



# **Test Report**

Prepared for: Rivian Automotive, LLC.

Model: PT00590065-D Serial Number: 000152

FCC ID: 2AW3A-2WWG23CC / IC ID: 26958-2NAT23AXM

**Project No: p2410006** 

**Test Results: Pass** 

To

FCC Part 15.225/15.209: 2024 And RSS 210: Issue 10 (December 2019) / RSS Gen: Issue 5

(April 2018)

Date of Issue: February 9, 2024

On the behalf of the applicant: Rivian Automotive, LLC.

14600 Myford Rd Irvine CA, 92606.

Attention of: Sep Zaker, Senior Manager, Range, Wireless & Material

Compliance Ph: 1-888-784-4261 E-Mail: sepzaker@rivian.com

Prepared By: Compliance Testing, LLC

Mesa, AZ 85204

(480) 926-3100 phone / (480) 926-3598 fax

www.compliancetesting.com

ANAB Cert#: AT-2901 FCC Site Reg. #US2901 ISED Site Reg. #2044A-2

Reviewed / Authorized By:

Jeremiah Darden, Principal Engineer



# **Test Results Summary**

| Specification          |         | Pass<br>Test Name Fail.                                   |              | Comments                         | Took Date           |
|------------------------|---------|-----------------------------------------------------------|--------------|----------------------------------|---------------------|
| FCC                    | RSS     | rest name                                                 | Fail,<br>N/A | Comments                         | Test Date           |
| FCC 15.207             | RSS-210 | A/C Powerline<br>Conducted<br>Emissions                   | N/A          | EUT is battery powered. Test N/A | N/A                 |
| FCC 15.225(a)          | RSS-210 | Field Strength of<br>Fundamental<br>Radiated<br>Emissions | Pass         | None                             | February 2,<br>2024 |
| FCC<br>15.225(b)(c)(d) | RSS-210 | Radiated<br>Emissions                                     | Pass         | None                             | February 2,<br>2024 |
| FCC 15.225(e)          | RSS-210 | Frequency<br>Stability                                    | Pass         | None                             | February 8,<br>2024 |
| N/A                    | RSS-Gen | 99% Occupied<br>Bandwidth                                 | Pass         | None                             | February 6,<br>2024 |

# Statements of conformity are reported as:

- Pass the measured value is below the acceptance limit, acceptance limit = test limit.
- Fail the measured value is above the acceptance limit, acceptance limit = test limit.

| References/Methods        | Description                                                                                                                       |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| ANSI C63.4-2014           | Method and Measurements of Radio-Noise Emissions from low-Voltage Electrical and Electronic Equipment in the range 9kHz to 40GHz. |  |  |
| ANSI C63.10:2020          | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices                                    |  |  |
| CFR47, Part 15, Subpart C | Intentional Radiators                                                                                                             |  |  |
| RSS-210: Issue 10         | Licence-Exempt Radio Apparatus: Category I Equipment                                                                              |  |  |
| RSS-GEN: Issue 5          | General Requirements for Compliance of Radio Apparatus                                                                            |  |  |
| ISO/IEC 17025:2017        | General requirements for the Competence of Testing and Calibrations Laboratories                                                  |  |  |



### **Table of Contents**

| <u>Description</u>                                | <u>Page</u> |
|---------------------------------------------------|-------------|
| Test Results Summary                              | 2           |
| Test Report Revision History                      | 4           |
| EUT Description                                   | 5           |
| Test and Measurement Data                         | 7           |
| Test Setup and Modes of Operation                 |             |
| Field Strength of Fundamental Radiated Emissions  | 9           |
| Frequency Stability                               | 10          |
| Radiated Emissions                                | 12          |
| 99% Occupied Bandwidth                            | 18          |
| Test Equipment Utilized                           | 19          |
| Measurement Uncertainty                           | 19          |
| Annex A (Screen Captures for Frequency Stability) | 21          |



# **Test Report Revision History**

| Revision | Date               | Revised By | Reason for Revision |
|----------|--------------------|------------|---------------------|
| 1.0      | 0 February 9, 2024 |            | Original Document   |
|          |                    |            |                     |
|          |                    |            |                     |
|          |                    |            |                     |

Current revision of the test report replaces any prior versions. Only the current version of the test report is valid.



