

RADIO TEST REPORT

Test Report No.: 14577944H-A

Customer	TOYOTA MOTOR CORPORATION
Description of EUT	Smart LF oscillator
Model Number of EUT	TMLF19D-5
FCC ID	NI4TMLF19D-5
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied (Refer to SECTION 3)
Issue Date	January 12, 2023
Remarks	-

Representative test engineer	Approved by
10. Surutaka	J. Jakammon
Hiroyuki Furutaka	Tsubasa Takayama
Engineer	Leader
The testing in which "Non-accreditation" is displayed is o	CERTIFICATE 5107.02
There is no testing item of "Non-accreditation".	uiside die accieditation scopes in OL Japan, inc.
✓ There is no testing item of Non-accreditation.	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 21.0

Test report No. : 14577944H-A Page : 2 of 27

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14577944H-A

Revis	sion	Test Report No.	Date	Page Revised Contents		
-		14577944H-A	January 12, 2023	-		
(Orig	ginal)					

Test report No. : 14577944H-A Page : 3 of 27

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN
		,, L/ 11 1	

Test report No. Page

: 14577944H-A : 4 of 27

CONTENTS	PAGE
SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of EUT during testing	
SECTION 5: Radiated emission (Fundamental and Spurious Emission)	
SECTION 6: -20 dB Bandwidth	
SECTION 7: 99 % emission bandwidth	
APPENDIX 1: Test data	13
Radiated Emission (Fundamental and Spurious Emission)	13
-20 dB Bandwidth / 99 % emission bandwidth	19
APPENDIX 2: Test instruments	22
APPENDIX 3: Photographs of test setup	23
Radiated Emission	
Worst Case Position	24

Test report No. : 14577944H-A Page : 5 of 27

SECTION 1: Customer Information

Company Name	OYOTA MOTOR CORPORATION		
Address 1, Toyota-Cho, Toyota, Aichi, 471-8572, Japan			
Telephone Number	+81-50-3166-3743		
Contact Person	Shinji Suganuma		

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Smart LF oscillator
Model Number	TMLF19D-5
Serial Number	Refer to SECTION 4.2
Condition	Engineering prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	November 18, 2022
Test Date	December 11, 2022

2.2 Product Description

General Specification

Rating	DC 12.0 V

Radio Specification

Radio Type	Transmitter
Frequency of Operation	134.2 kHz
Modulation	ASK
Antenna type	Outside antenna (*1), Inside antenna (*2), Rear antenna (*3),
	Immobilizer antenna
	*1: Maximum number of this antenna is 4.
	*2: Maximum number of this antenna is 3.
	*3: Maximum number of this antenna is 2.

Smart LF oscillator (model: TMLF19D-5) consists of the following parts:

- Smart ECU
- Outside Antenna
- Rear Antenna
- Inside Antenna
- Immobilizer Antenna

Test report No. : 14577944H-A Page : 6 of 27

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.209 Radiated emission limits; general requirements.

3.2 Procedures and results

Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
Conducted Emission	<fcc></fcc>	<fcc></fcc>	-	N/A	N/A	N/A
	ANSI C63.10:2013	Section 15.207				*1)
	6 Standard test methods	<ised></ised>				
	<ised></ised>	RSS-Gen 8.8				
	RSS-Gen 8.8					
Electric Field Strength	<fcc></fcc>	<fcc></fcc>	Radiated	N/A	9.2 dB	Complied
of Fundamental	ANSI C63.10:2013	Section 15.209			134.2 kHz, 0 deg.	a)
Emission	6 Standard test methods	<ised></ised>			Peak with Duty	
	<ised></ised>	RSS-210 7.2			factor	
	RSS-Gen 6.5, 6.12	RSS-Gen 8.9			<mode 3=""></mode>	
Electric Field Strength	<fcc></fcc>	<fcc></fcc>	Radiated	N/A	18.2 dB	Complied
of Spurious Emission	ANSI C63.10:2013	Section 15.209			45.100 MHz,	a)
	6 Standard test methods	<ised></ised>			Vertical, QP	
	<ised></ised>	RSS-210 7.3			<mode 3=""></mode>	
	RSS-Gen 6.5, 6.6, 6.13	RSS-Gen 8.9				
-20 dB Bandwidth	<fcc></fcc>	<fcc></fcc>	Radiated	N/A	N/A	Complied
	ANSI C63.10:2013	Reference data				b)
	6 Standard test methods	<ised></ised>				
	<ised></ised>	-				
	-					

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593. *1) The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

b) Refer to APPENDIX 1 (data of -20 dB Bandwidth / 99 % emission bandwidth)

FCC Part 15.31 (e)

Input voltage to RF part does not go through the regulator.

