, Section 5.5	ANSI C63.10-2013 Section 6.10.4 & Section 7.8.8	PASS		
Radiated Emissions	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209 RSS-Gen Issue 5, Section 6.13/8.9/8.10	ANSI C63.10-2013 Section 6.3 & 6.5 & 6.6	PASS		
Band Edge Measurement	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209 RSS-247 Issue 2, Section 5.5	ANSI C63.10-2013 Section 6.10.5	PASS		

Disclaimer and Explanations:

The declared of product specification and data (e.g., antenna gain, RF specification, etc) for EUT presented in the report are provided by the customer, and the customer takes all the responsibilities for the accuracy of product specification.

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List										
Used	Equipment	Manufacturer	Model No.	Model No. Serial Number		Cal. Due date					
\boxtimes	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	Euroshiedpn- CT001270-13 17	22-Jan-2021	21-Jan-2024					
\boxtimes	Receiver	R&S	ESIB26	100114	5-Nov-2021	4-Nov-2022					
\boxtimes	Loop Antenna	ETS-LINDGREN	6502	00202525	11-Nov-2021	10-Nov-2023					
\boxtimes	Broadband Antenna	ETS-LINDGREN	3142E	00201566	11-Nov-2021	10-Nov-2023					
\boxtimes	6dB Attenuator	Talent	RA6A5-N- 18	18103001	11-Nov-2021	10-Nov-2023					
\boxtimes	Preamplifier	HP	8447F	2805A02960	5-Nov-2021	4-Nov-2022					
\boxtimes	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	17-Apr-2022	16-Apr-2024					
\boxtimes	Pre-amplifier	ETS-LINDGREN	00118385	00201874	6-Nov-2021	5-Nov-2022					
\boxtimes	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	14-Nov-2020	13-Nov-2022					
\boxtimes	Pre-amplifier	ETS-LINDGREN	00118384	00202652	17-Nov-2020	16-Nov-2022					
\boxtimes	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A					
	Test Software	Audix	e3	Sof	tware Version: 9.16	0323					

	Conducted Emission Test Equipment List										
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date					
\boxtimes	Receiver	R&S	ESR7	101181	5-Nov-2021	4-Nov-2022					
\boxtimes	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	5-Nov-2021	4-Nov-2022					
\boxtimes	LISN	R&S	ESH2-Z5	860014/024	5-Nov-2021	4-Nov-2022					
	LISN	ETS-Lindgren	3816/2SH	00201088	5-Nov-2021	4-Nov-2022					
\boxtimes	Test Software	Audix	e3	Software Version: 9 20151119i							

	RF Conducted Test Equipment List										
Used	Equipment	Manufacturer	Manufacturer Model No. Serial Number		Cal. date	Cal. Due date					
\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	15-Apr-2022	14-Apr-2023					
\boxtimes	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	5-Nov-2021	4-Nov-2022					
\boxtimes	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	5-Nov-2021	4-Nov-2022					
	EXG-B RF Analog Signal Generator	KEYSIGHT	N5171B	MY53051777	5-Nov-2021	4-Nov-2022					
\boxtimes	MXG X-Series RF Vector Signal Generator	KEYSIGHT	N5182B	MY51350267	5-Nov-2021	4-Nov-2022					

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests						
Test Condition	Ambient						
rest Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)				
NT/NV	+15 to +35	120	20 to 75				
Remark: 1) NV: Normal Voltage; N	Г: Normal Temperature						

4.1.2 Record of Normal Environment and Test Sample

4.1.2 Record of Normal Environment and Test Sample								
Test Item	Temperatu re (°C)	Relative Humidity (%)	Pressur e (kPa)	Sample No.	Tested by			
AC Power Line Conducted Emission	23.1	58.0	99.14	S20220902445-ZJA02/8	David Zhang			
Conducted Peak Output Power	24.6	54.0	100.12	S20220902445-ZJA02/8	Rain Wang			
20 dB Bandwidth & Occupied Bandwidth	24.6	54.0	100.12	S20220902445-ZJA02/8	Rain Wang			
Carrier Frequencies Separation	24.6	54.0	100.12	S20220902445-ZJA02/8	Rain Wang			
Number of Hopping Channel	24.6	54.0	100.12	S20220902445-ZJA02/8	Rain Wang			
Dwell Time	24.6	54.0	100.12	S20220902445-ZJA02/8	Rain Wang			
Conducted Out of Band Emission	24.6	54.0	100.12	S20220902445-ZJA02/8	Rain Wang			
Radiated Emissions	23.1	58.0	99.14	S20220902445-ZJA02/8	Andy Lin			
Band Edge Measurement	23.1	58.0	99.14	S20220902445-ZJA02/8	Andy Lin			

