

Page: 1 of 29

TEST REPORT

Application No.: Applicant: Address of Applicant:

Manufacturer: Address of Manufacturer:

Equipment Under Test (EUT): EUT Name: Test Model.: Adding Model(s):

Trade Mark: FCC ID: BTEK241108034A01-T03

Shenzhen Union Aurora Technology Co., Ltd. 1403A, Building 1, COFCO Innovation Park, Zone 67, Xingdong Community, Xin'an Street, Bao'an District, Shenzhen Shenzhen Union Aurora Technology Co., Ltd. 1403A, Building 1, COFCO Innovation Park, Zone 67, Xingdong Community, Xin'an Street, Bao'an District, Shenzhen

Smart Projector

N1 pro

P601,P602,P603,P605,P606,P608,P609,N1,N1 Ultra ,N1Se,N1 Mini, N2,N2Pro,N2 Ultra,N2Se,N2 Mini,N3,N3Pro,N3 Ultra,N3Se,N3Mini, N5,N5Pro,N5 Ultra,N5Se,N5Mini,N6,N6Pro,N6 Ultra,N6Se,N6Mini, N8,N8Pro,N8 Ultra,N8Se,N8Mini N9,N9Pro,N9 Ultra,N9Se,N9Mini, M1,M1Pro,M1 Ultra,M1Se,M1 Mini,M2,M2Pro,M2 Ultra,M2Se,M2 Mini, M3,M3Pro,M3 Ultra,M3Se,M3 Mini,M5,M5Pro,M5 Ultra,M5Se,M5 Mini, M6,M6Pro,M6 Ultra,M6Se,M6 Mini,M8,M8Pro,M8 Ultra,M8Se,M8 Mini, M9,M9Pro,M9 Ultra,M9Se,M9 Mini,P1,P1Pro,P1 Ultra,P1Se,P1 Mini, P2,P2Pro,P2 Ultra,P2Se,P2 Mini,P3,P3Pro,P3 Ultra,P3Se,P3Mini, P5,P5Pro,P5 Ultra,P5Se,P5Mini,P6,P6Pro,P6 Ultra,P6Se,P6Mini, P8,P8Pro,P8 Ultra,P8Se,P8Mini,P9,P9Pro,P9 Ultra,P9Se,P9Mini, X1,X1Xro,X1 Ultra,X1Se,X1 Mini,X2,X2Xro,X2 Ultra,X2Se,X2 Mini, X3,X3Xro,X3 Ultra,X3Se,X3Mini,X5,X5Xro,X5 Ultra,X5Se,X5Mini, X6,X6Xro,X6 Ultra,X6Se,X6Mini,X8,X8Xro,X8 Ultra,X8Se,X8Mini, X9,X9Xro,X9 Ultra,X9Se,X9Mini,U1,U1Uro,U1 Ultra,U1Se,U1 Mini, U2,U2Uro,U2 Ultra,U2Se,U2 Mini,U3,U3Uro,U3 Ultra,U3Se,U3Mini, U5,U5Uro,U5 Ultra,U5Se,U5Mini,U6,U6Uro,U6 Ultra,U6Se,U6Mini, U8,U8Uro,U8 Ultra,U8Se,U8Mini,U9,U9Uro,U9 Ultra,U9Se,U9Mini, V1,V1Vro,V1 Vltra,V1Se,V1 Mini,V2,V2Vro,V2 Vltra,V2Se,V2 Mini, V3, V3Vro, V3 Vltra, V3Se, V3Mini, V5, V5Vro, V5 Vltra, V5Se, V5Mini, V6, V6Vro, V6 Vltra, V6Se, V6Mini, V8, V8Vro, V8 Vltra, V8Se, V8Mini, V9,V9Vro,V9 Vltra,V9Se,V9Mini,M6,M6S,M6 Pro,M6 Se,M6 Ultra, M6 Mini P200,K200, D200, E200, M200,V200,X200,MX1,MX1 Pro,M1S, N1S,M1S Pro,MX2, MX2 Pro,M2S, N2S,M2SPro,MX3, MX3 Pro, M3S,N3S,M3S Pro, MX4,MX4 Pro,M4S, N4S,M4S Pro, MX5,MX5 Pro,M5S,N5S,M5S Pro,MX6, MX6 Pro,M6S,N6S,M6S Pro, MX7,MX7 Pro,M7S, N7S,M7S Pro,MX8,MX8 Pro,M8S,N8S,M8S Pro, MX9,MX9 Pro,M9S,N9S,M9S Pro