So the test was performed with the supply voltage varied between 85 % and 115% of the nominal rated supply voltage (DC 12 V) and the variation of the input power does not affect the test result, therefore the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the vehicle. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to standard

Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
99 % emission bandwidth	RSS-Gen 6.7	-	Radiated	N/A	N/A	-

Other than above, no addition, exclusion nor deviation has been made from the standard.

a) Refer to APPENDIX 1 (data of Radiated emission)

Test report No. : 14577944H-A Page : 7 of 27

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Test Item		Frequency range		Uncertainty (+/-)
Conducted emission AMN	(LISN)	0.15 MHz to 30 MHz		3.3 dB
Radiated emission	3 m	9 kHz to 30 MHz		3.2 dB
	10 m			3.0 dB
	3 m	30 MHz to 200 MHz	Horizontal	4.8 dB
			Vertical	5.0 dB
		200 MHz to 1000 MHz	Horizontal	5.1 dB
			Vertical	6.2 dB
	10 m	30 MHz to 200 MHz	Horizontal	4.8 dB
			Vertical	4.8 dB
		200 MHz to 1000 MHz	Horizontal	5.0 dB
			Vertical	5.0 dB
-20 dB Bandwidth / 99 % e	emission bandwidth	-	0.96 %	

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

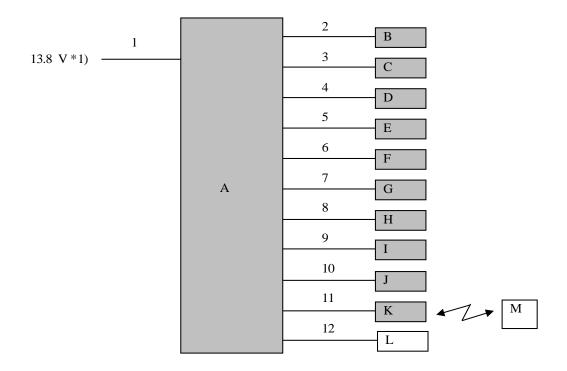
Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

Test report No. : 14577944H-A Page : 8 of 27

SECTION 4: Operation of EUT during testing


4.1. Operating Mode(s)

Test mode	Remarks *1)								
1) Tx 134.2kHz, Outside Antenna	Section 2 of Timing of transmission								
2) Tx 134.2kHz, Rear Antenna	Section 2 of Timing of transmission								
3) Tx 134.2kHz, Inside Antenna	Section 2 of Timing of transmission								
4) Tx 134.2kHz, Immobilizer Antenna	Section 3 of Timing of transmission								
5) Tx 134.2kHz, Outside Antenna B+C+D+E and Rear Antenna I+J	Section 1 of Timing of transmission								
*Power of the EUT was set by the software as follows;									
Software: 19CY_IDT_denpa_v01_200721 Version 01									
(Date: 2020.07.21, Storage location: EUT memory)									
*This setting of software is the worst case. Any conditions under the normal use do not exceed the condition of setting. In addition, end users cannot change the settings of the output power of the product.									
Justification: The system was configured in typical fashion (as a user wo									

^{*1)} Refer to Timing of transmission in "Theory of Operation" for details.

This EUT has two modes which transponder key is attached or not. The worst case was confirmed with and without transponder key attached, as a result, the test without transponder key attached was the worst case. Therefore the test without transponder key attached was performed only.

4.2. Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

^{*1)} After the comparison between DC 10.2 V (85 %) and DC 13.8 V (115 %) of EUT rated voltage (DC 12 V), all tests were performed with DC 13.8 V (115 %), which is the worst.

: 14577944H-A Test report No. Page : 9 of 27

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Smart ECU	TMLFD19-5	E19B16:LF19-051 *1)	-	EUT
			E19B16:LF19-061 *2)		
В	Outside Antenna	D15B2	TD579	-	EUT
C	Outside Antenna	D15B2	TD580	-	EUT
D	Outside Antenna	D15B2	TD581	-	EUT
Е	Outside Antenna	D15B2	TD582	-	EUT
F	Inside Antenna	18WA0	254	-	EUT
G	Inside Antenna	18WA0	255	-	EUT
Н	Inside Antenna	18WA0	256	-	EUT
I	Rear Antenna	12TA0	TT151	-	EUT
J	Rear Antenna	12TA0	TT152	-	EUT
K	Immobilizer Antenna	P15A2	TP178	-	EUT
L	Switch BOX	TMLF19D-5_MAX	-	-	-
M	Smart Key	19CY	095	-	-

^{*1)} Used for Mode1, 2, 3 and 4

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	2.5	Unshielded	Unshielded	-
2	Antenna Cable	3.0	Unshielded	Unshielded	-
3	Antenna Cable	3.0	Unshielded	Unshielded	-
4	Antenna Cable	3.0	Unshielded	Unshielded	-
5	Antenna Cable	3.0	Unshielded	Unshielded	-
6	Antenna Cable	3.0	Unshielded	Unshielded	-
7	Antenna Cable	3.0	Unshielded	Unshielded	-
8	Antenna Cable	3.0	Unshielded	Unshielded	-
9	Antenna Cable	3.0	Unshielded	Unshielded	-
10	Antenna Cable	3.0	Unshielded	Unshielded	-
11	Antenna Cable	3.0	Unshielded	Unshielded	-
12	Signal Cable	3.0	Unshielded	Unshielded	-

^{*2)} Used for Mode 5

Test report No. : 14577944H-A Page : 10 of 27

SECTION 5: Radiated emission (Fundamental and Spurious Emission)

Test Procedure

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[Limit conversion]

The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of $45.5 \, dBuV/m$, which is equivalent to $45.5 - 51.5 = -6.0 \, dBuA/m$, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

[Frequency: From 9 kHz to 30 MHz]

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., and 135 deg.) and horizontal polarization.