# **EUT Description**

| Model:                | PT00590065-D                                                                                                                                                                                      |  |  |  |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Serial:               | 000152                                                                                                                                                                                            |  |  |  |  |  |  |
| Firmware:             | Version 42                                                                                                                                                                                        |  |  |  |  |  |  |
| Software:             | SW:23.41.01/00/04.37                                                                                                                                                                              |  |  |  |  |  |  |
| Description:          | DUT receives commands over the CAN bus, relating to NFC tag detection, and enabling Wireless Power Charging. DUT is powered by LV nominal 13.5VDC from Vehicle Battery. NFC operating at 13.56MHz |  |  |  |  |  |  |
| Additional            | Labeling:                                                                                                                                                                                         |  |  |  |  |  |  |
| Information:          | FCC ID: 2AW3A-2WWG23CC<br>IC ID: 26958-2NAT23AXM                                                                                                                                                  |  |  |  |  |  |  |
|                       | 15.203: Antenna Requirement:                                                                                                                                                                      |  |  |  |  |  |  |
|                       | X The antenna is permanently attached to the EUT                                                                                                                                                  |  |  |  |  |  |  |
|                       | The antenna uses a unique coupling                                                                                                                                                                |  |  |  |  |  |  |
|                       | The EUT must be professionally installed                                                                                                                                                          |  |  |  |  |  |  |
|                       | The antenna requirement does not apply                                                                                                                                                            |  |  |  |  |  |  |
|                       |                                                                                                                                                                                                   |  |  |  |  |  |  |
| Receipt of Sample(s): | February 1, 2024                                                                                                                                                                                  |  |  |  |  |  |  |
| EUT<br>Condition:     |                                                                                                                                                                                                   |  |  |  |  |  |  |
|                       | Visual Damage No                                                                                                                                                                                  |  |  |  |  |  |  |
|                       | State of Development Production/Production Equivalent                                                                                                                                             |  |  |  |  |  |  |
|                       |                                                                                                                                                                                                   |  |  |  |  |  |  |



#### The applicant has been cautioned as to the following:

#### 15.21 Information to User

The user's manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

#### 15.27(a) Special Accessories

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator the responsible part may employ other methods of ensuring that the special accessories are provided to the consumer, without an additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.



#### **Test and Measurement Data**

All tests and measurement data shown were performed in accordance with methods and standards listed on the test summary of this report.

| Specifi                | cation  | Test Name                                                 | Method Deviations/Additions |  |
|------------------------|---------|-----------------------------------------------------------|-----------------------------|--|
| FCC                    | RSS     | Test Name                                                 |                             |  |
| FCC 15.225(a)          | RSS-210 | Field Strength of<br>Fundamental<br>Radiated<br>Emissions | No                          |  |
| FCC<br>15.225(b)(c)(d) | RSS-210 | Radiated<br>Emissions                                     | No                          |  |
| FCC 15.225(e)          | RSS-210 | Frequency<br>Stability                                    | No                          |  |
| N/A                    | RSS-Gen | 99% Occupied<br>Bandwidth                                 | No                          |  |

#### **Standard Engineering Practices**

Unless otherwise indicated, the procedures contained in ANSI C63.10, RSS-210/RSS-Gen were observed during testing.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurement.

#### **Standard Test Conditions and Engineering Practices**

Unless otherwise indicated in the specific measurement results, the ambient temperature was maintained within the range of 10° to 40°C (50° to 104°F) and the relative humidity levels were in the range of 10% to 90%.

| Environmental Conditions                                 |             |               |  |  |  |
|----------------------------------------------------------|-------------|---------------|--|--|--|
| Temperature Humidity Barometric Pressure (°C) (%) (mbar) |             |               |  |  |  |
| 23.28 – 22.95                                            | 34.3 – 35.9 | 967.1 – 974.9 |  |  |  |



### **Test Setup and Modes of Operation**

**EUT Operation during Tests**The EUT was powered by a DC vehicle/car battery and operating in a normal operating mode where it is receiving CAN bus signals and all digital functions were exercised.