2BOJD-N1PRO

Test Result:	Pass*		
Date of Issue:	2025-03-12	0	
Date of Test:	2024-12-10 to 2025-03-11		
Date of Receipt Sample(s):	2024-12-09		
	ANSI C63.10:2013		
	KDB558074 D01 15.247 Mea	s Guidance v05r02	
Standard(s) :	47 CFR Part 15, Subpart C 1	5.247	
VIER		Page: 2 of 29	
B.IEN		Report No.: BTEK241108034A01E	03

* In the configuration tested, the EUT complied with the standards specified above.

ton Car

Lion Cai/ Approved & Authorized EMC Laboratory Manager

Page: 3 of 29

Revision Record			
Version	Issue Date	Revisions	Remarks
V0	2025-03-12	Initial	Valid
	0	0	

Authorized for issue by	P o	Q 0
	Karl Lin	
BTEN	Karl Liu / File Editor	-
0	June Li	
	June Li/Reviewer	- 0 0

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Page: 4 of 29

2 Test Summary

Radio Spectrum T	echnical Requirement		9	
Standard	Item	Method	Requirement	Result
47 CFR Part 15, Subpart C 15.247	Antenna Requirement	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)	

Standard	Item	Method	Requirement	Result
47 CFR Part 15,	Conducted Emissions at AC Power Line (150kHz-30MHz)	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
	Conducted Peak Output Power	ANSI C63.10 (2013) Section 11.9.1.3	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
	Minimum 6dB Bandwidth	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
	Power Spectrum Density	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Subpart C 15.247	Conducted Band Edges Measurement	ANSI C63.10 (2013) Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
	Conducted Spurious Emissions	ANSI C63.10 (2013) Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
	Radiated Emissions which fall in the restricted bands	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass
	Radiated Spurious Emissions	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass

Note:

E.U.T./EUT means Equipment Under Test.

Pass means the test result passed the test standard requirement, please find the detailed decision rule in the report relative section.

Page: 5 of 29

3 Contents

			Page
1 Cover Page			1
2 Test Summary			4
3 Contents	<u> </u>		5
4 General Information			6
4.1 Details of E.U.T.			6
4.2 EUT Test Mode and Test Condition			
4.3 Measurement Uncertainty			7
4.4 Test Location			
4.5 Deviation from Standards			
4.6 Abnormalities from Standard Conditions			
5 Equipment List			
6 Radio Spectrum Technical Requirement	<u> </u>		11
6.1 Antenna Requirement			
6.1.1 Test Requirement:			
6.1.2 Conclusion	<u> </u>		
7 Radio Spectrum Matter Test Results			11
7.1 Conducted Emissions at AC Power Line (150kHz	z-30MHz)		
7.1.1 Test Setup Diagram		<u> </u>	
7.1.2 Measurement Procedure and Data			
7.2 Conducted Peak Output Power			15
7.2.1 Test Setup Diagram			
7.2.2 Measurement Procedure and Data			
7.3 Minimum 6dB Bandwidth			
7.3.1 Test Setup Diagram			
7.3.2 Measurement Procedure and Data			
7.4 Power Spectrum Density			
7.4.1 Test Setup Diagram			
7.4.2 Measurement Procedure and Data 7.5 Conducted Band Edges Measurement			
7.5 Conducted Band Edges Measurement			
7.5.2 Measurement Procedure and Data			
7.6 Conducted Spurious Emissions			
7.6.1 Test Setup Diagram			
7.6.2 Measurement Procedure and Data			
7.7 Radiated Emissions which fall in the restricted ba			
7.7.1 Test Setup Diagram			
7.7.2 Measurement Procedure and Data		<u> 325 il l</u>	
7.8 Radiated Spurious Emissions			
7.8.1 Test Setup Diagram			23
7.8.2 Measurement Procedure and Data			
8 Test Setup Photo			29
9 EUT Constructional Details (EUT Photos)	0		