*Refer to Figure 2 about Direction of the Loop Antenna.

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

These tests were performed in semi anechoic chamber. Therefore, the measured level of emissions may be higher than if measurements were made without a ground plane. However, test results were confirmed to pass against standard limit.

[Frequency: From 30 MHz to 1 GHz]

The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

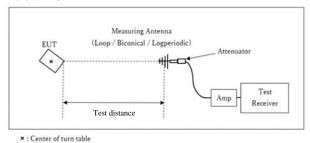
[Test instruments and test settings]

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz		
Antenna Type	Loop	Biconical	Logperiodic		

The test was made with the detector (RBW/VBW) in the following table.

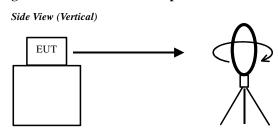
When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Frequency	From 9 kHz	From	From	From	From	
	to 90 kHz	90 kHz	150 kHz	490 kHz	30 MHz	
	and	to	to	to	to	
	From 110 kHz	110 kHz	490 kHz	30 MHz	1 GHz	
	to 150 kHz					
Instrument used	Test Receiver					
Detector	PK / AV	QP	PK / AV	QP	QP	
IF Bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz	
Test Distance	3 m *1)	3 m *1)	3 m *1)	3 m *2)	3 m	


*1) Distance Factor: $40 \times \log (3 \text{ m} / 300 \text{ m}) = -80 \text{ dB}$

^{*2)} Distance Factor: $40 \times \log (3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$

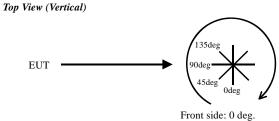
Test report No. : 14577944H-A Page : 11 of 27


Figure 1: Test Setup

Below 1 GHz


Test Distance: 3 m

Figure 2: Direction of the Loop Antenna



.....

Top View (Horizontal)

Antenna was not rotated.

Forward direction: clockwise

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 9 kHz to 1 GHz
Test data : APPENDIX

Test result : Pass

Test report No. : 14577944H-A Page : 12 of 27

SECTION 6: -20 dB Bandwidth

Test Procedure

The test was measured with a spectrum analyzer.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
-20 dB Bandwidth	50 kHz	510 Hz	1.6 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

Test data : APPENDIX

Test result : Pass

SECTION 7: 99 % emission bandwidth

Test Procedure

The test was measured with a spectrum analyzer.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used					
99 % emission bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer					
Peak hold was a	Peak hold was applied as Worst-case measurement.											

Test data : APPENDIX

Test result : Pass

Test report No. : 14577944H-A Page : 13 of 27

APPENDIX 1: Test data

Radiated Emission (Fundamental and Spurious Emission)

Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date December 11, 2022
Temperature / Humidity 22 deg. C / 32 % RH
Engineer Hiroyuki Furutaka

Mode 1

PK or QP

I K 01 Q1											
Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	M argin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	101.8	19.1	-74.0	32.3	-	14.6	45.0	30.4	Fundamental (DC 12.0 V)
0deg	0.13420	PK	101.8	19.1	-74.0	32.3	1	14.6	45.0	30.4	Fundamental (DC 10.2 V)
0deg	0.13420	PK	101.9	19.1	-74.0	32.3	-	14.7	45.0	30.3	Fundamental (DC 13.8 V)
0deg	0.26840	PK	42.6	19.1	-64.3	32.3	-	-34.9	39.0	73.9	
0deg	0.40260	PK	51.6	19.0	-64.3	32.2	-	-25.9	35.5	61.4	
0deg	0.53680	QP	25.9	19.0	-24.2	32.2	1	-11.5	33.0	44.5	
0deg	0.67100	QP	38.6	19.1	-24.2	32.2	-	1.3	31.1	29.8	
0deg	0.80520	QP	23.5	19.1	-24.2	32.2	-	-13.8	29.5	43.3	Floor Noise
0deg	0.93940	QP	37.8	19.1	-24.2	32.2	-	0.5	28.1	27.6	
0deg	1.07360	QP	22.8	19.0	-24.2	32.2	-	-14.6	26.9	41.5	Floor Noise
0deg	1.20780	QP	34.3	19.1	-24.2	32.2	-	-3.0	25.9	28.9	
0deg	1.34200	QP	22.5	19.1	-24.1	32.2	-	-14.7	25.0	39.7	Floor Noise
Hori.	45.114	QP	34.4	12.8	7.5	39.0	-	15.7	40.0	24.3	
Hori.	73.559	QP	38.3	6.5	8.0	39.0	-	13.8	40.0	26.2	
Hori.	75.942	QP	38.3	6.6	8.1	39.0	-	14.0	40.0	26.0	
Hori.	77.301	QP	40.2	6.7	8.1	39.1	-	15.9	40.0	24.1	
Hori.	94.924	QP	39.5	9.3	8.3	39.1	-	18.0	43.5	25.5	
Hori.	424.235	QP	34.1	16.6	11.3	38.7	-	23.3	46.0	22.7	
Vert.	45.100	QP	38.6	12.8	7.5	39.0	-	19.9	40.0	20.1	
Vert.	66.557	QP	41.7	6.6	7.9	39.0	-	17.2	40.0	22.8	
Vert.	68.928	QP	39.4	6.5	8.0	39.0	-	14.9	40.0	25.1	
Vert.	77.303	QP	40.8	6.7	8.1	39.1	-	16.5	40.0	23.5	
Vert.	94.936	QP	35.9	9.3	8.3	39.1	-	14.4	43.5	29.1	
Vert.	424.235	QP	29.7	16.6	11.3	38.7	-	18.9	46.0	27.1	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + D.Factor) - Gain (Amprifier)$