#### EUT:

| Qty | Description      | Manufacturer            | Model        | S/N    |
|-----|------------------|-------------------------|--------------|--------|
| 1   | NFC/WPT/CAN Dock | Rivian Automotive, LLC. | PT00590065-D | 000152 |

#### **Accessories:**

| Qty | Description                    | Manufacturer | Model  | S/N    |
|-----|--------------------------------|--------------|--------|--------|
| 1   | Marine Battery (Nominal 12VDC) | Super Start  | 27D0MJ | 100724 |

#### Cables:

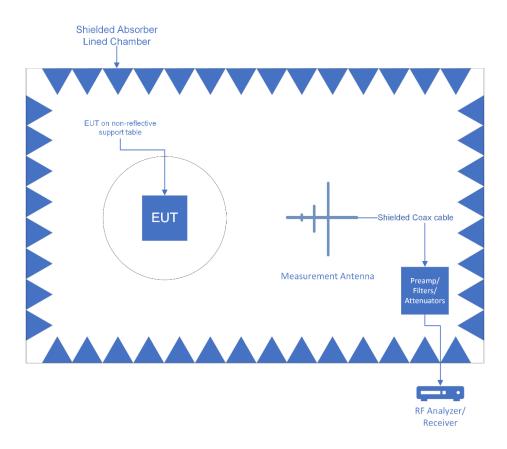
| Qty | Description   | Length<br>(M) | Ferrites<br>(Y/N) | Shielding<br>Y/N | Shielded<br>Hood<br>Y/N | Termination /<br>Connection |
|-----|---------------|---------------|-------------------|------------------|-------------------------|-----------------------------|
| 1   | DC Cable      | 2.6           | N                 | N                | N                       | EUT to Marine<br>Battery    |
| 1   | CAN Bus Cable | 1.6           | N                 | N                | N                       | EUT to Resistor             |

#### Software/Firmware:

| Name        | Description  | Version              | Installation Info |
|-------------|--------------|----------------------|-------------------|
| WPT Version | EUT Software | SW:23.41.01/00/04.37 | Installed on EUT  |

# Modifications to EUT(s) (Y/N): N




#### Field Strength of Fundamental Radiated Emissions

Engineer: Jeremiah Darden Test Date: February 2, 2024

#### **Test Procedure**

The EUT was tested in a semi-anechoic chamber with the turntable set 3m from the receiving loop antenna. A spectrum analyzer was used to verify that the EUT met the requirements for Radiated Emissions. The EUT was tested by rotating it 360 degrees with the antenna in 3 different axis. Final measurements were taken using the worse case loop as found by multiple scans (loop parallel to EUT, perpendicular to EUT, and Parallel to ground). Correction factors for distance extrapolate for 300m and/or 30m limits were applied where appropriate using a 40dB/decade adjustment.

#### **Basic Test Setup**

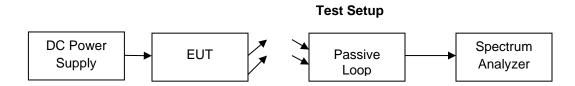


|          | Settings 9kHz-<br>150kHz | Settings 150kHz-<br>30MHz | Settings Below<br>1GHz | Settings Above<br>1GHz |
|----------|--------------------------|---------------------------|------------------------|------------------------|
| RBW      | 200Hz                    | 9kHz                      | 120 kHz                | 1 MHz                  |
| VBW      | 1kHz                     | 30kHz                     | 300 kHz                | 3 MHz                  |
| Detector | PK, QP or AVG            | PK, QP or AVG             | Quasi Peak             | Peak / Average         |

#### **Sample Calculations**

Corrected Value = Measured Value + Correction factor

Correction factor = Antenna Correction Factor + Cable loss + Preamp/Attenuator Factor




#### **Frequency Stability**

Engineer: Jeremiah Darden Test Date: February 7, 2024

#### **Test Procedure**

The EUT was placed in an environmental test chamber and a frequency counter was utilized to verify that the frequency stability met the requirement for frequency stability across the temperature range from -20°C to +50°C. A variable DC power supply was used to vary the voltage from 85% to 115% of the rated voltage. Measurements were taken at startup, 2min, 5min and 10min per the standard. Worse case results were reported