Page: 6 of 29

4 General Information

4.1 Details of E.U.T.

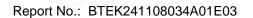
TEK

4.1 Details of E.U.I.	
Power supply:	AC/DC ADAPTERMODEL:MC80-190530Y INPUT:100-240V~50/60Hz 2.0A
0	OUTPUT:19V=6A
Support Standards:	802.11b, 802.11g, 802.11n-HT20,802.11n-HT40
Frequency Range:	2412-2462MHz for 802.11b/g/n(HT20)
Turne of Medulation	802.11b/g/n(HT40)
Type of Modulation:	802.11b: DSSS; 802.11g/n: OFDM
Quantity of Channels	11 for 802.11b/g/n(HT20/HT40)
Channel Separation:	5MHz
Type of Antenna:	FPC Antenna
Antenna Gain:	ANT1:2.64dBi ANT2:4.33dBi
Sample No.:	BTEK241108034A01E-1
0	Single Model.
Model(s) Difference Statement	 ☑ Multi-Models:N1 pro,P601,P602,P603,P605,P606,P608,P609,N1, N1 Ultra ,N1Se,N1 Mini, N2,N2Pro,N2 Ultra,N2Se,N2 Mini,N3,N3Pro, N3 Ultra,N3Se,N3Mini, N5,N5Pro,N5 Ultra,N5Se,N5Mini,N6,N6Pro, N6 Ultra,N6Se,N6Mini, N8,N8Pro,N8 Ultra,N8Se,N8Mini N9,N9Pro, N9 Ultra,N9Se,N9Mini, M1,M1Pro,M1 Ultra,M1Se,M1 Mini,M2,M2Pro, M2 Ultra,M2Se,M2 Mini, M3,M3Pro,M3 Ultra,M3Se,M3 Mini,M5,M5Pro, M5 Ultra,M5Se,M5 Mini, M6,M6Pro,M6 Ultra,M6Se,M6 Mini,M8,M8Pro, M8 Ultra,M8Se,M8 Mini, M9,M9Pro,M9 Ultra,M9Se,M9 Mini,P1,P1Pro, P1 Ultra,P1Se,P1 Mini, P2,P2Pro,P2 Ultra,P2Se,P2 Mini,P3,P3Pro, P3 Ultra,P3Se,P3Mini, P5,P5Pro,P5 Ultra,P5Se,P5Mini,P6,P6Pro, P6 Ultra,P6Se,P6Mini, P8,P8Pro,P8 Ultra,R8Se,P8Mini,P9,P9Pro, P9 Ultra,29Se,P3Mini, X1,X1Xro,X1 Ultra,X1Se,X1 Mini,X2,X2Xro, X2 Ultra,X2Se,X2 Mini, X3,X3Xro,X3 Ultra,X3Se,X3Mini,X5,X5Xro, X5 Ultra,X5Se,X5Mini, X6,X6Xro,X6 Ultra,X6Se,X6Mini,X8,X8Xro, X8 Ultra,U1Se,U1 Mini, U2,U2Uro,U2 Ultra,U2Se,U2 Mini,U1,U1Uro, U1 Ultra,U1Se,U1 Mini, U5,U5Uro,U5 Ultra,U5Se,U5Mini,U6,U6Uro, U6 Ultra,U6Se,U6Mini, U8,U8Uro,U8 Ultra,USSe,U3Mini,V9,U9Uro, U9 Ultra,U9Se,U9Mini, V1,V1Vro,V1 Vltra,V1Se,V1 Mini,V2,V2Vro, V2 Vltra,V2Se,V2 Mini, V3,V3Vro,V3 Vltra,V3Se,V3Mini,V5,V5Vro, V5 Vltra,V5Se,V5Mini, V6,V6Vro,V6 Vltra,V6Se,V6Mini,V8,V8Vro,
0	 V8 Vltra,V8Se,V8Mini, V9,V9Vro,V9 Vltra,V9Se,V9Mini,M6,M6S,M6 Pro, M6 Se,M6 Ultra,M6 Mini P200,K200, D200, E200, M200,V200,X200, MX1,MX1 Pro,M1S, N1S,M1S Pro,MX2, MX2 Pro,M2S, N2S,M2SPro,MX3, MX3 Pro,M3S,N3S,M3S Pro, MX4,MX4 Pro,M4S, N4S,M4S Pro, MX5,MX5 Pro,M5S,N5S,M5S Pro,MX6, MX6 Pro,M6S,N6S,M6S Pro, MX7,MX7 Pro,M7S, N7S,M7S Pro,MX8,MX8 Pro,M8S,N8S,M8S Pro, MX9,MX9 Pro,M9S,N9S,M9S Pro Only the model N1 pro was tested. According to the declaration from the applicant, the electrical circuit design, layout, components used, internal wiring and functions of other models are identical for the above models, with only difference on Model No

Page: 7 of 29

4.2 EUT Test Mode and Test Condition

Test Mode	Description	Remark
1	802.11b	2412MHz, 2437MHz, 2462MHz
2	802.11g	2412MHz, 2437MHz, 2462MHz
3	802.11n-HT20	2412MHz, 2437MHz, 2462MHz
4	802.11n-HT40	2412MHz, 2437MHz, 2452MHz