4.2TEST CHANNELS

Mode	Tx/Rx Frequency	Test RF Channel Lists					
Wiode	1x/Kx Frequency	Lowest(L)	Middle(M)	Highest(H)			
GFSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78			
(DH1, DH3, DH5)	2402 IVITIZ (0 2460 IVITIZ	2402 MHz	2441 MHz	2480 MHz			
π/4DQPSK	0400 MH= to 0400 MH=	Channel 0	Channel 39	Channel 78			
(DH1, DH3, DH5)	2402 MHz to 2480 MHz	2402 MHz	2441 MHz	2480 MHz			
8DPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78			
(DH1, DH3, DH5)	2402 MINZ 10 2460 MINZ	2402 MHz	2441 MHz	2480 MHz			

4.3 EUT TEST STATUS

Type of Modulation	Tx Function	Description
GFSK/π/4DQPSK/ 8DPSK	1Tx	 Keep the EUT in continuously transmitting with Modulation test single Keep the EUT in continuously transmitting with Modulation test Hopping Frequency.

Power Setting(Provided by the customer)
Power Setting:7.

Page 10 of 47

Test Software(Provided by the customer)
Test software name: BT_Tool.exe;

Report No.: 2209021334RFC-1

4.4 PRE-SCAN

4.4.1 Pre-scan under all packets at middle channel

Conducted Average Power (dBm) for packets										
Type of Modulation		GFSK		π/4DQPSK			8DPSK			
Packets	1-DH1	1-DH3	1-DH5	2-DH1	2-DH3	2-DH5	3-DH1	3-DH3	3-DH5	
Power (dBm)	-3.68	-4.27	-5.29	-3.88	-4.50	-5.48	-3.87	-4.49	-5.47	

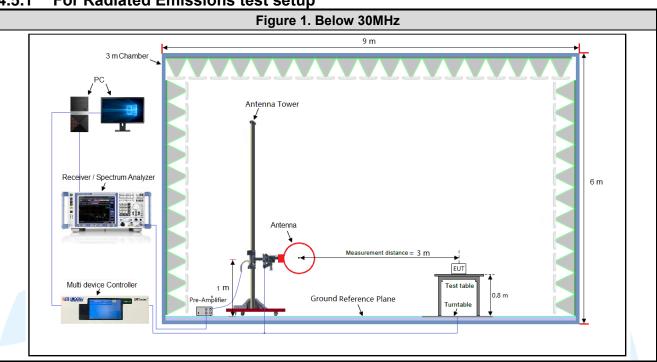
4.4.2 Worst-case data packets

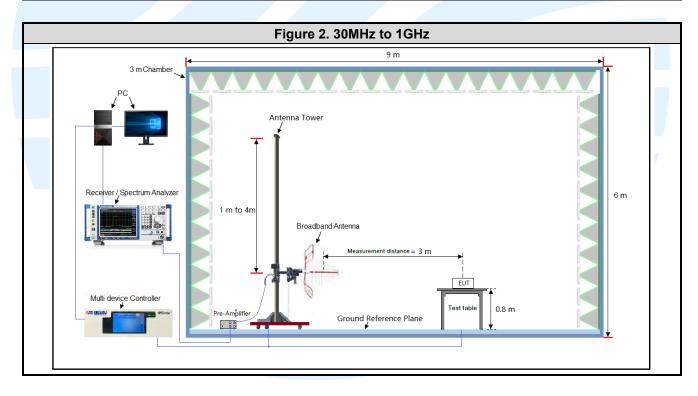
THE THOUGH CHICA MAILE PROMOTE	
Type of Modulation	Worst-case data rates
GFSK	1-DH5
π/4DQPSK	2-DH5
8DPSK	3-DH5