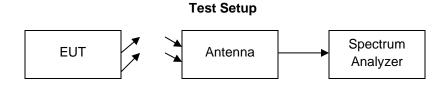




### FREQUENCY STABILITY RESULTS

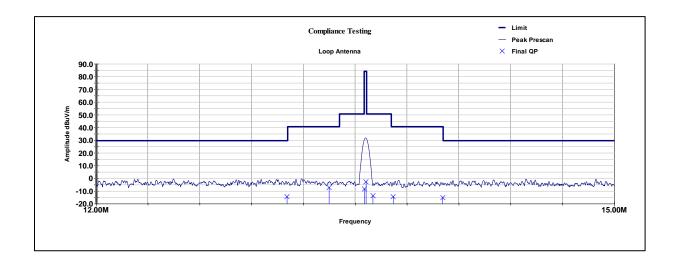
| oltage (%) | Power (VDC) | Temp © | Frequency (Hz) | Freq Deviation (Hz) | Deviation (%) | Deviation (PPM) | Limit         |
|------------|-------------|--------|----------------|---------------------|---------------|-----------------|---------------|
| 100        | 13.5        | 20     | 13560000       | 0                   | 0.0000%       | 0               | .01% / 100ppm |
| 115        | 15.5        | 20     | 13560100       | 100                 | 0.0007%       | 7               | .01% / 100ppm |
| 85         | 11.5        | 20     | 13560100       | 100                 | 0.0007%       | 7               | .01% / 100ppm |
| 100        | 13.5        | 50     | 13559866       | -134                | -0.0010%      | 10              | .01% / 100ppm |
| 100        | 13.5        | 40     | 13559833       | -167                | -0.0012%      | 12              | .01% / 100ppm |
| 100        | 13.5        | 30     | 13559666       | -334                | -0.0025%      | 25              | .01% / 100ppm |
| 100        | 13.5        | 20     | 13560200       | 200                 | 0.0015%       | 15              | .01% / 100ppm |
| 100        | 13.5        | 10     | 13560166       | 166                 | 0.0012%       | 12              | .01% / 100ppm |
| 100        | 13.5        | 0      | 13560333       | 333                 | 0.0025%       | 25              | .01% / 100ppm |
| 100        | 13.5        | -10    | 13560366       | 366                 | 0.0027%       | 27              | 01% / 100ppm  |
| 100        | 13.5        | -20    | 13560333       | 333                 | 0.0025%       | 25              | .01% / 100ppm |

**See Annex A for Captures** 




#### **Radiated Emissions**

Engineer: Jeremiah Darden Test Date: February 2, 2024

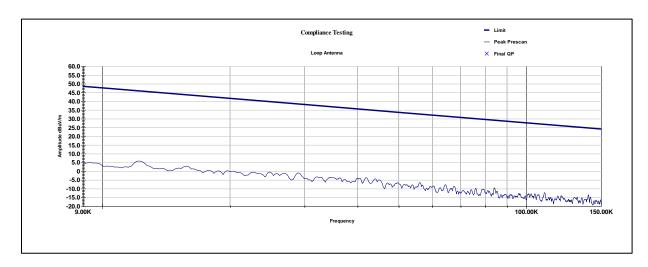

#### **Test Procedure**

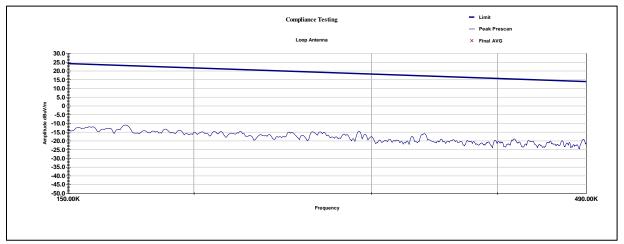
The EUT was tested in a semi-anechoic chamber at a distance of 3 meters from the receiving antenna. A spectrum analyzer was used to verify that the UUT met the requirements for Radiated Emissions. The spectrum for each tuned frequency was examined beyond the 10<sup>th</sup> harmonic. The EUT was tested by rotating it 360 degrees with the antenna in 3 different axis. Final measurements were taken using the worse case loop as found by multiple scans. Correction factors for distance extrapolate for 300m and/or 30m limits were applied where appropriate using a 40dB/decade adjustment.