Test Conditions

Temperature:	22.2°C
Relative Humidity:	33 %
ATM Pressure:	1010 mbar

4.3 Measurement Uncertainty

Test Item	Measurement Uncertainty	
Conducted Emissions at AC Power Line (150kHz-30MHz)	±3.12dB	
Conducted Peak Output Power		
Minimum 6dB Bandwidth	± 3%	
Power Spectrum Density	± 2.84dB	
Conducted Band Edges Measurement	± 0.75dB	
Conducted Spurious Emissions	± 0.75dB	
Radiated Emissions which fall in the restricted bands	±5.08dB (1GHz-6GHz);±5.14dB(above 6GHz)	
Radiated Spurious Emissions (Below 1GHz)	±5.06dB (3m); ±4.46dB (10m)	
Radiated Spurious Emissions (Above 1GHz)	±5.08dB (1GHz-6GHz);±5.14dB(above 6GHz)	

8 of 29

SIEK

Page:

4.4 Test Location

All tests were performed at: Shenzhen BANTEK Testing Co., Ltd. A5&A6, Building B1&B2, No.45 Gangtou Road, Bogang Community, Shajing Street, Bao'an District, Shenzhen, Guangdong, China 518104 Tel: +86 0755-2334 4200 Fax: +86 0755-2334 4200 FCC Registration Number: 264293 Designation Number: CN1356 No tests were sub-contracted.

4.5 Deviation from Standards

None

4.6 Abnormalities from Standard Conditions

9 of 29

Page:

TEK

5 Equipment List

Conducted Test					
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Shielding Room		9*5*3.3	YH-BT-220304-04	2025-02-15	2028-02-14
EMI Test Receiver	Rohde&Schwarz	ESCI	101021	2024-06-11	2025-06-10
Measurement Software	Fara	EZ_EMC Ver. FA-03A2	N/A	N/A	N/A
LISN	Rohde&Schwarz	ENV216	101472	2024-06-11	2025-06-10
LISN	Schwarzbeck	NSLK 8128	05127	2024-06-11	2025-06-10

RF Conducted	- 3× 111		Yr	///	
Equipment	Manufacturer	Model No 📀	Serial No	Cal Date	Cal Due Date
Shielding Room	YIHENG ENECTRONIC	5.5*3.1*3	YH-BT- 220304-03	2025-02-15	2028-02-14
EXA Signal Analyzer	KEYSIGHT	N9020A	MY54230486	2024-06-11	2025-06-10
DC Power Supply	E3632A	E3642A	KR75304416	2024-06-11	2025-06-10
Attenuator	RswTech	SMA-JK-6dB	N/A	2024-06-11	2025-06-10
Attenuator	RswTech	SMA-JK-3dB	N/A	2024-06-11	2025-06-10
RF Control Unit	Techy	TR1029-1	N/A	2024-06-11	2025-06-10
RF Sensor Unit	Techy	TR1029-2	N/A	2024-06-11	2025-06-10
WIDEBAND RADIO COMMUNICATION TESTER	R&S	CMW 500	141258	2024-06-11	2025-06-10
MXG Vector Signal Generator	Agilent	N5182A	US46240522	2024-06-11	2025-06-10
Programmable Temperature&Humidity Chamber	GRT	GR-HWX1000	GR22051001	2024-06-11	2025-06-10
Measurement Software	TACHOY	RF TestSoft	N/A	N/A	N/A

RSE						
Equipment	Manufacturer	Model No	Serial No	Cal Date	Cal Due Date	
3m Semi-Anechoic Chamber			YH-BT- 220304-01	2025-02-15	2028-02-14	
EMI Test Receiver	Rohde&Schwarz	ESCI	100694	2024-06-11	2025-06-10	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	01324	2024-06-16	2025-06-15	
Pre-Amplifier	Schwarzbeck	BBV 9745 #180		2024-06-11	2025-06-10	
Measurement Software	Fara	EZ_EMC Ver. FA-03A2	N/A	2024-06-11	2025-06-10	
EXA Signal Analyzer	Keysight	N9020A	MY54440290	2024-06-11	2025-06-10	
Horn Antenna	Schwarzbeck	BBHA 9120D 02695		2024-06-15	2025-06-14	
Pre-Amplifier	Tonscend	TAP0118045	AP20K806109	2024-06-11	2025-06-10	
Horn Antenna	SCHWARZBECK	BBHA9170	1157 🗌	2024-06-15	2025-06-14	
Low Noise Pre-amplifier	SKET	LNPA-1840G- 50	SK2022032902	2024-06-11	2025-06-10	
Signal analyzer	ROHDE&SCHWARZ	FSQ40	100010	2024-06-11	2025-06-10	
Loop Antenna	ETS	6502	00201177	2024-06-15	2025-06-14	

