

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.247 Bluetooth

Applicant Name:

LG Electronics MobileComm U.S.A 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: March 15 - April 4, 2018 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1803120039-09.ZNF

FCC ID:

ZNFV350A

Certification

APPLICANT:

LG Electronics MobileComm U.S.A

Application Type:	
Model:	
Additional Model(s):	

EUT Type:
Max. RF Output Power:
Frequency Range:
Type of Modulation:
FCC Classification:
FCC Rule Part(s):
Test Procedure(s):

LM-V350AWM LMV350AWM, V350AWM, LM-V350AWA, LMV350AWA, V350AWA, LM-V350AWS, LMV350AWS, V350AWS, LM-V350ULA, LMV350ULA, V350ULA, LM-V350ULM, LMV350ULM, V350ULM, LM-V350ULS, LMV350ULS, V350ULS Portable Handset 22.673 mW (13.56 dBm) Peak Conducted 2402 – 2480MHz GFSK, π /4-DQPSK, 8DPSK FCC Part 15 Spread Spectrum Transmitter (DSS) Part 15 Subpart C (15.247) ANSI C63.10-2013

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of EC
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 1 of 56
© 2018 PCTEST Engineering Laboratory Inc.				V 7 5 2/26/2018

TABLE OF CONTENTS

INTE	ODUCTION	. 3
1.1	Scope	3
1.2	PCTEST Test Location	3
1.3	Test Facility / Accreditations	3
PRO	DUCT INFORMATION	. 4
2.1	Equipment Description	4
2.2	Device Capabilities	4
2.3	Test Configuration	4
2.4	EMI Suppression Device(s)/Modifications	4
DES	CRIPTION OF TESTS	. 5
3.1	Evaluation Procedure	5
3.2	AC Line Conducted Emissions	5
3.3	Radiated Emissions	6
3.4	Environmental Conditions	6
ANT	ENNA REQUIREMENTS	. 7
MEA	SUREMENT UNCERTAINTY	. 8
TES	F EQUIPMENT CALIBRATION DATA	. 9
TES	r Results	10
7.1	Summary	.10
7.2	20dB Bandwidth Measurement	.11
7.3	Output Power Measurement	.17
7.4	Band Edge Compliance	.28
7.5	Carrier Frequency Separation	.31
7.6	Time of Occupancy	.33
7.7	Number of Hopping Channels	.35
7.8	Conducted Spurious Emissions	37
7.9	Radiated Spurious Emission Measurements – Above 1GHz	41
7.10	Radiated Restricted Band Edge Measurements	48
7.11	Radiated Spurious Emissions Measurements – Below 1GHz	49
	Line Conducted Measurement Data	
7.12		53
	1.1 1.2 1.3 PRO 2.1 2.2 2.3 2.4 DES ⁰ 3.1 3.2 3.3 3.4 ANTI MEA TES ⁻ 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	1.1 Scope 1.2 PCTEST Test Location 1.3 Test Facility / Accreditations PRODUCT INFORMATION

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 50
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset	Page 2 of 56
© 2018 PCTEST Engineering Laboratory, Inc. V 7.5 2/26/2018			

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of EC
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 3 of 56
© 2018 PCTEST Engineering Laboratory Inc.		•		V 7 5 2/26/2018

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **LG Portable Handset FCC ID: ZNFV350A**. The test data contained in this report pertains only to the emissions due to the EUT's Bluetooth transmitter.

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:
 - A) The hopping sequence is pseudorandom
 - B) All channels are used equally on average
 - C) The receiver input bandwidth equals the transmit bandwidth
 - D) The receiver hops in sequence with the transmit signal
- 15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.
- 15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate its channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.
- 15.247(h): The EUT employs Adaptive Frequency Hopping (AFH) which identifies sources of interference namely devices
 operating in 802.11 WLAN and excludes them from the list of available channels. The process of re-mapping reduces the
 number of test channels from 79 channels to a minimum number of 20 channels.

Test Device Serial No.: 01547, 01505, 01463

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 CDMA (BC0, BC1, BC10), 850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n/ac WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE), NFC

Frequency (MHz)
2402
2441
:
2480

Table 2-1. Frequency/ Channel Operations

Note: This device is capable of operating in hopping and non-hopping mode. The EUT can hop between 79 different channels in the 2400 – 2483.5MHz band.

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2013. ANSI C63.10-2013 was also used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, and 7.8 for antenna port conducted emissions test setups.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of EC
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 4 of 56
© 2018 PCTEST Engineering Laboratory, Inc.			V 7.5 2/26/2018	

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that the cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.12. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage E of EG
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 5 of 56
© 2018 PCTEST Engineering La	boratory. Inc.			V 7.5 2/26/2018

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 6 of E6
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 6 of 56
© 2018 PCTEST Engineering La	boratory. Inc.			V 7.5 2/26/2018

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 7 of 50
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 7 of 56
© 2018 PCTEST Engineering La	boratory. Inc.	·		V 7.5 2/26/2018

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of EC
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 8 of 56
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	BT1	Bluetooth Cable Set	6/2/2017	Annual	6/2/2018	BT1
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	6/21/2017	Annual	6/21/2018	RE1
Agilent	N4010A	Wireless Connectivity Test Set		N/A		GB46170464
Agilent	N9038A	MXE EMI Receiver	4/26/2017	Annual	4/26/2018	MY51210133
Agilent	N9030A	PXA Signal Analyzer (44GHz)	3/27/2017	Annual	3/27/2018	MY52350166
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2017	Biennial	10/10/2019	121034
Com-Power	PAM-118A	Pre-Amplifier	6/21/2017	Annual	6/21/2018	551042
Com-Power	PAM-103	Pre-Amplifier (1-1000MHz)	6/21/2017	Annual	6/21/2018	441119
EMCO	3160-09	Small Horn (18 - 26.5GHz)	8/23/2016	Biennial	8/23/2018	135427
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	12/1/2016	Biennial	12/1/2018	125518
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	12/27/2016	Biennial	12/27/2018	114451
Pasternack	NMLC-1	Line Conducted Emissions Cable (NM)	5/31/2017	Annual	5/31/2018	NMLC-1
Rohde & Schwarz	CMU200	Base Station Simulator	N/A		107826	
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	5/11/2017	Annual	5/11/2018	100040
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	4/19/2017	Annual	4/19/2018	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/31/2017	Annual	7/31/2018	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	8/11/2017	Annual	8/11/2018	103200
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102135
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102134
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	1/22/2018	Annual	1/22/2019	N/A
Sunol	DRH-118	Horn Antenna (1-18GHz)	8/11/2017	Biennial	8/11/2019	A050307
Sunol Sciences	JB6	JB6 Antenna	9/27/2016	Biennial	9/27/2018	A082816