PK with Duty factor

TIT WITH Duty Inctor											
Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	101.8	19.1	-74.0	32.3	0.0	14.6	25.0	10.4	Fundamental (DC 12.0 V)
0deg	0.13420	PK	101.8	19.1	-74.0	32.3	0.0	14.6	25.0	10.4	Fundamental (DC 10.2 V)
0deg	0.13420	PK	101.9	19.1	-74.0	32.3	0.0	14.7	25.0	10.3	Fundamental (DC 13.8 V)
0deg	0.26840	PK	42.6	19.1	-64.3	32.3	0.0	-34.9	19.0	53.9	
0deg	0.40260	PK	51.6	19.0	-64.3	32.2	0.0	-25.9	15.5	41.4	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor + Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor) - Gain(Amprifier) - Ga$

Result of the fundamental emission at 3 m without Distance factor

ſ	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	M argin	Remark
					Factor			Factor				
		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	0deg	0.13420	PK	101.9	19.1	6.0	32.3	=	94.7	-	-	Fundamental

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator) - Gain(Amprifier)$

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated.

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

^{*}It was confirmed that there was no difference by the input voltage in the spurious emission.

Test report No. : 14577944H-A Page : 14 of 27

Radiated Emission (Fundamental and Spurious Emission)

Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date December 11, 2022
Temperature / Humidity 22 deg. C / 32 % RH
Engineer Hiroyuki Furutaka

Mode 2

PK or QP

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	102.5	19.1	-74.0	32.3	-	15.3	45.0	29.7	Fundamental (DC 12.0 V)
0deg	0.13420	PK	102.5	19.1	-74.0	32.3	-	15.3	45.0	29.7	Fundamental (DC 10.2 V)
0deg	0.13420	PK	102.6	19.1	-74.0	32.3	-	15.4	45.0	29.6	Fundamental (DC 13.8 V)
0deg	0.26840	PK	40.1	19.1	-64.3	32.3	-	-37.4	39.0	76.4	
0deg	0.40260	PK	51.9	19.0	-64.3	32.2	-	-25.6	35.5	61.1	
0deg	0.53680	QP	44.7	19.0	-24.2	32.2	-	7.3	33.0	25.7	
0deg	0.67100	QP	40.5	19.1	-24.2	32.2	-	3.2	31.1	27.9	
0deg	0.80520	QP	23.0	19.1	-24.2	32.2	-	-14.3	29.5	43.8	Floor Noise
0deg	0.93940	QP	38.8	19.1	-24.2	32.2	-	1.5	28.1	26.6	
0deg	1.07360	QP	22.7	19.0	-24.2	32.2	-	-14.7	26.9	41.6	Floor Noise
0deg	1.20780	QP	34.9	19.1	-24.2	32.2	-	-2.4	25.9	28.3	
0deg	1.34200	QP	22.4	19.1	-24.1	32.2	-	-14.8	25.0	39.8	Floor Noise
Hori.	45.114	QP	34.7	12.8	7.5	39.0	-	16.0	40.0	24.0	
Hori.	73.559	QP	37.8	6.5	8.0	39.0	-	13.3	40.0	26.7	
Hori.	75.942	QP	35.5	6.6	8.1	39.0	-	11.2	40.0	28.8	
Hori.	77.301	QP	35.6	6.7	8.1	39.1	-	11.3	40.0	28.7	
Hori.	80.659	QP	39.2	7.0	8.1	39.1	-	15.2	40.0	24.8	
Hori.	427.006	QP	32.2	16.6	11.4	38.7	-	21.5	46.0	24.5	
Vert.	45.100	QP	40.4	12.8	7.5	39.0	-	21.7	40.0	18.3	
Vert.	66.557	QP	38.3	6.6	7.9	39.0	-	13.8	40.0	26.2	
Vert.	68.712	QP	37.3	6.5	8.0	39.0	-	12.8	40.0	27.2	
Vert.	71.275	QP	38.8	6.4	8.0	39.0	-	14.2	40.0	25.8	
Vert.	94.899	QP	36.3	9.3	8.3	39.1	-	14.8	43.5	28.7	
Vert.	427.006	QP	30.3	16.6	11.4	38.7	-	19.6	46.0	26.4	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	M argin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	102.5	19.1	-74.0	32.3	0.0	15.3	25.0	9.7	Fundamental (DC 12.0 V)
0deg	0.13420	PK	102.5	19.1	-74.0	32.3	0.0	15.3	25.0	9.7	Fundamental (DC 10.2 V)
0deg	0.13420	PK	102.6	19.1	-74.0	32.3	0.0	15.4	25.0	9.6	Fundamental (DC 13.8 V)
0deg	0.26840	PK	40.1	19.1	-64.3	32.3	0.0	-37.4	19.0	56.4	
0deg	0.40260	PK	51.9	19.0	-64.3	32.2	0.0	-25.6	15.5	41.1	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor *

Result of the fundamental emission at 3 m without Distance factor

ſ	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	M argin	Remark
					Factor			Factor				
L		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	0deg	0.13420	PK	102.6	19.1	6.0	32.3	,	95.4	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable+Attenuator) - Gain(Amprifier)

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated.

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

^{*}It was confirmed that there was no difference by the input voltage in the spurious emission.

Test report No. : 14577944H-A Page : 15 of 27

Radiated Emission (Fundamental and Spurious Emission)

Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date December 11, 2022
Temperature / Humidity 22 deg. C / 32 % RH
Engineer Hiroyuki Furutaka

Mode Mode 3

PK or OP

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	M argin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	102.9	19.1	-74.0	32.3	-	15.7	45.0	29.3	Fundamental (DC 12.0 V)
0deg	0.13420	PK	102.9	19.1	-74.0	32.3	-	15.7	45.0	29.3	Fundamental (DC 10.2 V)
0deg	0.13420	PK	103.0	19.1	-74.0	32.3	-	15.8	45.0	29.2	Fundamental (DC 13.8 V)
0deg	0.26840	PK	39.6	19.1	-64.3	32.3	-	-37.9	39.0	76.9	
0deg	0.40260	PK	59.9	19.0	-64.3	32.2	-	-17.6	35.5	53.1	
0deg	0.53680	QP	34.3	19.0	-24.2	32.2	-	-3.1	33.0	36.1	
0deg	0.67100	QP	50.1	19.1	-24.2	32.2	-	12.8	31.1	18.3	
0deg	0.80520	QP	23.3	19.1	-24.2	32.2	-	-14.0	29.5	43.5	Floor Noise
0deg	0.93940	QP	40.7	19.1	-24.2	32.2	-	3.4	28.1	24.7	
0deg	1.07360	QP	22.7	19.0	-24.2	32.2	-	-14.7	26.9	41.6	Floor Noise
0deg	1.20780	QP	32.1	19.1	-24.2	32.2	-	-5.2	25.9	31.1	
0deg	1.34200	QP	22.4	19.1	-24.1	32.2	-	-14.8	25.0	39.8	Floor Noise
Hori.	45.114	QP	34.8	12.8	7.5	39.0	-	16.1	40.0	23.9	
Hori.	73.559	QP	37.0	6.5	8.0	39.0	-	12.5	40.0	27.5	
Hori.	75.942	QP	35.2	6.6	8.1	39.0	-	10.9	40.0	29.1	
Hori.	77.301	QP	36.0	6.7	8.1	39.1	-	11.7	40.0	28.3	
Hori.	80.659	QP	39.1	7.0	8.1	39.1	-	15.1	40.0	24.9	
Hori.	427.006	QP	32.1	16.6	11.4	38.7	-	21.4	46.0	24.6	
Vert.	45.100	QP	40.5	12.8	7.5	39.0	-	21.8	40.0	18.2	
Vert.	66.557	QP	39.4	6.6	7.9	39.0	-	14.9	40.0	25.1	
Vert.	68.712	QP	37.2	6.5	8.0	39.0	-	12.7	40.0	27.3	
Vert.	71.275	QP	38.6	6.4	8.0	39.0	-	14.0	40.0	26.0	
Vert.	94.899	QP	36.2	9.3	8.3	39.1	-	14.7	43.5	28.8	
Vert.	427.006	QP	30.2	16.6	11.4	38.7	-	19.5	46.0	26.5	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	M argin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	102.9	19.1	-74.0	32.3	0.0	15.7	25.0	9.3	Fundamental (DC 12.0 V)
0deg	0.13420	PK	102.9	19.1	-74.0	32.3	0.0	15.7	25.0	9.3	Fundamental (DC 10.2 V)
0deg	0.13420	PK	103.0	19.1	-74.0	32.3	0.0	15.8	25.0	9.2	Fundamental (DC 13.8 V)
0deg	0.26840	PK	39.6	19.1	-64.3	32.3	0.0	-37.9	19.0	56.9	
0deg	0.40260	PK	59.9	19.0	-64.3	32.2	0.0	-17.6	15.5	33.1	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor *

Result of the fundamental emission at 3 m without Distance factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	M argin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	103.0	19.1	6.0	32.3	-	95.8	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable+Attenuator) - Gain(Amprifier)

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated.