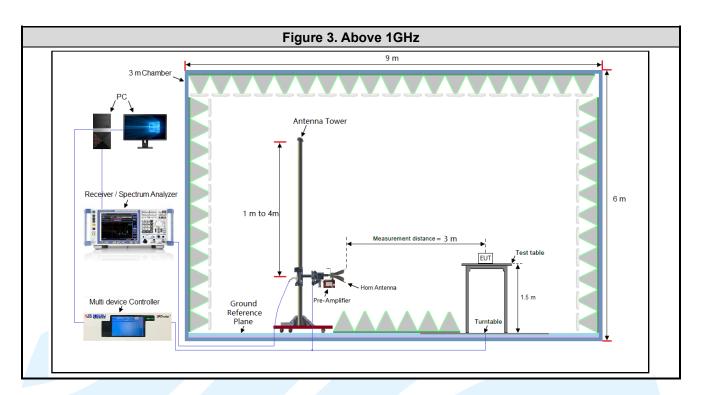
4.4.3 Tested channel detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data packets and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

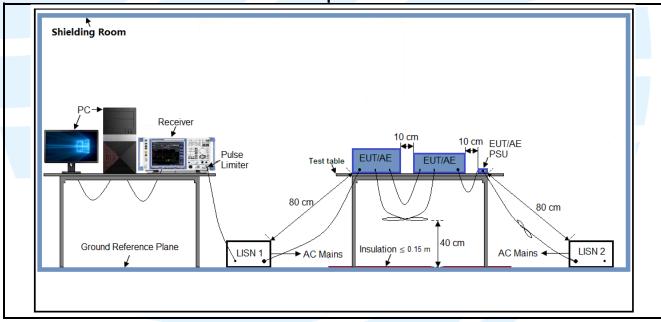
Type of Modulation		GFSK		П	/4DQPS	K		8DPSK	
Data Packets	1-DH	1-DH	1-DH	2-DH	2-DH	2-DH	3-DH	3-DH	3-DH
Bata F dokoto	1	3	5	1	3	5	1	3	5
Available Channel					0 to 78				
Test Item			Test cha	nnel and	d choose	of data	packets		
AC Power Line Conducted			Freq	uency Ho	pping Ch	nannel 0	to 78		
Emission					Link				
Conducted Peak Output				Chanr	nel 0 & 39	9 & 78			
Power									\boxtimes
20 dB Bandwidth				Chanr	nel 0 & 39	9 & 78			
20 db Balldwidtil			\boxtimes			\boxtimes			\boxtimes
Carrier Frequencies	Frequency Hopping Channel 0 to 78								
Separation			\boxtimes						\boxtimes
Number of Henring Channel	Frequency Hopping Channel 0 to 78								
Number of Hopping Channel			\boxtimes			\boxtimes			\boxtimes
Durall Time	Channel 39								
Dwell Time	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
Conducted Out of Band	Channel 0 & 39 & 78								
Emission			\boxtimes			\boxtimes			\boxtimes
Dadiated Emissions				Chanr	nel 0 & 39	9 & 78			
Radiated Emissions			\boxtimes						
Band Edge Measurements				Cha	annel 0 &	. 78			
(Radiated)			\boxtimes						
Remark:									

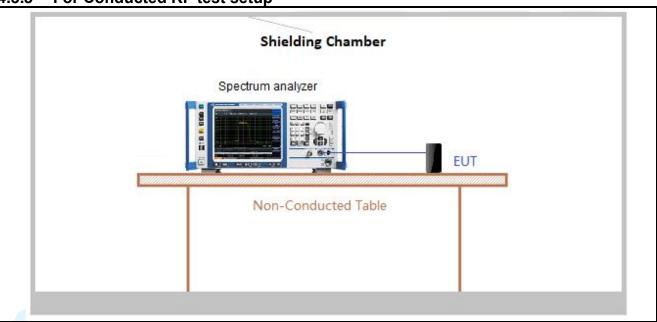

Remark:


- 1. The mark "⊠" means is chosen for testing;
- 2. The mark "□" means is not chosen for testing.


4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup





4.5.2 For Conducted Emissions test setup

4.5.3 For Conducted RF test setup

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in orientation.

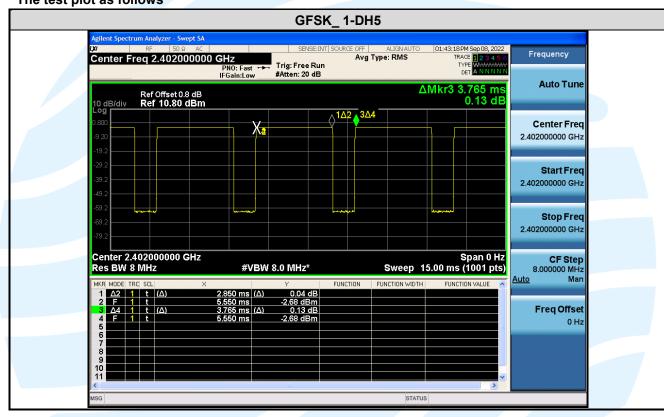
All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

Test Procedure: ANSI C63.10-2013 Clause 11.6.