Table 6-1. Annual Test Equipment Calibration Schedule

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 9 of 56
2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

7.0 TEST RESULTS

7.1 Summary

Company Name:	LG Electronics MobileComm U.S.A
FCC ID:	ZNFV350A
Method/System:	Frequency Hopping Spread Spectrum (FHSS)
Number of Channels:	<u>79</u>

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(1)(iii)	RSS-247 [5.1(1)]	20dB Bandwidth	N/A		PASS	Section 7.2
15.247(b)(1)	RSS-247 [5.4(2)]	Peak Transmitter Output Power	< 1 Watt if <u>></u> 75 non- overlapping channels used		PASS	Section 7.3
15.247(a)(1)	RSS-247 [5.1(2)]	Channel Separation	> 2/3 of 20 dB BW for systems with Output Power < 125mW	CONDUCTED	PASS	Section 7.5
15.247(a)(1)(iii)	RSS-247 [5.1(4)]	Number of Channels	> 15 Channels		PASS	Section 7.7
15.247(a)(1)(iii)	RSS-247 [5.1(4)]	Time of Occupancy	< 0.4 sec in 31.6 sec period		PASS	Section 7.6
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	Conducted > 20dBc		PASS	Section 7.4, Section 7.8
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-247 limits)	RADIATED	PASS	Section 7.9, Section 7.10, Section 7.11
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen [8.8] limits)	LINE CONDUCTED	PASS	Section 7.12

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "BT Auto," Version 3.3.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.1.5.

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of EC
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 10 of 56
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

7.2 20dB Bandwidth Measurement §15.247 (a.1.iii); RSS-247 [5.1(1)]

Test Overview and Limit

The bandwidth at 20dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

Test Procedure Used

ANSI C63.10-2013 – Section 6.9.2

Test Settings

- 1. The signal analyzers' automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 20dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 20. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% OBW
- 3. VBW \ge 3 x RBW
- 4. Reference level set to keep signal from exceeding maximum input mixer level for linear operation.
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. Sweep = auto couple
- 8. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

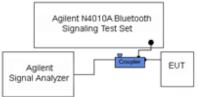


Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None

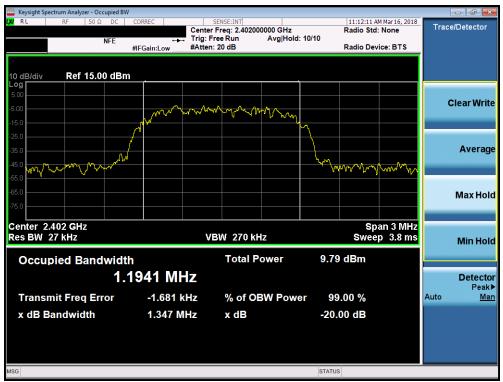
FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset	Page 11 of 56
© 2018 PCTEST Engineering La	V 7.5 2/26/2018		

Frequency [MHz]	Data Rate [Mbps]	Channel No.	20dB Bandwidth Test Results [kHz]
2402	1.0	0	927.90
2441	1.0	39	939.90
2480	1.0	78	914.80
2402	2.0	0	1347.00
2441	2.0	39	1328.00
2480	2.0	78	1254.00
2402	3.0	0	1262.00
2441	3.0	39	1281.00
2480	3.0	78	1244.00

Table 7-2. Conducted 20dB Bandwidth Measurements

Plot 7-1. 20dB Bandwidth Plot (Bluetooth, 1Mbps - Ch. 0)

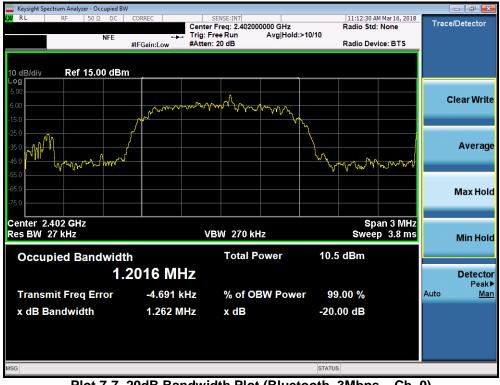
FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 50
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 12 of 56
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018


Plot 7-2. 20dB Bandwidth Plot (Bluetooth, 1Mbps - Ch. 39)

Plot 7-3. 20dB Bandwidth Plot (Bluetooth, 1Mbps - Ch. 78)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 13 of 56
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018


Plot 7-4. 20dB Bandwidth Plot (Bluetooth, 2Mbps - Ch. 0)


Plot 7-5. 20dB Bandwidth Plot (Bluetooth, 2Mbps - Ch. 39)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 14 of 56
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

Plot 7-6. 20dB Bandwidth Plot (Bluetooth, 2Mbps - Ch. 78)

Plot 7-7. 20dB Bandwidth Plot (Bluetooth, 3Mbps – Ch. 0)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 15 of 56
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

Plot 7-8. 20dB Bandwidth Plot (Bluetooth, 3Mbps - Ch. 39)

Plot 7-9. 20dB Bandwidth Plot (Bluetooth, 3Mbps – Ch. 78)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 56	
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 16 of 56	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

7.3 Output Power Measurement §15.247 (b.1); RSS-247 [5.4(2)]

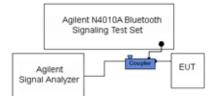
Test Overview and Limits

Measurement is made while the EUT is operating in non-hopping transmission mode. The powers shown below were measured using a spectrum analyzer with a Bluetooth signaling test set (Agilent Model: N4010A) used only to maintain a Bluetooth link with the EUT. Average power measurements are performed using the analyzer's "burst power" function with RBW = 3MHz. The burst power function triggers on a single set burst set to maximum power and measures the maximum average power on the on-time.

The maximum permissible output power is 1 Watt.

Test Procedure Used

ANSI C63.10-2013 - Section 7.8.5


Test Settings

Peak Power Measurement

- 1. Span = approximately 5x 20dB bandwidth, centered on hopping channel
- 2. RBW > 20dB bandwidth of emission being measured
- 3. VBW ≥ RBW
- 4. Sweep = auto
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

<u>Note</u>

This unit was tested with all possible data rates and the highest peak power is reported with the unit transmitting at 3Mbps.