### **Radiated Emissions of Fundamental**

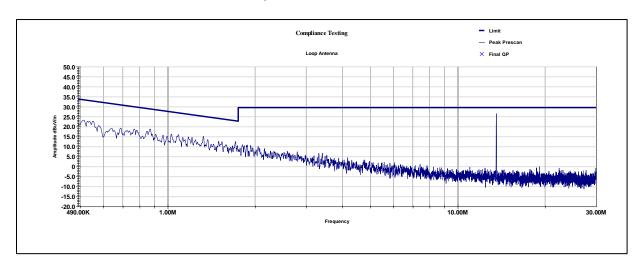


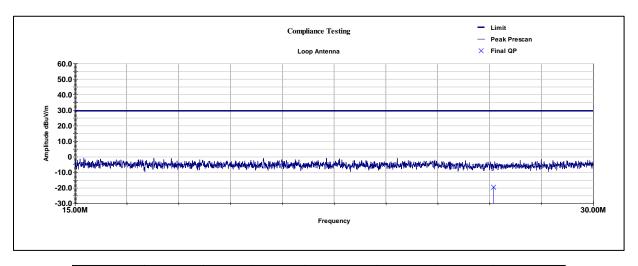


| Frequency   | Azimuth                 | Height | Raw QP | Correction | Final QP | Limit  | QP Margin |
|-------------|-------------------------|--------|--------|------------|----------|--------|-----------|
|             | deg                     | cm     | dBuV   | dB         | dBuV/m   | dBuV/m | dB        |
| 13.106      | 220.00                  | 230.00 | 7.45   | -22.03     | -14.60   | 29.50  | -44.10    |
| 13.35       | 265.00                  | 143.00 | 14.78  | -22.03     | -7.30    | 40.50  | -47.80    |
| 13.554      | 267.00                  | 130.00 | 13.35  | -22.03     | -8.70    | 84.00  | -92.70    |
| 13.564      | 267.00                  | 130.00 | 19.34  | -22.03     | -2.70    | 84.00  | -86.70    |
| 13.604      | 236.00                  | 130.00 | 8.34   | -22.03     | -13.70   | 50.50  | -64.20    |
| 13.721      | 262.00                  | 169.00 | 7.65   | -22.03     | -14.40   | 40.50  | -54.90    |
| 14.007      | 353.00                  | 188.00 | 6.77   | -22.03     | -15.30   | 40.50  | -55.80    |
|             |                         |        |        |            |          |        |           |
| Final = Raw | Final = Raw + Path Loss |        |        |            |          |        |           |
| Margin = Fi | nal - Limit             |        |        |            |          |        |           |



### Radiated Emissions 9kHz-490kHz

(No emissions within 20dB of limit to measure)

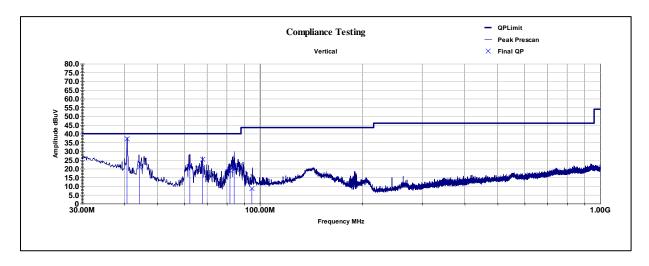


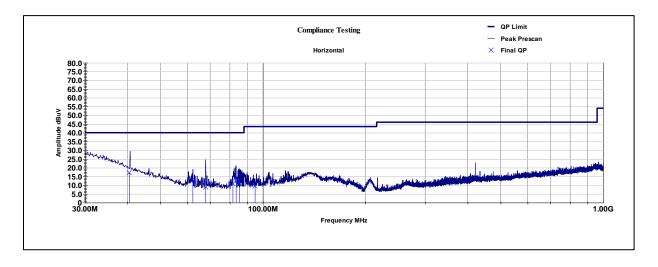



### Radiated Emissions 490kHz-30MHz

# (No emissions outside of fundamental to measure.)







| Frequency               | Azimuth | Height | Raw QP | Correction | Final QP | Limit  | QP Margin |
|-------------------------|---------|--------|--------|------------|----------|--------|-----------|
|                         | deg     | cm     | dBuV   | dB         | dBuV/m   | dBuV/m | dB        |
| 27.123                  | 237.00  | 242.00 | 2.81   | -22.41     | -19.60   | 29.50  | -49.10    |
|                         |         |        |        |            |          |        |           |
| Final = Raw + Path Loss |         |        |        |            |          |        |           |
| Margin = Final - Limit  |         |        |        |            |          |        |           |