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

^{*}It was confirmed that there was no difference by the input voltage in the spurious emission.

Test report No. : 14577944H-A Page : 16 of 27

Radiated Emission (Fundamental and Spurious Emission)

Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date December 11, 2022
Temperature / Humidity 22 deg. C / 32 % RH
Engineer Hiroyuki Furutaka
Mode Mode 4

Mode

PK or QP

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	96.9	19.1	-74.0	32.3	-	9.7	45.0	35.3	Fundamental (DC 12.0 V)
0deg	0.13420	PK	96.9	19.1	-74.0	32.3	-	9.7	45.0	35.3	Fundamental (DC 10.2 V)
0deg	0.13420	PK	97.0	19.1	-74.0	32.3	-	9.8	45.0	35.2	Fundamental (DC 13.8 V)
0deg	0.26840	PK	33.5	19.1	-64.3	32.3	-	-44.0	39.0	83.0	
0deg	0.40260	PK	50.9	19.0	-64.3	32.2	-	-26.6	35.5	62.1	
0deg	0.53680	QP	24.6	19.0	-24.2	32.2	-	-12.8	33.0	45.8	
0deg	0.67100	QP	39.9	19.1	-24.2	32.2	-	2.6	31.1	28.5	
0deg	0.80520	QP	23.2	19.1	-24.2	32.2	-	-14.1	29.5	43.6	Floor Noise
0deg	0.93940	QP	33.0	19.1	-24.2	32.2	-	-4.3	28.1	32.4	
0deg	1.07360	QP	22.6	19.0	-24.2	32.2	-	-14.8	26.9	41.7	Floor Noise
0deg	1.20780	QP	27.9	19.1	-24.2	32.2	-	-9.4	25.9	35.3	
0deg	1.34200	QP	22.4	19.1	-24.1	32.2	-	-14.8	25.0	39.8	Floor Noise
Hori.	45.114	QP	34.9	12.8	7.5	39.0	-	16.2	40.0	23.8	
Hori.	68.928	QP	33.3	6.5	8.0	39.0	-	8.8	40.0	31.2	
Hori.	75.942	QP	39.3	6.6	8.1	39.0	-	15.0	40.0	25.0	
Hori.	77.301	QP	41.6	6.7	8.1	39.1	-	17.3	40.0	22.7	
Hori.	94.922	QP	34.5	9.3	8.3	39.1	-	13.0	43.5	30.5	
Hori.	417.124	QP	33.3	16.7	11.3	38.7	-	22.6	46.0	23.4	
Vert.	45.100	QP	39.5	12.8	7.5	39.0	-	20.8	40.0	19.2	
Vert.	66.557	QP	39.7	6.6	7.9	39.0	-	15.2	40.0	24.8	
Vert.	69.033	QP	38.3	6.5	8.0	39.0	-	13.8	40.0	26.2	
Vert.	77.299	QP	42.0	6.7	8.1	39.1	-	17.7	40.0	22.3	
Vert.	92.859	QP	38.7	9.0	8.3	39.1	-	16.9	43.5	26.6	
Vert.	417.124	QP	30.3	16.7	11.3	38.7	-	19.6	46.0	26.4	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	96.9	19.1	-74.0	32.3	0.0	9.7	25.0	15.3	Fundamental (DC 12.0 V)
0deg	0.13420	PK	96.9	19.1	-74.0	32.3	0.0	9.7	25.0	15.3	Fundamental (DC 10.2 V)
0deg	0.13420	PK	97.0	19.1	-74.0	32.3	0.0	9.8	25.0	15.2	Fundamental (DC 13.8 V)
0deg	0.26840	PK	33.5	19.1	-64.3	32.3	0.0	-44.0	19.0	63.0	
0deg	0.40260	PK	50.9	19.0	-64.3	32.2	0.0	-26.6	15.5	42.1	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor *

Result of the fundamental emission at 3 m without Distance factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	97.0	19.1	6.0	32.3	-	89.8	-	-	Fundamental

 $Result = Reading + Ant \; Factor + Loss \; (Cable + Attenuator) - Gain (Amprifier)$

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated.

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

^{*}It was confirmed that there was no difference by the input voltage in the spurious emission.

Test report No. : 14577944H-A Page : 17 of 27

Radiated Emission (Fundamental and Spurious Emission)

Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date December 11, 2022
Temperature / Humidity 22 deg. C / 32 % RH
Engineer Hiroyuki Furutaka