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dage 17 of 50			
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset	Page 17 of 56			
© 2018 PCTEST Engineering Laboratory, Inc. V 7.5 2/26/2018						

Final results were obtained using calibrated couplers, attenuators and cables. The following formula was used:

Output Power (dBm) = Raw Analyzer Level (dBm) + Cable Loss (dB) + Loss in Directional Coupler/Insertion Loss (dB)

_	Data			nducted wer	-	nducted wer
Frequency [MHz]	Rate [Mbps]	Channel No.	[dBm]	[mW]	[dBm]	[mW]
2402	1.0	0	12.29	16.943	12.10	16.230
2441	1.0	39	12.21	16.615	11.97	15.726
2480	1.0	78	11.38	13.734	11.11	12.919
2402	2.0	0	13.11	20.464	11.42	13.872
2441	2.0	39	13.37	21.747	11.31	13.507
2480	2.0	78	12.54	17.951	10.46	11.116
2402	3.0	0	13.20	20.883	11.49	14.090
2441	3.0	39	13.56	22.673	11.38	13.725
2480	3.0	78	12.69	18.561	10.51	11.251

Table 7-3. Conducted Output Power Measurements

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 19 of 50	
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 18 of 56	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

	pectrum Analyz						- 6 -
l <mark>XI</mark> RL	RF	50 Ω DC	CORREC	SENSE:INT	#Avg Type: RMS	10:51:57 AM Mar16, 2018 TRACE 1 2 3 4 5 6	Frequency
		NFE	PNO:Fast ↔ IFGain:Low	Trig: Free Run Atten: 26 dB	Avg Hold: 100/100	DET PNNNN	
	D -6.45	00.JB			Mkı	1 2.402 04 GHz 12.290 dBm	Auto Tune
10 dB/div Log	Ref 15	.00 dBm		1		12.290 UBIII	
5.00							Center Freq
							2.402000000 GHz
-5.00							Start Freq
-15.0							2.397000000 GHz
-25.0							Stop Freq
-35.0							2.407000000 GHz
							CF Step
-45.0							1.000000 MHz Auto Man
-55.0							
-65.0							Freq Offset
-75.0							0 12
							Scale Type
Center 2. #Res BW			#)/P)	V 8.0 MHz	Swoon	Span 10.00 MHz	Log <u>Lin</u>
#Res BW	3.0 MHZ		#VB		statu	.000 ms (1001 pts)	
					STATU	<u> </u>	

Plot 7-10. Peak Conducted Power (1Mbps - Ch. 0)

Plot 7-11. Peak Conducted Power (1Mbps - Ch. 39)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 40 -4 50
1M1803120039-09.ZNF	March 15 - April 4, 2018	8 Portable Handset		Page 19 of 56
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

	ectrum Analyze						- 6 -
L <mark>XI</mark> RL	RF	50 Ω DC	CORREC	SENSE:INT	#Avg Type: RMS	10:52:12 AM Mar16, 2018 TRACE 1 2 3 4 5	Frequency
		NFE	PNO: Fast ↔→→ IFGain:Low	Trig: Free Run Atten: 26 dB	Avg Hold: 100/100	DET PNNNN	
10 dB/div Log	Ref 15.	.00 dBm			Mk	r1 2.479 95 GHz 11.378 dBm	Auto Tune
5.00				1			Center Freq 2.480000000 GHz
-5.00							Start Freq 2.475000000 GHz
-25.0							Stop Freq 2.485000000 GHz
-45.0							CF Step 1.000000 MHz <u>Auto</u> Man
-65.0							Freq Offset 0 Hz
-75.0							Scale Type
Center 2. #Res BW			#VBW	8.0 MHz	Sweep 7	Span 10.00 MHz 1.000 ms (1001 pts	Log <u>Lin</u>
MSG					STATU	IS	

Plot 7-12. Peak Conducted Power (1Mbps - Ch. 78)

Plot 7-13. Peak Conducted Power (2Mbps - Ch. 0)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	15 - April 4, 2018 Portable Handset		Page 20 of 56
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

	ectrum Analyze						- 6 -
LXI RL	RF	50 Ω DC	CORREC	SENSE:INT	#Avg Type: RMS	10:52:30 AM Mar16, 2018 TRACE 1 2 3 4 5 6	Frequency
		NFE	PNO: Fast ↔ IFGain:Low	Trig: Free Run Atten: 26 dB	Avg Hold: 100/100	TYPE MWWWWW DET P NNNN	
			II Guill.LOW		Mk	r1 2.440 86 GHz	Auto Tune
10 dB/div Log	Ref 15.0	00 dBm				13.374 dBm	
							Center Freq
5.00							2.441000000 GHz
-5.00							Start Freq
-15.0							2.436000000 GHz
10.0							
-25.0							Stop Freq
							2.446000000 GHz
-35.0							
-45.0							CF Step
*43.0							1.000000 MHz Auto Man
-55.0							<u>Auto</u> marr
							Freq Offset
-65.0							0 Hz
-75.0							
							Scale Type
							Log <u>Lin</u>
Center 2. #Res BW		HZ	#VB	V 8.0 MHz	Sweep	Span 10.00 MHz 1.000 ms (1001 pts)	
MSG					STATU		

Plot 7-14. Peak Conducted Power (2Mbps - Ch. 39)

Plot 7-15. Peak Conducted Power (2Mbps - Ch. 78)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 21 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset	Handset	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

	ectrum Analyzer						
LXI RL	RF	50Ω DC	CORREC	SENSE:INT	#Avg Type: RMS	10:52:48 AM Mar16, 2018 TRACE 1 2 3 4 5 6	Frequency
		NFE	PNO: Fast ↔↔ IFGain:Low	Trig: Free Run Atten: 26 dB	Avg Hold:>100/100		
10 dB/div Log	Ref 15.0	00 dBm			Mkr	1 2.402 00 GHz 13.198 dBm	Auto Tune
5.00							Center Freq 2.402000000 GHz
-5.00							Start Freq 2.397000000 GHz
-25.0							Stop Freq 2.407000000 GHz
-45.0							CF Step 1.000000 MHz <u>Auto</u> Man
-65.0							Freq Offsel 0 Hz
-75.0							Scale Type
Center 2. #Res BW	402000 G 3.0 MHz	Hz	#VBW	8.0 MHz	Sweep 1	Span 10.00 MHz .000 ms (1001 pts)	Log <u>Lin</u>
MSG					STATUS	3	

Plot 7-16. Peak Conducted Power (3Mbps - Ch. 0)