Page: 10 of 29

Cable	ВТЕК	LMR400UF- NMNM-7.00M	1	2024-06-15	2025-06-14
Cable	BTEK	LMR400UF- NMNM-2.50M	1	2024-06-15	2025-06-14
Cable	ВТЕК	LMR400UF- NMNM-3.00M	/	2024-06-15	2025-06-14
Cable	втек	SFT205PUR- MNSWSM- 7.00M	1	2024-06-15	2025-06-14
Cable	втек	SFT205PUR- MNSWSM- 2.50M	/	2024-06-15	2025-06-14
Cable	ВТЕК	SFT205PUR- MNSWSM- 2.50M	1	2024-06-15	2025-06-14
Cable	ВТЕК	SFT205PUR- MNSWSM- 0.30M	1	2024-06-15	2025-06-14

TEX- HARMAN

Page: 11 of 29

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

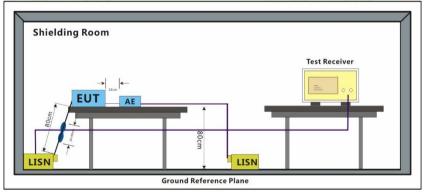
47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)

6.1.2 Conclusion

This product has an Integral antenna, fulfill the requirement of this section.

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)


Test Requirement	47 CFR Part 15, Subpart C 15.207
Test Method:	ANSI C63.10 (2013) Section 6.2
Limit:	

	Conducted limit(dBµV)							
Frequency of emission(MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						
*Decreases with the logarithm of the frequency								

*Decreases with the logarithm of the frequency.

Detector: Peak for pre-scan (9kHz resolution bandwidth) 0.15M to 30MHz

7.1.1 Test Setup Diagram

12 of 29

Page:

7.1.2 Measurement Procedure and Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50µH + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane.

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Page: 13 of 29

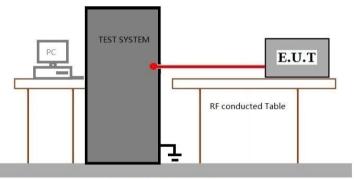
Test Mode Communication-TX Polarity: Neutral 100.0 dBu¥ 90 80 70 60 50 9 11 40 Deal a sela two market and the second and the second and the 0 30 AVG 20 10 0.0 (MHz) 30.000 0.150 0.500 5.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1680	24.83	19.92	44.75	65.06	-20.31	QP	Ρ	
2	0.1680	11.04	19.92	30.96	55.06	-24.10	AVG	Ρ	
3	0.2940	22.43	19.94	42.37	60.41	-18.04	QP	Ρ	
4	0.2940	9.98	19.94	29.92	50.41	-20.49	AVG	Ρ	
5	0.4020	23.32	19.94	43.26	57.81	-14.55	QP	Р	
6	0.4020	10.92	19.94	30.86	47.81	-16.95	AVG	Ρ	
7 *	0.6000	21.89	19.98	41.87	56.00	-14.13	QP	Ρ	
8	0.6000	9.88	19.98	29.86	46.00	-16.14	AVG	Ρ	
9	0.7080	20.46	20.01	40.47	56.00	-15.53	QP	Ρ	
10	0.7080	8.67	20.01	28.68	46.00	-17.32	AVG	Ρ	
11	1.0680	19.34	20.10	39.44	56.00	-16.56	QP	Ρ	
12	1.0680	7.78	20.10	27.88	46.00	-18.12	AVG	Ρ	

Page: 14 of 29

Test Mode Communication-TX Polarity: Line 100.0 dBu¥ 90 80 70 60 50 9 11 40 peak Marsh Marsh Mar How Marken which A. A. Hall h 30 AVG 20 10 0.0 (MHz) 30.000 0.150 5.000 0.500

No	D. Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1995	23.34	19.86	43.20	63.63	-20.43	QP	Ρ	
2	0.1995	11.79	19.86	31.65	53.63	-21.98	AVG	Ρ	
3	0.3030	22.51	19.88	42.39	60.16	-17.77	QP	Ρ	
4	0.3030	11.17	19.88	31.05	50.16	-19.11	AVG	Ρ	
5	* 0.5055	21.61	19.89	41.50	56.00	-14.50	QP	P	
6	0.5055	10.29	19.89	30.18	46.00	-15.82	AVG	Р	
7	0.6000	21.50	19.92	41.42	56.00	-14.58	QP	P	
8	0.6000	9.31	19.92	29.23	46.00	-16.77	AVG	Р	
9	0.7710	19.56	19.96	39.52	56.00	-16.48	QP	Р	
10	0.7710	8.85	19.96	28.81	46.00	-17.19	AVG	Ρ	
11	1.3920	18.88	20.12	39.00	56.00	-17.00	QP	Ρ	
12	1.3920	8.20	20.12	28.32	46.00	-17.68	AVG	Р	