Test Results


Modulation	Packets	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/T Minimum VBW (kHz)
GFSK	1-DH5	2.850	3.765	0.76	75.70	1.21	0.35

Report No.: 2209021334RFC-1

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = 20 log₁₀ Duty Cycle.

The test plot as follows

Page 15 of 47

Report No.: 2209021334RFC-1

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title		
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations		
2	FCC 47 CFR Part 15	Radio Frequency Devices		
3	RSS-247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices		
4	RSS-Gen Issue 5	General Requirements for Compliance of Radio Apparatus		
5	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices		
6	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules		

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS-Gen Issue 5, Section 6.8 requirement:

According to RSS-Gen Issue 5, section 6.8, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 2

Page 16 of 47 Report No.: 2209021334RFC-1

5.3 CONDUCTED PEAK OUTPUT POWER

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)

RSS-247 Issue 2, Section 5.4(b) **Test Method:**ANSI C63.10-2013 Section 7.8.5

Limit: For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels;

the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as

provided in section 5.4(e).

FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an

output power no greater than 0.125 W.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

a) Use the following spectrum analyzer settings:

1) Span: Approximately 5 x 20 dB bandwidth, centered on a hopping channel.

2) RBW > 20 dB bandwidth of the emission being measured.

3) VBW ≥ RBW.

4) Sweep: Auto.

5) Detector function: Peak.

6) Trace: Max hold.

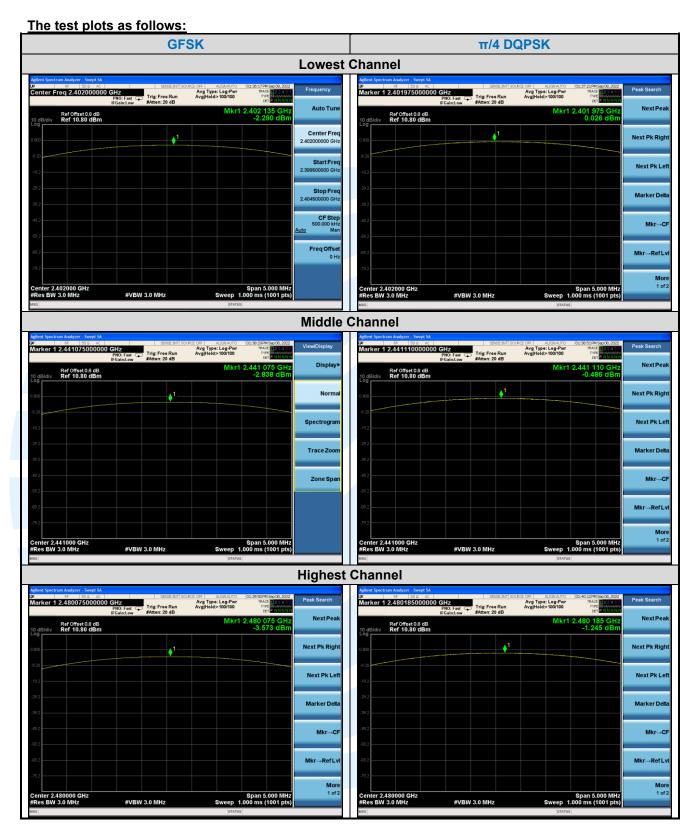
b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

A plot of the test results and setup description shall be included in the test report.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details


Test Results: Pass

Modulation	Frequency	Maximum Conducted Peak Power		EIRP		Verdict
Wiodulation	(MHz)	Result (dBm)	Limit (dBm)	Result (dBm)	Limit (dBm)	verdict
	2402	-2.29	≤20.97	-0.29	≤36.02	PASS
GFSK	2441	-2.84	≤20.97	-0.84	≤36.02	PASS
	2480	-3.57	≤20.97	-1.57	≤36.02	PASS
	2402	0.03	≤20.97	2.03	≤36.02	PASS
π/4DQPSK	2441	-0.49	≤20.97	1.51	≤36.02	PASS
	2480	-1.25	≤20.97	0.76	≤36.02	PASS
	2402	0.71	≤20.97	2.71	≤36.02	PASS
8DPSK	2441	0.14	≤20.97	2.14	≤36.02	PASS
	2480	-0.60	≤20.97	1.40	≤36.02	PASS

Note: 1. The antenna gain of 2 dBi less than 6dBi maximum permission antenna gain value based on 125 mW (21 dBm) peak output power limit.

