RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in KDB 447498 D01 V06 and §1.1307(b) CFR Title 47 §2.1091(b): (b) For purposes of this section, a mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons.

FCC ID: 2A7VD-H61B8

EUT	Govee Strip Light with Skyline Kit					
Frequency band (Operating)	⊠WLAN: 2.412GHz ~ 2.462GHz					
	WLAN: 5.18GHz ~ 5.24GHz					
	WLAN: 5.745GHz ~ 5.825GHz					
	Others: 2.402GHz~2.480GHz BLE					
Device category	Portable (<20cm separation)					
	Mobile (>20cm separation)					
	Others					
Exposure classification	<pre>Occupational/Controlled exposure (S = 5mW/cm2)</pre>					
	General Population/Uncontrolled exposure (S=1mW/cm2)					
Antenna diversity	☐Single antenna					
	⊠Multiple antennas					
	Tx diversity					
	Rx diversity					
	Tx/Rx diversity					
Evaluation applied	MPE Evaluation					
	SAR Evaluation					

EUT Specification

Limits for Maximum Permissible Exposure(MPE)

Frequency	Electric Field	Magnetic Field	Power	Average			
Range(MHz)	Strength(V/m)) Strength(A/m) Density(mW/cm ²)		Time			
(A) Limits for Occupational/Control Exposures							
300-1500			F/300	6			
1500-100000			5	6			
(B) Limits for General Population/Uncontrol Exposures							
300-1500			F/1500				
1500-100000			1	30			

Friis transmission formula: Pd=(Pout*G)\(4*pi*R2)

Where

Pd= Power density in mW/cm² Pout=output power to antenna in Mw

G= gain of antenna in linear scale

Pi=3.1416

R= distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1mW/cm2. If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Measurement Result

	Operating Mode	Channel	Measured	Tune up	Max. Tune	Antenna	Power density	Power density Limits (mW/cm ²)
		Frequency	Power	tolerance	up Power	Gain	at 20cm	
		(MHz)	(dBm)	(dBm)	(dBm)	(dBi)	(mW/ cm ²)	
	802.11b	2462	15.44	15.44±1	16.44	1.54	0.0125	1

2.4GHz WiFi worst case:

BLE worst case:

Operating Mode	Channel	Measured	Tune up	Max. Tune	Antenna	Power density	Devuen deveiter
	Frequency	Power	tolerance	up Power	Gain	at 20cm	Power density Limits (mW/cm ²)
	(MHz)	(dBm)	(dBm)	(dBm)	(dBi)	(mW/ cm ²)	
1M	2440	-3.06	-3.06±1	-2.06	2.45	0.0002	1

Note:

1. BLE and WiFi cannot support simultaneous transmission.

Test Result: Pass