# Radiated Emissions 30-1000MHz

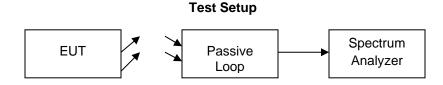


| Frequency   | Azimuth                 | Height | Raw QP | Correction | Final QP | Limit  | QP Margin |
|-------------|-------------------------|--------|--------|------------|----------|--------|-----------|
| MHz         | deg                     | cm     | dBuV   | dB         | dBuV/m   | dBuV/m | dB        |
| 40.684      | 315.00                  | 105.00 | 74.41  | -37.33     | 37.10    | 40.00  | -2.90     |
| 44.253      | 77.00                   | 105.00 | 59.18  | -38.34     | 20.80    | 40.00  | -19.20    |
| 62.275      | 225.00                  | 100.00 | 62.35  | -41.51     | 20.80    | 40.00  | -19.20    |
| 67.831      | 230.00                  | 201.00 | 66.36  | -40.97     | 25.40    | 40.00  | -14.60    |
| 81.686      | 175.00                  | 100.00 | 58.34  | -39.31     | 19.00    | 40.00  | -21.00    |
| 84.012      | 171.00                  | 100.00 | 60.61  | -38.92     | 21.70    | 40.00  | -18.30    |
| 94.726      | 0.00                    | 270.00 | 45.07  | -36.33     | 8.70     | 43.50  | -34.80    |
|             |                         |        |        |            |          |        |           |
| Final = Raw | Final = Raw + Path Loss |        |        |            |          |        |           |
| Margin = Fi | nal - Limit             |        |        |            |          |        |           |





| Frequency   | Azimuth     | Height | Raw QP | Correction | Final QP | Limit  | QP Margin |
|-------------|-------------|--------|--------|------------|----------|--------|-----------|
| MHz         | deg         | cm     | dBuV   | dB         | dBuV/m   | dBuV/m | dB        |
| 40.525      | 237.00      | 325.00 | 52.76  | -35.74     | 17.00    | 40.00  | -23.00    |
| 62.283      | 204.00      | 327.00 | 54.62  | -41.41     | 13.20    | 40.00  | -26.80    |
| 67.912      | 167.00      | 352.00 | 49.89  | -40.94     | 8.90     | 40.00  | -31.10    |
| 81.667      | 275.00      | 191.00 | 49.72  | -39.02     | 10.70    | 40.00  | -29.30    |
| 83.462      | 257.00      | 175.00 | 53.08  | -38.88     | 14.20    | 40.00  | -25.80    |
| 85.496      | 292.00      | 394.00 | 49.57  | -38.65     | 10.90    | 40.00  | -29.10    |
| 94.869      | 73.00       | 318.00 | 46.62  | -37.18     | 9.40     | 43.50  | -34.10    |
|             |             |        |        |            |          |        |           |
| Final = Raw | + Path Lo   | SS     |        |            |          |        |           |
| Margin = Fi | nal - Limit |        |        |            |          |        |           |




#### 99% Occupied Bandwidth

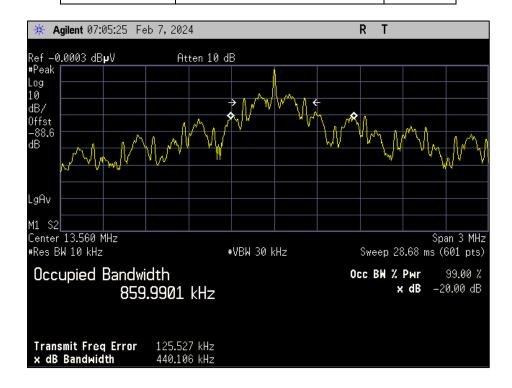
Engineer: Jeremiah Darden Test Date: February 6, 2024

#### **Test Procedure**

A spectrum analyzer and passive loop antenna was used was used to measure the 99% and 20dB occupied bandwidth. RBW was set within the range of 1-5% of the OBW. Max Peak setting on the analyzer was used and the highest power was adjusted to match the worse case field strength fundamental measurement.