2. The maximum ERP/EIRP is calculated from max output power and antenna gain, the antenna gain provided by the customer, and the customer takes all the responsibilities for the accuracy of antenna gain.

Page 19 of 47 Report No.: 2209021334RFC-1

5.420 DB BANDWIDTH & OCCUPIED BANDWIDTH

FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)

Test Requirement: RSS-247 Issue 2, Section 5.1(a)

RSS-Gen section 6.7

ANSI C63.10-2013 Section 6.9.2

Test Method: RSS-Gen section 6.7

Limit: None; for reporting purposes only.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span = approximately 2 to 5 times the OBW, centered on a hopping channel.

b) RBW = 1% to 5% of the OBW.

c) VBW ≥ 3 x RBW

d) Sweep = auto;

e) Detector function = peak

f) Trace = max hold

g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

I	Type of	20 d	dB Bandwidth (MHz)		Occupied Bandwidth (MHz)		
1	Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78
Ī	GFSK	0.9475	0.9477	0.9452	0.82704	0.82670	0.82395
ſ	π/4 DQPSK	1.288	1.285	1.288	1.1711	1.1689	1.1708
	8DPSK	1.299	1.300	1.298	1.1704	1.1708	1.1710

Page 20 of 47 Report No.: 2209021334RFC-1

Page 22 of 47 Report No.: 2209021334RFC-1

5.5 CARRIER FREQUENCIES SEPARATION

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)

RSS-247 Issue 2, Section 5.1(b) **Test Method:**ANSI C63.10-2013 Section 7.8.2

Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have

hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the

20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 125 mW.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span: Wide enough to capture the peaks of two adjacent channels.

b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

c) Video (or average) bandwidth (VBW) ≥ RBW.

d) Sweep: Auto.

e) Detector function: Peak.

f) Trace: Max hold.

g) Allow the trace to stabilize.

h) Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

Type of Modulation	Adjacent Channel Separation (MHz)	Minimum Limit (MHz)		
Type of Modulation	Channel 39	Channel 39		
GFSK	1.000	0.6301		
π/4 DQPSK	1.000	0.8567		
8DPSK	1.000	0.8653		
Note: The minimum limit is two-third 20 dB bandwidth.				

Page 23 of 47 Report No.: 2209021334RFC-1

Page 24 of 47 Report No.: 2209021334RFC-1

5.6 NUMBER OF HOPPING CHANNEL

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(b)(1)

RSS-247 Issue 2, Section 5.1(d) **Test Method:**ANSI C63.10-2013 Section 7.8.3

Limit: Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 15

non-overlapping channels.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

b) RBW < 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

c) VBW ≥ RBW.

d) Sweep: Auto.

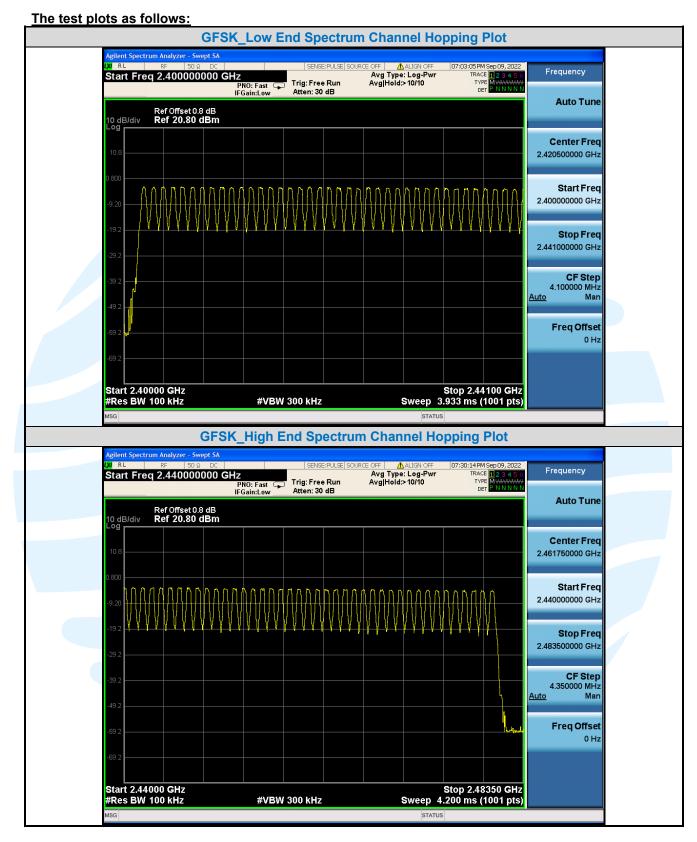
e) Detector function: Peak.