Mode 5

PK or QP

TK or Q1											
Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	64.2	19.1	-74.0	0.0	-	9.3	45.0	35.7	Fundamental (DC 12.0 V)
0deg	0.13420	PK	64.2	19.1	-74.0	0.0	-	9.3	45.0	35.7	Fundamental (DC 10.2 V)
0deg	0.13420	PK	64.3	19.1	-74.0	0.0	-	9.4	45.0	35.6	Fundamental (DC 13.8 V)
0deg	0.26840	PK	52.6	19.1	-64.3	32.3	-	-24.9	39.0	63.9	
0deg	0.40260	PK	56.9	19.0	-64.3	32.2	-	-20.6	35.5	56.1	
0deg	0.53680	QP	33.0	19.0	-24.2	32.2	-	-4.4	33.0	37.4	
0deg	0.67100	QP	42.2	19.1	-24.2	32.2	-	4.9	31.1	26.2	
0deg	0.80520	QP	23.8	19.1	-24.2	32.2	-	-13.5	29.5	43.0	
0deg	0.93940	QP	36.8	19.1	-24.2	32.2	-	-0.5	28.1	28.6	
0deg	1.07360	QP	23.2	19.0	-24.2	32.2	-	-14.2	26.9	41.1	
0deg	1.20780	QP	31.5	19.1	-24.2	32.2	-	-5.8	25.9	31.7	
0deg	1.34200	QP	22.9	19.1	-24.1	32.2	-	-14.3	25.0	39.3	
Hori.	42.760	QP	33.7	13.7	7.5	39.0	-	15.9	40.0	24.1	
Hori.	45.114	QP	31.2	12.8	7.5	39.0	-	12.5	40.0	27.5	
Hori.	68.928	QP	36.6	6.5	8.0	39.0	-	12.1	40.0	27.9	
Hori.	73.570	QP	39.6	6.5	8.0	39.0	-	15.1	40.0	24.9	
Hori.	80.683	QP	38.3	7.1	8.1	39.1	-	14.4	40.0	25.6	
Hori.	417.124	QP	33.5	16.7	11.3	38.7	-	22.8	46.0	23.2	
Vert.	42.760	QP	38.3	13.7	7.5	39.0	-	20.5	40.0	19.5	
Vert.	45.114	QP	35.1	12.8	7.5	39.0	-	16.4	40.0	23.6	
Vert.	68.928	QP	40.8	6.5	8.0	39.0	-	16.3	40.0	23.7	
Vert.	73.570	QP	39.0	6.5	8.0	39.0	_	14.5	40.0	25.5	_
Vert.	80.683	QP	39.8	7.1	8.1	39.1	_	15.9	40.0	24.1	
Vert.	417.124	QP	29.5	16.7	11.3	38.7	-	18.8	46.0	27.2	

 $Result = Reading + Ant \; Factor + Loss \; (Cable + Attenuator + Filter + D.Factor) - Gain (Amprifier)$

PK with Duty factor

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	64.2	19.1	-74.0	0.0	0.0	9.3	25.0	15.7	Fundamental (DC 12.0 V)
0deg	0.13420	PK	64.2	19.1	-74.0	0.0	0.0	9.3	25.0	15.7	Fundamental (DC 10.2 V)
0deg	0.13420	PK	64.3	19.1	-74.0	0.0	0.0	9.4	25.0	15.6	Fundamental (DC 13.8 V)
0deg	0.26840	PK	52.6	19.1	-64.3	32.3	0.0	-24.9	19.0	43.9	
0deg	0.40260	PK	56.9	19.0	-64.3	32.2	0.0	-20.6	15.5	36.1	

 $Result = Reading + Ant \; Factor + Loss \; (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty \; factor * Filter + D.Factor + D.F$

Result of the fundamental emission at 3 m without Distance factor

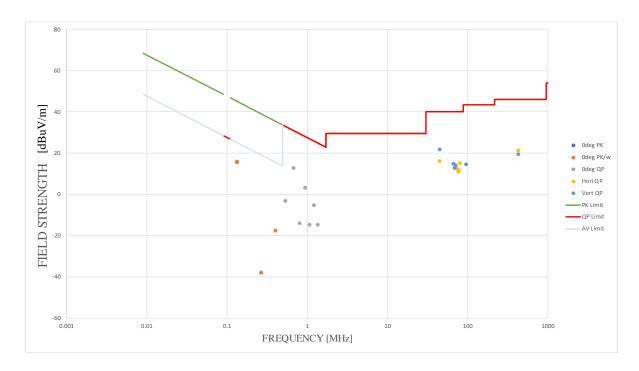
	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	M argin	Remark
					Factor			Factor				
		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	0deg	0.13420	PK	64.3	19.1	6.0	0.0	-	89.4	-	-	Fundamental

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator) - Gain (Amprifier)$

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated.

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

^{*}It was confirmed that there was no difference by the input voltage in the spurious emission.


Test report No. : 14577944H-A Page : 18 of 27

Radiated Spurious Emission (Plot data, Worst case for Fundamental Emission)

Ise EMC Lab. Test place

Semi Anechoic Chamber No.1

Date December 11, 2022 22 deg. C / 32 % RH Hiroyuki Furutaka Mode 3 Temperature / Humidity Engineer Mode

Test report No. : 14577944H-A Page : 19 of 27

-20 dB Bandwidth / 99 % emission bandwidth

Test place Ise EMC Lab.