Plot 7-17. Peak Conducted Power (3Mbps - Ch. 39)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 00 of 50
1M1803120039-09.ZNF	March 15 - April 4, 2018 Portable Handset			Page 22 of 56
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

	ectrum Analyzer						
(XI RL	RF	50Ω DC	CORREC	SENSE:INT	#Avg Type: RMS	10:53:05 AM Mar16, 2018 TRACE 1 2 3 4 5 6	Frequency
		NFE	PNO: Fast 🔸	Trig: Free Run Atten: 26 dB	Avg Hold: 100/100		
10 dB/div Log	Ref 15.0	00 dBm			Mkr	1 2.480 06 GHz 12.686 dBm	Auto Tune
5.00				1			Center Freq 2.480000000 GHz
-5.00	***						Start Freq 2.475000000 GHz
-25.0							Stop Freq 2.485000000 GHz
-45.0							CF Step 1.000000 MHz <u>Auto</u> Mar
-65.0							Freq Offset 0 Hz
-75.0							Scale Type
Center 2.4 #Res BW		Hz	#VBW	8.0 MHz	Sweep 1	Span 10.00 MHz .000 ms (1001 pts)	Log <u>Lin</u>
MSG					STATU	3	

Plot 7-18. Peak Conducted Power (3Mbps - Ch. 78)

Plot 7-19. Average Conducted Power (1Mbps – Ch. 0)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	💽 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 50	
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 23 of 56	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

Keysight Spect													×
UXU RL	RF		FE	CORREC				00000 GHz Avg Hold	: 100/100		34 AM Mar16, 2018 Std: None	Frequency	
10 dB/div Log	Ref 1	5.00	dBm						1				
-5.00												Center Fr 2.441000000 G	
-15.0 -25.0 -35.0													
-45.0													
-65.0													
0.00 s ResBw 3.0								Swe	ep 4.00 r	ns	4.00 ms (60001 pt)	CF St 3.000000 M Auto M	
Output P (Above Thr 11.	ower eshold Lv 966 dE				,		Amplitude	le Thresho e Thresho		-2.839 -15.00		Freq Off	
					-		ut Pwr	Ма	ix Pt		Min Pt	0	н
Above Th	nreshold	Pts	4328	9		11	.968 dBm	ı 12	.161 dBn	n -	106.49 dBm		
ISG									STATU	JS			-

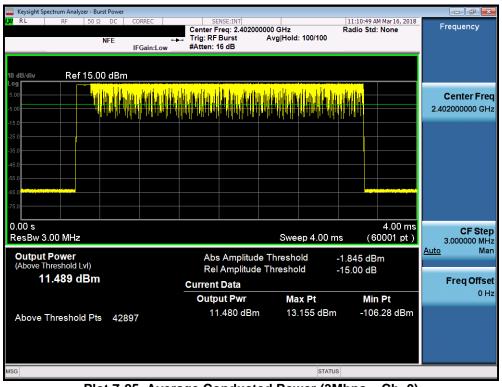
Plot 7-20. Average Conducted Power (1Mbps - Ch. 39)

Plot 7-21. Average Conducted Power (1Mbps - Ch. 78)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 50	
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 24 of 56	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

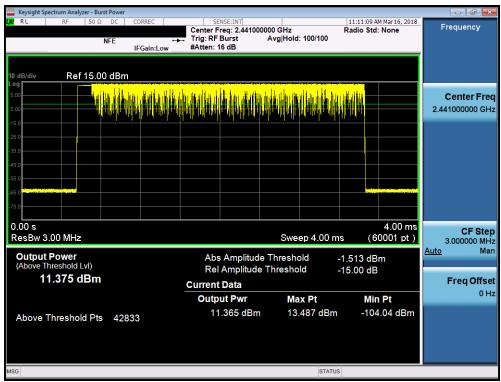
Keysight Spectrum Analyzer - Burst Pov RL RF 50 Ω DC NFE) GHz F vg Hold:>100/100	11:10:04 AM Mar16, 2018 Radio Std: None	Frequency
10 dB/div Ref 15.00 dE	IFGain:Low	#Atten: 16 dB			
5.00	<mark>Alleen Herefolder of de la sofielen de la sofielen de la sofielen de la sofie de la sofie de la sofie de la sofie La sofie de la s</mark>	n Adden an International Contractions of the pro-	hiller Antilipsophilipsophilipsophilipsophilipsophilipsophilipsophilipsophilipsophilipsophilipsophilipsophilips	<u>n(k)</u>	Center Fred 2.402000000 GH;
-15.0					
-45.0 -55.0 -65.0					
-75.0 0.00 s				4.00 ms	CF Ster
ResBw 3.00 MHz Output Power (Above Threshold Lvl)		Abs Amplitude T		952 dBm	3.000000 MH <u>Auto</u> Ma
11.421 dBm		Rel Amplitude Ti Current Data Output Pwr	Max Pt	5.00 dB Min Pt	Freq Offse 0 H
Above Threshold Pts 4	3318	11.421 dBm	13.048 dBm	-108.26 dBm	
ISG			STATUS		

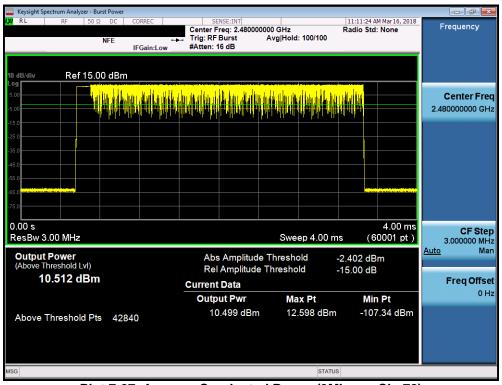
Plot 7-22. Average Conducted Power (2Mbps - Ch. 0)


Plot 7-23. Average Conducted Power (2Mbps - Ch. 39)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 50	
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 25 of 56	
© 2018 PCTEST Engineering Laboratory, Inc. V 7.5 2/26/2018					

Keysight Spectrum Analyzer - Burst Pi K RL RF 50 Ω	ower	SENSE:INT		11:10:31 AM Mar 16, 2018	
NE		Center Freq: 2.4800000	00 GHz Avg Hold: 100/100	Radio Std: None	Frequency
NFI	IFGain:Low	#Atten: 16 dB			
10 dB/div Ref 15.00 c	IBm				
5.00		n de la parte de la faite d	n falla fa mai i da kana da da a gi baja mai	un h, h	Center Freq
-5.00					2.480000000 GHz
-15.0					
-35.0					
-45.0					
-55.0					
-65.0 Milliolation of which a					
-75.0					
0.00 s				4.00 ms	CF Step
ResBw 3.00 MHz			Sweep 4.00 ms	(60001 pt)	3.000000 MHz Auto Man
Output Power (Above Threshold Lvl)		Abs Amplitude		2.559 dBm	
10.460 dBm		Rel Amplitude T Current Data	nresnola -1	5.00 dB	Freq Offset
		Output Pwr	Max Pt	Min Pt	0 Hz
Above Threshold Pts	40047	10.446 dBm	12.441 dBm	-121.96 dBm	
Above Threshold Pts	43317				
MSG			STATUS		