f) Trace: Max hold.

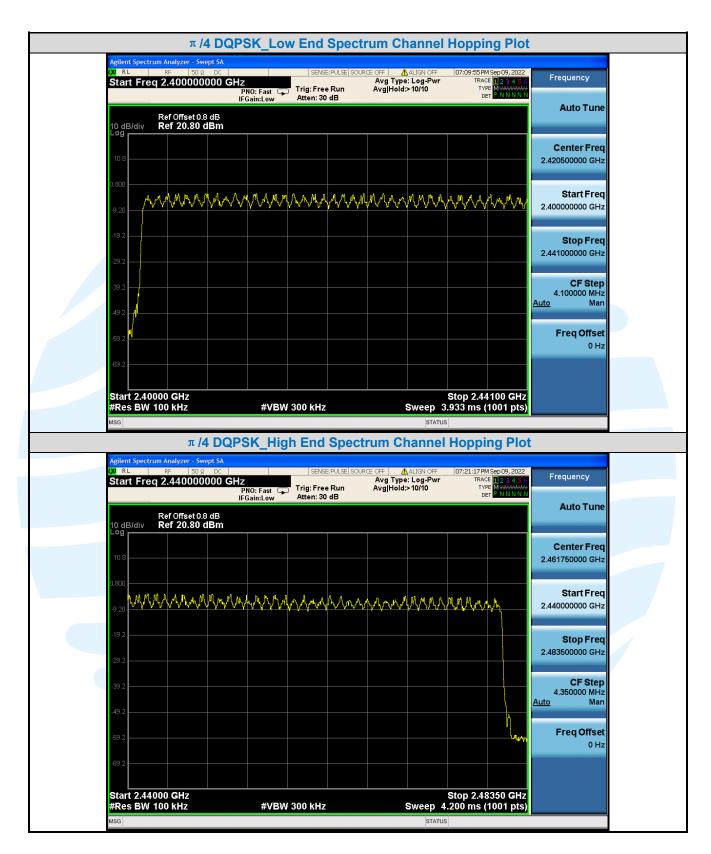
g) Allow the trace to stabilize.

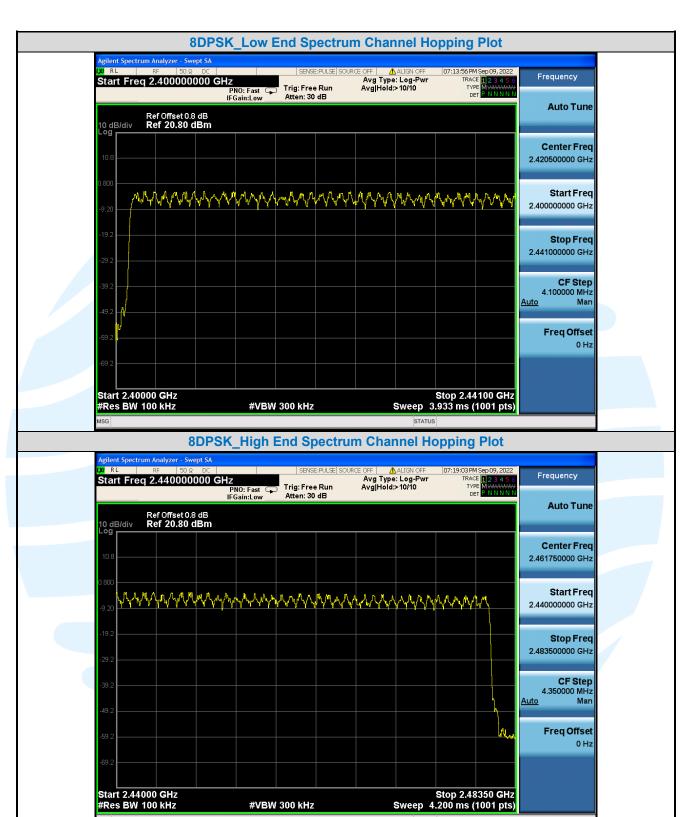
Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.


Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass


Type of Modulation	Number of Hopping Channel			
GFSK	79			
π/4 DQPSK	79			
8DPSK	79			


Page 25 of 47 Report No.: 2209021334RFC-1

Page 28 of 47 Report No.: 2209021334RFC-1

5.7 DWELL TIME

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(a)(1)

RSS-247 Issue 2, Section 5.1(d) **Test Method:**ANSI C63.10-2013 Section 7.8.4

Limit: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15

channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels

employed.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

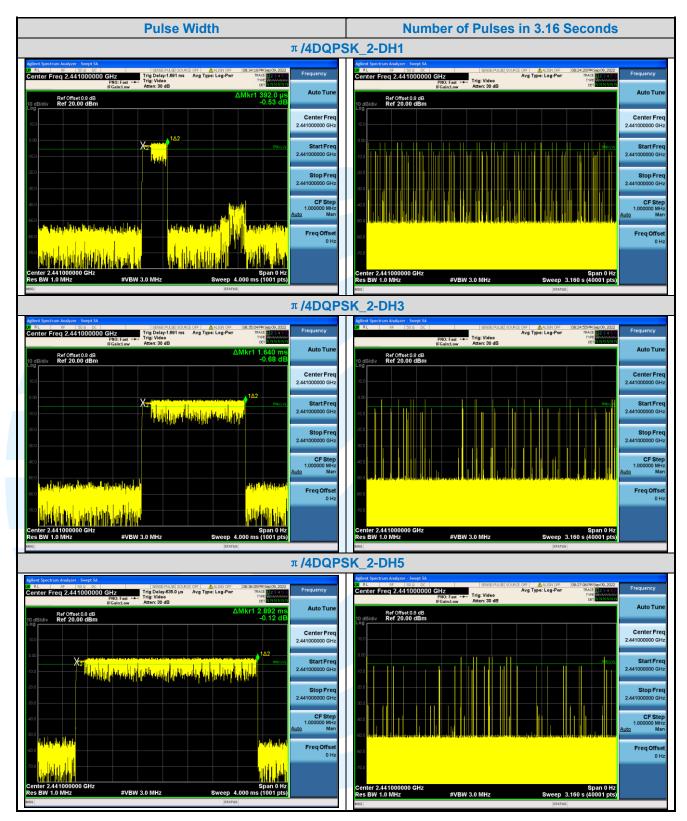
Use the following spectrum analyzer settings:

a) Span = zero span, centered on a hopping channel

- b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep = As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function = peak
- e) Trace = max hold
- f) Use the marker-delta function to determine the dwell time

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details


Test Results: Pass

Modulation	Test Frequency (MHz)	Packet	Pulse Width (ms)	Number of Pulses in 3.16 seconds	Dwell Time	Limit (ms)
	2441	1-DH1	0.384	32	122.88	< 400
GFSK		1-DH3	1.636	17	278.12	< 400
		1-DH5	2.888	13	375.44	< 400
	2441	2-DH1	0.392	31	121.52	< 400
π/4DQPSK		2-DH3	1.640	16	262.4	< 400
		2-DH5	2.892	9	260.28	< 400
	2441	3-DH1	0.396	31	122.76	< 400
8DPSK		3-DH3	1.644	14	230.16	< 400
		3-DH5	2.896	12	347.52	< 400

The test plots as follows: **Number of Pulses in 3.16 Seconds Pulse Width** GFSK 1-DH1 Center Free Center Fre 2.441000000 GH CF St GFSK 1-DH3 enter Freq 2.441000000 GHz Ref Offset 0.8 dB Ref 20.00 dBm Ref Offset 0.8 dB Ref 20.00 dBm Center Fre CFS CF SI Span 0 Hz Sweep 3.160 s (40001 pts) GFSK_1-DH5 | SENSE PLUSE | SOURCE CFF | ▲ ALIGN OFF Trig Delay-635.0 μs Avg Type: Log-Pwn Trig: Video OFF ALIGN OFF
Avg Type: Log-Pwr Ref Offset 0.8 dB Ref 20.00 dBm Ref Offset 0.8 dB Ref 20.00 dBm Center Fre Center Fre