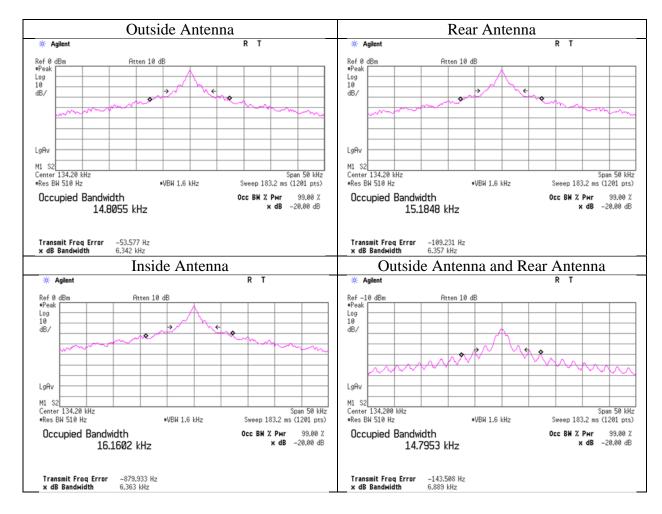
Semi Anechoic Chamber No.1

Date December 11, 2022
Temperature / Humidity 20 deg. C / 32 % RH
Engineer Hiroyuki Furutaka
Mode Mode 1 to 5

	Mode	-20 dB Bandwidth	99 % emission bandwidth		
		[kHz]	[kHz]		
1)	Tx 134.2kHz, Outside Antenna	6.342	14.8055		
2)	Tx 134.2kHz, Rear Antenna	6.357	15.1848		
3)	Tx 134.2kHz, Inside Antenna	6.363	16.1602		
4)	Tx 134.2kHz, Immobilizer Antenna	8.338	15.0385		
	(With transponder key attached)				
	Tx 134.2kHz, Immobilizer Antenna	8.253	14.6460		
	(Without transponder key attached)				
5)	Tx 134.2kHz, Outside Antenna B+D+C+E and	6.889	14.7953		
	Rear Antenna I+J				

Since the transmitter signal is CW-like it is impractical to use a RBW setting of 1 % - 5% of the emission bandwidth since the emission bandwidth will be proportional to the RBW.

^{*}It was confirmed that there was no difference by the input voltage.


Test report No. : 14577944H-A Page : 20 of 27

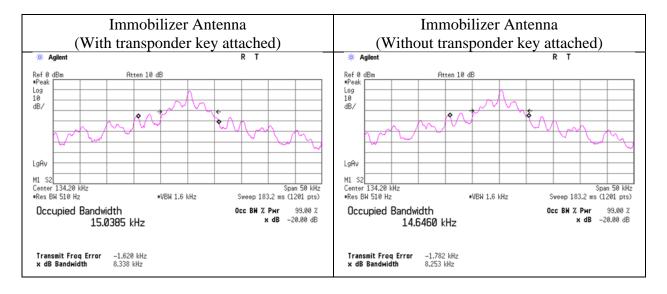
-20 dB Bandwidth / 99 % emission bandwidth

Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date December 11, 2022
Temperature / Humidity 20 deg. C / 32 % RH
Engineer Hiroyuki Furutaka
Mode Mode 1, 2, 3, 5

Test report No. : 14577944H-A Page : 21 of 27


-20 dB Bandwidth / 99 % emission bandwidth

Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date December 11, 2022
Temperature / Humidity 20 deg. C / 32 % RH
Engineer Hiroyuki Furutaka

Mode Mode 4

Test report No. : 14577944H-A Page : 22 of 27

APPENDIX 2: Test instruments

Test equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	COTS-	178648	EMI measurement	TSJ	TEPTO-DV	-	-	-
	MEMI-02		program	(Techno Science Japan)				
RE	KBA-05	141198	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+BBA9106	2513	05/14/2022	12
RE	MAEC-01	141998	AC1_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	06/28/2022	24
RE	MAT-08	141213	Attenuator(6dB)	Weinschel Corp	2	BK7971	11/19/2022	12
RE	MCC-02	141350	Coaxial Cable	Suhner/storm/Agilent/ TSJ	-	-	03/08/2022	12
RE	MCC-03	141215	Coaxial Cable	Fujikura/Suhner/TSJ	5D-2W/3D-2W/ RG400u/ RFM-E421(SW)	-/01068 (Switcher)	06/11/2022	12
RE	MCC-255	207745	Coaxial Cable	UL Japan	-	-	05/17/2022	12
RE	MHF-24	141295	High Pass Filter 0.15-30MHz	Rohde & Schwarz	EZ-25/3	100041	02/24/2022	12
RE	MJM-25	142226	Measure	KOMELON	KMC-36	-	-	-
RE	MLA-20	141264	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	189	05/14/2022	12
RE	MLPA-01	141254	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	05/31/2022	12
RE	MMM-09	141533	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201195	01/16/2022	12
RE	MOS-27	141566	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	A08Q26	01/10/2022	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/25/2022	12
RE	MPA-19	141585	Pre Amplifier	MITEQ	MLA-10K01-B01-35	1237616	02/28/2022	12
RE	MTR-09	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	10/11/2022	12
RE	MSA-04	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	2022/11/21	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item: RE: Radiated Emission