Plot 7-24. Average Conducted Power (2Mbps - Ch. 78)


Plot 7-25. Average Conducted Power (3Mbps – Ch. 0)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 26 of 56	
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 26 of 56	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

Plot 7-26. Average Conducted Power (3Mbps - Ch. 39)

Plot 7-27. Average Conducted Power (3Mbps - Ch. 78)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 56		
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset	Page 27 01 56		
© 2018 PCTEST Engineering Laboratory, Inc. V 7.5 2/2					

7.4 Band Edge Compliance §15.247 (d); RSS-247 [5.5]

Test Overview and Limits

EUT operates in hopping and non-hopping transmission mode. Measurement is taken at the highest point located outside of the emission bandwidth. *The maximum permissible out-of-band emission level is 20 dBc.*

Test Procedure Used

ANSI C63.10-2013 - Section 6.10.4

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 300kHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

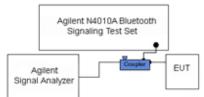
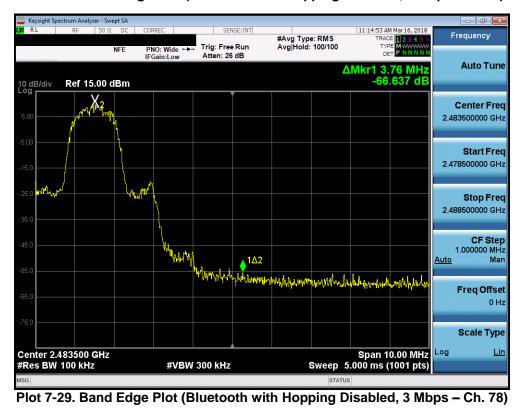


Figure 7-3. Test Instrument & Measurement Setup

Test Notes


Out of band conducted spurious emissions at the band edge were investigated for all data rates in hopping and non-hopping modes. The worst case emissions were found with the EUT transmitting at 3 Mbps. Band edge emissions were also investigated with the EUT transmitting in all data rates. Plots of the worst case emissions are shown below.

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of EC
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 28 of 56
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Approved by: PCTEST MEASUREMENT REPORT 🕞 LG FCC ID: ZNFV350A (CERTIFICATION) Quality Manager Test Report S/N: EUT Type: Test Dates: Page 29 of 56 1M1803120039-09.ZNF March 15 - April 4, 2018 Portable Handset © 2018 PCTEST Engineering Laboratory, Inc. V 7.5 2/26/2018

Plot 7-30. Band Edge Plot (Bluetooth with Hopping Enabled, 3 Mbps)

Plot 7-31. Band Edge Plot (Bluetooth with Hopping Enabled, 3 Mbps)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 50	
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 30 of 56	
© 2018 PCTEST Engineering Laboratory, Inc.					

7.5 Carrier Frequency Separation §15.247 (a.1); RSS-247 [5.1(2)]

Test Overview and Limit

Measurement is made with EUT operating in hopping mode. The minimum permissible channel separation for this system is 2/3 the value of the 20dB BW.

Test Procedure Used

ANSI C63.10-2013 - Section 7.8.2

Test Settings

- 1. Span = Wide enough to capture peaks of two adjacent channels
- 2. RBW = 30% of channel spacing. Adjust as necessary to best identify center of each individual channel
- 3. VBW ≥ RBW
- 4. Sweep = Auto
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. The trace was allowed to stabilize.
- 8. Marker-delta function used to determine separation between peaks of the adjacent channels

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

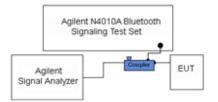
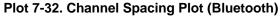


Figure 7-4. Test Instrument & Measurement Setup

Test Notes


The EUT complies with the minimum channel separation requirement when it is operating in 1x/EDR mode using 79 channels and when operating in AFH mode using 20 channels.


FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 21 of 50
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 31 of 56
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Frequency [MHz]	Data Rate [Mbps]	Channel No.	Min. Channel Separation [MHz]
2402	1.0	0	0.619
2441	1.0	39	0.629
2480	1.0	78	0.610
2402	2.0	0	0.927
2441	2.0	39	0.900
2480	2.0	78	0.870
2402	3.0	0	0.841
2441	3.0	39	0.796
2480	3.0	78	0.829

Table 7-4. Minimum Channel Separation

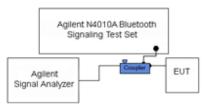
FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of EC
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 32 of 56
© 2018 PCTEST Engineering La	aboratory, Inc.			V 7.5 2/26/2018

7.6 Time of Occupancy §15.247 (a.1.iii); RSS-247 [5.1(4)]

Test Overview and Limit

Measurement is made while EUT is operating in hopping mode with the spectrum analyzer set to zero span. *The maximum permissible time of occupancy is 400 ms within a period of 400ms multiplied by the number of hopping channels employed.*

Test Procedure Used


ANSI C63.10-2013 - Section 7.8.4

Test Settings

- 1. Span = zero span, centered on a hopping channel
- 2. RBW \leq channel spacing and >> 1/T, where T is expected dwell time per channel
- 3. Sweep = as necessary to capture entire dwell time. Second plot may be required to demonstrate two successive hops on a channel
- 4. Trigger is set with appropriate trigger delay to place pulse near the center of the plot
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Marker-delta function used to determine transmit time per hop

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset	Page 33 of 56
© 2018 PCTEST Engineering La	V 7.5 2/26/2018		

	ectrum Analyzer ·						
lxi rl	RF 5	οΩ DC	CORREC PNO: Wide	SENSE:INT Trig Delay-1.064 ms Trig: Video Atten: 26 dB	#Avg Type: RMS	11:23:45 AM Mar16, 2018 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	Frequency
10 dB/div Log _w	Ref 15.0	0 dBm	II Gallicow			ΔMkr1 2.920 ms 3.39 dB	Auto Tune
5.00							Center Freq 2.441000000 GHz
-5.00						1Δ2	Start Freq 2.441000000 GHz
-25.0		X2					Stop Freq 2.441000000 GHz
-45.0 -45.0	handpathographicus/1991	nonla				hyuyalishiyadirasaayyyilikololada	CF Step 1.000000 MHz <u>Auto</u> Man
-65.0							Freq Offset 0 Hz
-75.0							Scale Type
Center 2. Res BW 1	44100000 I.0 MHz	0 GHz	#VBW	3.0 MHz	Sweep	Span 0 Hz 5.000 ms (1001 pts)	Log <u>Lin</u>
MSG					STA	TUS	