Page: 15 of 29

7.2 Conducted Peak Output Power

EK

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(3)					
Test Method:	ANSI C63.10 (2013) Section 11.9.1.3				
Limit:					
Frequency range(MH	z) Output power of the intentional radiator(watt)				
	1 for ≥50 hopping channels				
902-928	0.25 for 25≤ hopping channels <50				
	1 for digital modulation				
	1 for ≥75 non-overlapping hopping channels				
2400-2483.5	0.125 for all other frequency hopping systems				
	1 for digital modulation				
5725-5850	1 for frequency hopping systems and digital modulation				

7.2.1 Test Setup Diagram

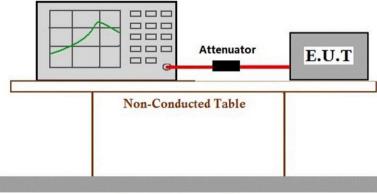
Ground Reference Plane

7.2.2 Measurement Procedure and Data

Please Refer to Appendix for Details

ΓEK

Page: 16 of 29


7.3 Minimum 6dB Bandwidth

47 CFF
ANSI C
≥500 k

R Part 15, Subpart C 15.247a(2) C63.10 (2013) Section 11.8.1 κΗz

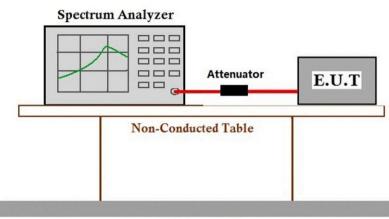
7.3.1 Test Setup Diagram

Spectrum Analyzer

Ground Reference Plane

7.3.2 Measurement Procedure and Data

Please Refer to Appendix for Details



Page: 17 of 29

7.4 Power Spectrum Density

Test Requirement	47 CFR Part 15, Subpart C 15.247(e)
Test Method:	ANSI C63.10 (2013) Section 11.10.2
Limit:	

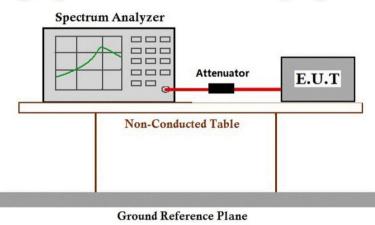
≤8dBm in any 3 kHz band during any time interval of continuous transmission **7.4.1 Test Setup Diagram**

Ground Reference Plane

7.4.2 Measurement Procedure and Data

Please Refer to Appendix for Details

Page: 18 of 29


7.5 Conducted Band Edges Measurement

Test Requirement Test Method: 47 CFR Part 15, Subpart C 15.247(d) ANSI C63.10 (2013) Section 11.13.3.2

Limit:

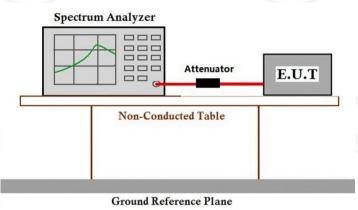
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

7.5.1 Test Setup Diagram

7.5.2 Measurement Procedure and Data

Please Refer to Appendix for Details

Page: 19 of 29

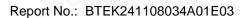

7.6 Conducted Spurious Emissions

Test Requirement Test Method: 47 CFR Part 15, Subpart C 15.247(d) ANSI C63.10 (2013) Section 11.11

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

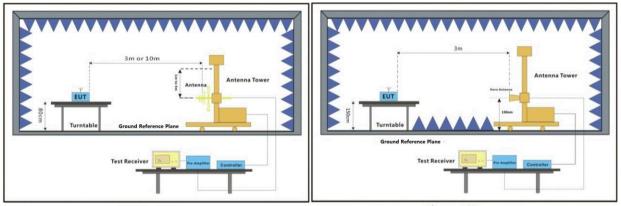
7.6.1 Test Setup Diagram



7.6.2 Measurement Procedure and Data

Please Refer to Appendix for Details

Page: 20 of 29


7.7 Radiated Emissions which fall in the restricted bands

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.10.5
Limit:	

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.7.1 Test Setup Diagram

30MHz-1GHz

Above 1GHz

21 of 29

SIEK

7.7.2 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

Page:

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Page: 22 of 29

	Foldity: Holizontal, Worst base 662.115 ; Onamici.26W										
No.	Frequency (MHz)	Reading (dBuv)	Factor (dB/m)	Level (dBuv/m)	Limit (dBuv/m)	Margin(dB)	Detecto r	P/F			
1	2310.000	63.19	-24.14	39.05	74.00	-34.95	peak	Р			
2	2390.000	72.36	-23.92	48.44	74.00	-25.56	peak	P			
3	2400.000	64.64	-23.92	40.72	74.00	-33.28	peak	Р			

Polarity: Horizontal; Worst case 802.11b ; Channel:Low

Polarity: Vertical; Worst case 802.11b ; Channel:Low

			0 0		Limit	0.0		
	Frequency	Reading	Factor	Level	(dBuv/m	Margin(dB	Detecto	
No.	(MHz)	(dBuv)	(dB/m)	(dBuv/m)			r	P/F
1	2310.000	68.68	-24.14	44.54	74.00	-29.46	peak	Р
2	2390.000	69.98	-23.92	46.06	74.00	-27.94	peak	Р
3	2400.000	68.33	-23.92	44.41	74.00	-29.59	peak	Р

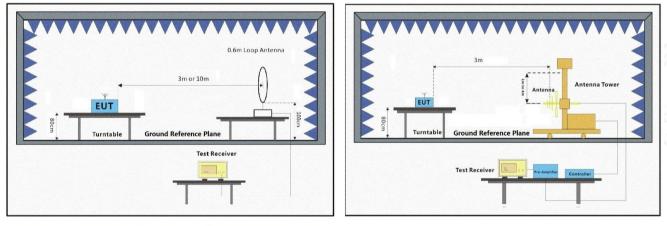
Polarity: Horizontal; Worst case 802.11b; Channel: High

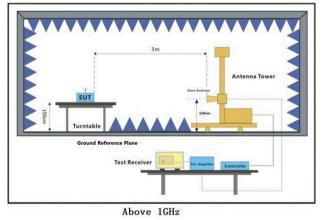
	0				Limit			C.
	Frequency	Reading	Factor	Level	(dBuv/m	Margin(dB	Detecto	\bigcirc
No.	(MHz)	(dBuv)	(dB/m)	(dBuv/m)))	r	P/F
1	2483.500	69.70	-23.65	46.05	74.00	-27.95	peak	Р
2	2500.000	74.36	-23.65	50.71	74.00	-23.29	peak	Р

Polarity: Vertical; Worst case 802.11b ; Channel:High

	Frequency	Reading	Factor	Level	Limit	Margin(dB	Detecto	11
No.	(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m))	r	P/F
1	2483.500	68.72	-23.65	45.07	74.00	-28.93	peak	Р
2	2500.000	72.06	-23.65	48.41	74.00	-25.59	peak	Р

Page: 23 of 29

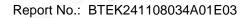

7.8 Radiated Spurious Emissions


Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Limit:	

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.8.1 Test Setup Diagram



7.8.2 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

i. Repeat above procedures until all frequencies measured was complete.

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

i. Repeat above procedures until all frequencies measured was complete.

 ShenZhen BANTEK Testing Co.,Ltd.

 Add : A5&A6, Building B1&B2, No.45 Gangtou Road, Bogang Community, Shajing Street