Frequency (MHz)


Recorded Measurement Result

13.56

860 kHz

Pass

# Frequency (MHz) Recorded Measurement Result 13.56 440.1 kHz Pass





# **Test Equipment Utilized**

| Description                                  | Manufacturer               | Model #                        | CT Asset # | Last Cal<br>Date     | Cal Due<br>Date                  |
|----------------------------------------------|----------------------------|--------------------------------|------------|----------------------|----------------------------------|
| Bilog Antenna 0.030-1.0GHz                   | Schaffner                  | CBL6111C                       | i00349     | 02/07/23             | 02/06/25                         |
| Active Loop Antenna 1 kHz - 30 MHz           | EMCO                       | 6507                           | 100326     | 11/21/23             | 11/21/25                         |
| RF Amplifier 10MHz-50GHz, 40dB gain amp.     | Eravant                    | SBB-<br>0115034018-<br>2F2F-E3 | i00646     | Verified on 07/28/23 | Next<br>Verification<br>07/28/24 |
| 9kHz-44GHz CISPR comp. receiver              | Keysight/Agilent           | N9038A                         | i00552     | 02/23/23             | 02/23/24                         |
| temperature/humidity/pressure probe          | Omega<br>Engineering, Inc. | iBTHX-W-5                      | i00630     | 02/14/23             | 02/14/24                         |
| temperature/humidity/pressure probe          | Omega<br>Engineering, Inc. | iBTHX-W-5                      | i00631     | 02/14/23             | 02/14/24                         |
| Multimeter                                   | Fluke                      | 179                            | i00488     | 06/19/23             | 06/19/24                         |
| Temperature chamber                          | Tenney<br>Manufacturing    | Tenney Jr.                     | i00027     | NCR                  |                                  |
| Hydra data bucket                            | Fluke                      | 2635A                          | i00343     | 6/28/23              | 6/28/24                          |
| Digital multimeter                           | Fluke                      | 87-III                         | i00319     | 5/8/23               | 5/8/24                           |
| DC power supply (0-20V, 0-1.5A; 0-35V, 085A) | HP                         | E3611A                         | i00582     | NCR                  |                                  |
| Magnetic field pickup coil (20Hz – 500kHz)   | EMCO                       | 7604                           | i00081     | NCR                  |                                  |
| Traceable stopwatch                          | Thomas Scientific          | 1235C26                        | i00587     | 5/19/22              | 5/19/24                          |

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

#### **Measurement Uncertainty**

Measurement Uncertainty for Compliance Testing is listed in the table below.

| Measurement                 | U <sub>lab</sub>         |
|-----------------------------|--------------------------|
| Radio Frequency             | ± 3.3 x 10 <sup>-8</sup> |
| RF Power, conducted         | ± 1.5 dB                 |
| RF Power Density, conducted | ± 1.0 dB                 |
| Conducted Emissions         | ± 1.8 dB                 |



| Measurement                      | U <sub>lab</sub> |
|----------------------------------|------------------|
| Radiated Emissions 9kHz-30MHz    | ± 3.6 dB         |
| Radiated Emissions 30MHz-1000MHz | ± 4.25 dB        |
| Radiated Emissions – 1GHz-18GHz  | ± 4.5 dB         |
| Temperature                      | ± 1.5 deg C      |
| Humidity                         | ± 4.3 %          |
| DC voltage                       | ± 0.20 VDC       |
| AC Voltage                       | ± 1.2 VAC        |

The reported expanded uncertainty +/-  $U_{lab}(dB)$  has been estimated at a 95% confidence level (k=2)  $U_{lab}$  is less than or equal to  $U_{EMC}$  therefore;

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit.
- Non-Compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.



# Annex A (Screen Captures for Frequency Stability)

| See Se | parate Anr | nex A for scre | en captures | related to F | requency | y Stability |
|--------|------------|----------------|-------------|--------------|----------|-------------|
|        |            |                |             |              |          |             |

**END OF TEST REPORT**