Plot 7-33. Time of Occupancy Plot (Bluetooth)

Bluetooth Time of Occupancy Calculation

Typically, Bluetooth 1x/EDR mode has a channel hopping rate of 1600 hops/s. Since 1x/EDR modes use 5 transmit and 1 receive slot, for a total of 6 slots, the Bluetooth transmitter is actually hopping at a rate of 1600 / 6 = 266.67 hops/s/slot

- 400ms x 79 hopping channels = 31.6 sec (Time of Occupancy Limit)
- Worst case BT has 266.67 hops/second (for 1x/EDR modes with DH5 operation)
- 266.67 hops/second / 79 channels = 3.38 hops/second (# of hops/second on one channel)
- o 3.38 hops/second/channel x 31.6 seconds = 106.67 hops (# hops over a 31.6 second period)
- 106.67 hops x 2.920 ms/channel = 311.47 ms (worst case dwell time for one channel in 1x/EDR modes)

With AFH, the number of channels is reduced to a minimum of 20 channels and the channel hopping rate is reduced by 50% to 800 hops/s. AFH mode also uses 6 total slots so the Bluetooth transmitter hops at a rate of 800 / 6 = 133.3 hops/s/slot

- 400ms x 20 hopping channels = 8 sec (Time of Occupancy Limit)
- Worst case BT has 133.3 hops/second/slot (for AFH mode with DH5 operation)
- 133.3 hops/s / 20 channels = 6.67 hops/second (# of hops/second on one channel)
- 6.67 hops/s / channel x 8 seconds = 53.34 hops (# hops over a 8 second period)
- 53.34 hops x 2.920 ms/channel = 155.75 ms (worst case dwell time for one channel in AFH mode)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 50
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 34 of 56
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

7.7 Number of Hopping Channels §15.247 (a.1.iii); RSS-247 [5.1(4)]

Test Overview and Limit

Measurement is made while EUT is operating in hopping mode. This frequency hopping system must employ a minimum of 15 hopping channels.

Test Procedure Used

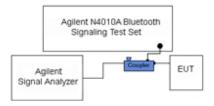
ANSI C63.10-2013 - Section 7.8.3

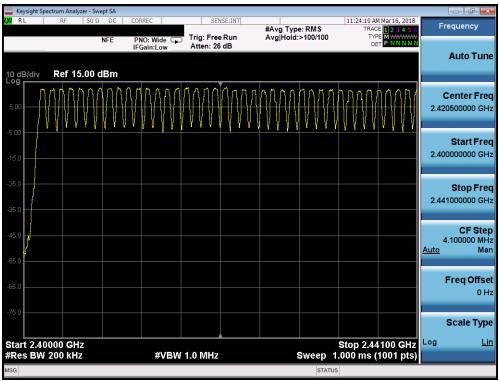
Test Settings

- 1. Span = frequency of band of operation (divided into two plots)
- 2. RBW < 30% of channel spacing or 20dB bandwidth, whichever is smaller.
- 3. VBW ≥ RBW
- 4. Sweep = auto
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

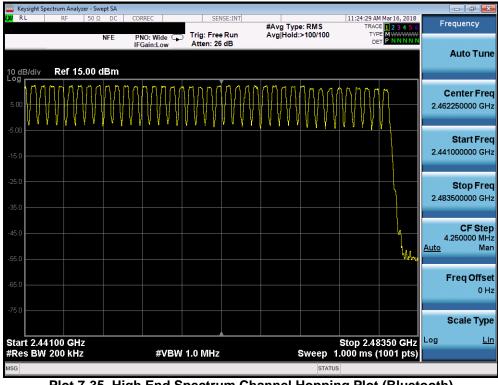
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.




Figure 7-6. Test Instrument & Measurement Setup

Test Notes


The frequency spectrum was broken up into two sub-ranges to clearly show all of the hopping frequencies. In AFH mode, this device operates using 20 channels so the requirement for minimum number of hopping channels is satisfied.

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 50
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 35 of 56
© 2018 PCTEST Engineering Laboratory, Inc.			V 7.5 2/26/2018	

Plot 7-34. Low End Spectrum Channel Hopping Plot (Bluetooth)

Plot 7-35. High End Spectrum Channel Hopping Plot (Bluetooth)

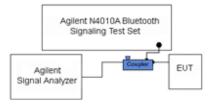
FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 26 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 36 of 56
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

7.8 Conducted Spurious Emissions §15.247 (d); RSS-247 [5.5]

Test Overview and Limit

Conducted out-of-band spurious emissions were investigated from 30MHz up to 25GHz to include the 10th harmonic of the fundamental transmit frequency. *The maximum permissible out-of-band emission level is* 20 dBc.

Test Procedure Used


ANSI C63.10-2013 - Section 7.8.8

Test Settings

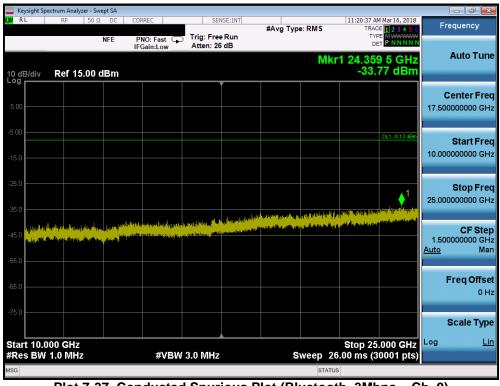
- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz* (See note below)
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-7. Test Instrument & Measurement Setup

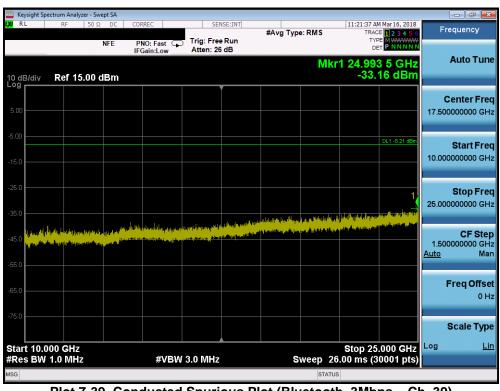
Test Notes


Out-of-band conducted spurious emissions were investigated for all data rates and the worst case emissions were found with the EUT transmitting at 3Mbps. The display line shown in the following plots is the limit at 20dB below the fundamental emission level measured in a 100kHz bandwidth. However, the traces in the following plots are measured with a 1MHz RBW to reduce test time, so the display line may not necessarily appear to be 20dB below the level of the fundamental in a 1MHz bandwidth.