 Bao'an District, Shenzhen, Guangdong, China 518104

 Tel : +(86)755-2334 4200
 E-mail : Service@btek-lab.com

5

6

422.0577

747.4825

51.69

45.13

-14.60

-9.23

37.09

35.90

46.00

46.00

-8.91

-10.10

QP

QP

100

100

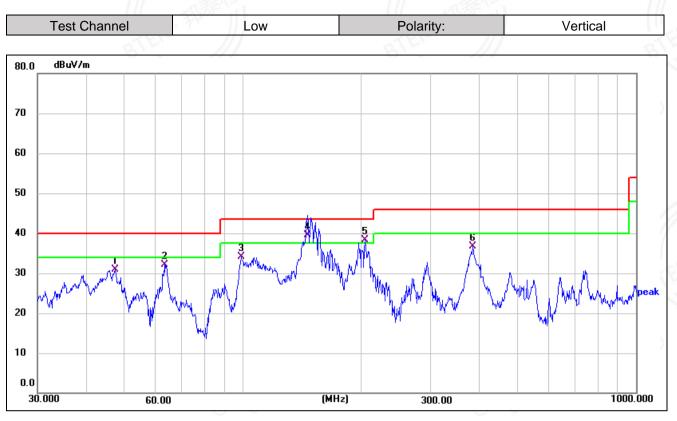
0

0

Р

Ρ

Report No.: BTEK241108034A01E03


Page: 25 of 29

Page: 26 of 29

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	47.3255	48.30	-17.49	30.81	40.00	-9.19	QP	100	150	Ρ	
2	63.0916	51.28	-19.15	32.13	40.00	-7.87	QP	100	150	Р	
3	98.8326	56.04	-21.98	34.06	43.50	-9.44	QP	100	150	Р	
4 *	145.8611	57.05	-17.55	39.50	43.50	-4.00	QP	100	150	Р	
5!	204.2377	58.00	-19.65	38.35	43.50	-5.15	QP	100	150	Ρ	
6	383.9318	52.29	-15.58	36.71	46.00	-9.29	QP	100	150	Ρ	

Remark:

1) Through pre-scan 802.11b/g/n found the worst case is 802.11b lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Reading Level + Factor

3) Scan from 9kHz to 1 GHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page: 27 of 29

-		Polarity:	Horizontal;	worst case 8	02.110; Char	nnei:Low		
	att	Readin	///		aTEN			
	Frequency	g	Factor	Level	Limit			
No.	(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	Margin(dB)	Detector	P/F
1	4801.266	67.16	-15.60	51.56	74.00	-22.44	peak	Р
2	7206.260	56.77	-10.97	45.80	74.00	-28.20	peak	Р

; Polarity: Vertical; Worst case 802.11b; Channel:Low

			Readin	0			0 0		
		Frequency	g	Factor	Level	Limit			
١	No.	(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	Margin(dB)	Detector	P/F
	1	4801.841	65.00	-15.60	49.40	74.00	-24.60	peak	Р
	2	7206.000	55.28	-10.97	44.31	74.00	-29.69	peak	Р

Polarity: Horizontal; Worst case 802.11b; Channel:middle

		Readin						
	Frequency	g	Factor	Level	Limit			
No.	(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	Margin(dB)	Detector	P/F
1	4880.726	70.24	-15.60	54.64	74.00	-19.36	peak	Р
2	7320.000	55.90	-10.97	44.93	74.00	-29.07	peak	Р

Polarity: Vertical; Worst case 802.11b; Channel:middle

	Frequency	Readin	Fastar		Lingit			
	Frequency	g	Factor	Level	Limit	1 The		
No.	(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	Margin(dB)	Detector	P/F
1	4879.065	66.90	-15.60	51.30	74.00	-22.70	peak	Р
2	7320.000	59.35	-10.97	48.38	74.00	-25.62	peak	P

Polarity: Horizontal; Worst case 802.11b; Channel:High

0	Readin			0			
Frequency	g	Factor	Level	Limit			
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	Margin(dB)	Detector	P/F
4960.811	67.22	-15.60	51.62	74.00	-22.38	peak	Ρ
7440.362	59.41	-10.97	48.44	74.00	-25.56	peak	Р
	(MHz) 4960.811	Frequency (MHz) g (dBuv) 4960.811 67.22	Frequency (MHz) g (dBuv) Factor (dB/m) 4960.811 67.22 -15.60	Frequency (MHz) g (dBuv) Factor (dB/m) Level (dBuv/m) 4960.811 67.22 -15.60 51.62	Frequency (MHz) g (dBuv) Factor (dB/m) Level (dBuv/m) Limit (dBuv/m) 4960.811 67.22 -15.60 51.62 74.00	Frequency (MHz) g (dBuv) Factor (dB/m) Level (dBuv/m) Limit (dBuv/m) Margin(dB) 4960.811 67.22 -15.60 51.62 74.00 -22.38	Frequency (MHz)g (dBuv)Factor (dB/m)Level (dBuv/m)Limit (dBuv/m)Detector4960.81167.22-15.6051.6274.00-22.38peak

Polarity: Vertical; Worst case 802.11b; Channel:High

	Frequency	Readin g	Factor	Level	Limit	F135= 111		
No.	(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	Margin(dB)	Detector	P/F
1	4960.000	68.29	-15.60	52.69	74.00	-21.31	peak	Р
2	7440.000	59.31	-10.97	48.34	74.00	-25.66	peak	Р

Remark:

1) Through pre-scan 802.11b/g/n mode found the worst case is 802.11b . Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Reading Level + Factor

3) Testing is carried out with frequency rang 1GHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Page: 28 of 29

4) If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Page: 29 of 29

8 Test Setup Photo

Please refer to the Appendix Test Setup Photos

9 EUT Constructional Details (EUT Photos)

Please refer to the Appendix EUT Photos

- End of the Report -