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	.G	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 56		
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 37 of 56		
© 2018 PCTEST Engineering Laboratory, Inc. V 7.5.2						

	pectrum Analy											- 0 .
L <mark>XI</mark> RL	RF	50 Ω D	C CORF	REC	SE	NSE:INT	#Avg Typ	e: RMS		M Mar 16, 2018 E 1 2 3 4 5 6	Fre	quency
		NFE		0:Fast 🕞	Trig: Fre				TYF			
			IFG	ain:Low _	Atten: 2	5 a D						Auto Tune
10 dB/div	Ref 15	5.00 dBn	n					IVI	-41.	9 1 GHz 34 dBm		
Log						Y						
												enter Freq
5.00											5.015	000000 GHz
-5.00												
-5.00										DL1 -8.13 dBm		Start Freq
-15.0											30.0	000000 MHz
10.0												
-25.0												Stop Freq
												DOODOO GHz
-35.0				1							10.0000	500000 GH2
				•								0.5.01
-45.0			فقراء والطعاء وال	in the second	allen og Romande	har han	Progent Monana and Progenetical ProgeneticaProgenetical Progenetical P	the state of the second state of the state of the second state of the second state of the second state of the s	and strategy and the strategy of the strategy	i na segura da segur Na segura da segura d	997.0	CF Step
	a land a start of the	and a state of the second s	وسمعدمتنا	all shares		teritette, dille					<u>Auto</u>	Man
-55.0	and the second se											
											F	req Offset
-65.0												0 Hz
-75.0												
-/ 5.0											S	cale Type
Start 30									Stop 10	1000 9112	Log	Lin
#Res BW	7 1.0 MH	Z		#VBV	V 3.0 MHz		s	weep 18	3.00 ms (3	0001 pts)		
MSG								STATU	5			

Plot 7-36. Conducted Spurious Plot (Bluetooth, 3Mbps - Ch. 0)


Plot 7-37. Conducted Spurious Plot (Bluetooth, 3Mbps – Ch. 0)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 38 of 56		
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset	e Handset			
© 2018 PCTEST Engineering Laboratory, Inc.						

	pectrum Analyz											- • •
X/RL	RF	50 Ω DC		REC			#Avg Typ	e: RMS	TRAC	M Mar 16, 2018 DE 1 2 3 4 5 6 PE M WWWWW ET P N N N N N	Fr	equency
10 dB/div	Ref 15.	.00 dBm	IFG	ain:Low	Atten: 26	dB		M	(r1 8.22	4 0 GHz 26 dBm		Auto Tune
5.00												enter Fred
-5.00										DL1 -8.21 dBm	30	Start Fred .000000 MH;
-25.0									1		10.000	Stop Fred
-45.0	ender der der der der der der der der der		y ny Kinya. Ang Kina ang	Entration of the second se	land og Nicherol Sonderson folkeret			t <mark>asling propriet ferna</mark> Marine p ^{ille} a terra	All Providence of the second sec	(1) on the state of the state o	997 <u>Auto</u>	CF Stej .000000 MH Mar
-65.0											F	F req Offse 0 H
-75.0											Log	Scale Type
	MHz / 1.0 MHz			#VBW	/ 3.0 MHz		s		.00 ms (3	.000 GHz 0001 pts)	LUg	
ISG								STATUS	3			

Plot 7-38. Conducted Spurious Plot (Bluetooth, 3Mbps - Ch. 39)


Plot 7-39. Conducted Spurious Plot (Bluetooth, 3Mbps - Ch. 39)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 50	
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 39 of 56	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

Keysig		Analyzer - Swe	ept SA										- # ×
X/RL	RF	50 Ω	DC	COR	REC		ENSE:INT	#Avg Typ	e: RMS	TRA	M Mar16, 2018 DE 1 2 3 4 5 6	Fr	equency
			NFE	PN IFG	lO:Fast ⊆ Gain:Low	Trig: Fr Atten: 2				TY D	PE M WWWWWW ET P N N N N N		
									M	(r1 8.34	5 0 GHz		Auto Tune
10 dB/d Log	liv Re	f 15.00 d	Bm							-40.	97 dBm		
							Ĭ					c	Center Freq
5.00 —												5.01	5000000 GHz
5.00													
-5.00											DL1 -9.54 dBm		Start Freq
-15.0												30	.000000 MHz
-25.0													Stop Freq
-35.0												10.00	0000000 GHz
										♦			
-45.0		(Hardy Hardon &	Lall I	an destrik t	inter and		Aliphynilydia Aliphynilydia		a parte a l'électronitaise a constitue a sécurit de la second	Press Constructions	n potroppist openitativ Sectored	997	CF Step .000000 MHz
er o ulu	a Just Produce	Officer Automotion		لبل ويتألف	ألبه إيرانه	י ק וי פאר י						<u>Auto</u>	Mar
-55.0 m	ALC: ALC: NO.												
-65.0													Freq Offset 0 Hz
													0 H2
-75.0													Scale Type
	30 MHz 3W 1.0 I	MU7			#\/P\	V 3.0 MH:	7		woon 10	Stop 10	.000 GHz 0001 pts)	Log	Lin
WING	5W-1.01	VINZ			#VDV	v 3.0 Win.		3	status		iooon pisj		

Plot 7-40. Conducted Spurious Plot (Bluetooth, 3Mbps - Ch. 78)

Plot 7-41. Conducted Spurious Plot (Bluetooth, 3Mbps - Ch. 78)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 40 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset	ndset	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

7.9 Radiated Spurious Emission Measurements – Above 1GHz §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at maximum power and at the appropriate frequencies. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-5 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-5. Radiated Limits

Test Procedure Used

ANSI C63.10-2013 – Section 6.6.4.3

Test Settings Average Field Strength Measurements per Section 4.1.4.2.3 of ANSI C63.10-2013

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 1kHz \ge 1/ τ Hz, where τ = pulse width in seconds
- 4. Averaging type was set to RMS to ensure that video filtering was applied in the power domain
- 5. Detector = peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Peak Field Strength Measurements per Section 4.1.4.2.2 of ANSI C63.10-2013

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW is set depending on measurement frequency, as specified in Table 7-6 below
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 50	
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 41 of 56	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

Frequency	RBW				
9 – 150kHz	200 – 300Hz				
0.15 – 30MHz	9 – 10kHz				
30 – 1000MHz	100 – 120kHz				
> 1000MHz	1MHz				
Table 7-6. RBW as a Function of Frequency					

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

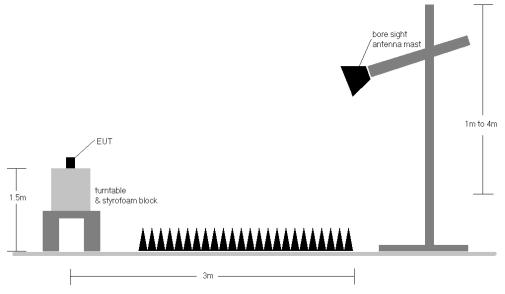


Figure 7-8. Radiated Test Setup >1GHz

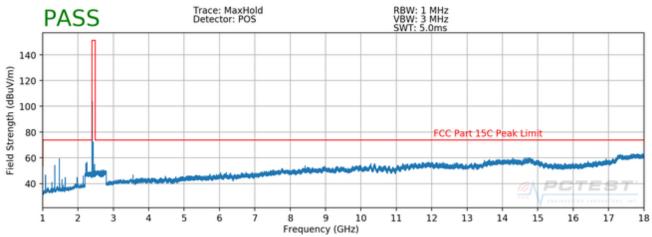
Test Notes

- 1. All emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-5.
- 2. No significant radiated emissions were found in the 2310 2390MHz restricted band.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic and the worst-case emissions are reported.
- 6. The duty cycle correction factor was not applied to noise floor measurements.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

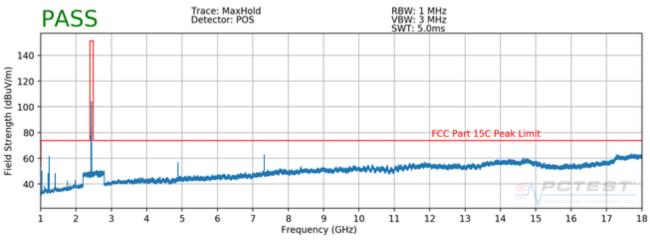
FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 56	
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 42 of 56	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

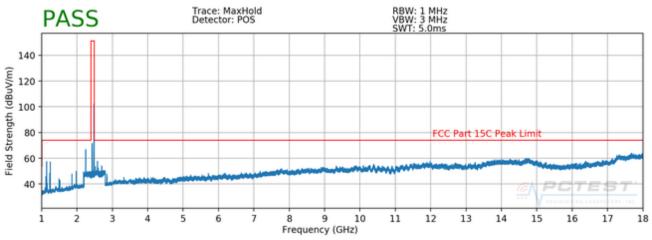
Sample Calculation

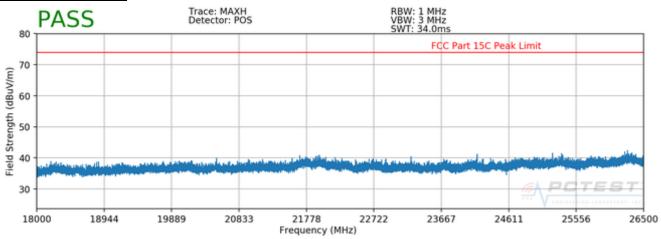
- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m] + Duty Cycle Correction [dB]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level $[dB_{\mu}V/m]$ Limit $[dB_{\mu}V/m]$


Duty Cycle Correction Factor Calculation

- Channel hop rate = 800 hops/second (AFH Mode)
- Adjusted channel hop rate for DH5 mode = 133.33 hops/second
- Time per channel hop = 1 / 133.33 hops/second = 7.50 ms
- Time to cycle through all channels = 7.50 x 20 channels = 150 ms
- Number of times transmitter hits on one channel = 100 ms / 150 ms = 1 time(s)
- Worst case dwell time = 7.5 ms
- Duty cycle correction factor = 20log₁₀(7.5ms/100ms) = -22.5 dB


FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 43 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset	t	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			


Radiated Spurious Emission Measurements §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]



Plot 7-44. Radiated Spurious Plot above 1GHz (BT - Ch. 78)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 44 of 50
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 44 of 56
© 2018 PCTEST Engineering La	V 7 5 2/26/2018			

Radiated Spurious Emissions Measurements (Above 18GHz) §15.209; RSS-Gen [8.9]

Plot 7-45. Radiated Spurious Plot above 18GHz

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:			
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 45 of 56	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

Radiated Spurious Emission Measurements §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

Worst Case Mode:	Bluetooth
Worst Case Data Rate:	1 Mbps
Measurement Distance:	3 Meters
Operating Frequency:	2402MHz
Channel:	0

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Duty Cycle Correction [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4804.00	Avg	Н	-	-	-78.53	3.74	0.00	32.21	53.98	-21.77
4804.00	Peak	Н	-	-	-65.09	3.74	0.00	45.65	73.98	-28.33
12010.00	Avg	Н	-	-	-80.91	15.87	0.00	41.96	53.98	-12.02
12010.00	Peak	Н	-	-	-67.50	15.87	0.00	55.37	73.98	-18.61

Table 7-7. Radiated Measurements

Worst Case Mode: Worst Case Data Rate: Measurement Distance: Operating Frequency: Channel:

Bluetooth
1 Mbps
3 Meters
2441MHz
39

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Duty Cycle Correction [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4882.00	Avg	Н	386	53	-78.02	5.46	-22.50	11.95	53.98	-42.03
4882.00	Peak	Н	386	53	-65.39	5.46	0.00	47.07	73.98	-26.91
7323.00	Avg	Н	110	175	-74.39	8.30	-22.50	18.41	53.98	-35.57
7323.00	Peak	Н	110	175	-65.76	8.30	0.00	49.54	73.98	-24.44
12205.00	Avg	Н	-	-	-80.97	15.84	0.00	41.87	53.98	-12.11
12205.00	Peak	Н	-	-	-67.45	15.84	0.00	55.39	73.98	-18.59

Table 7-8. Radiated Measurements

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 46 of 56
© 2018 PCTEST Engineering La	V 7 5 2/26/2018			

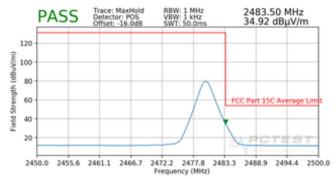
Radiated Spurious Emission Measurements §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

Worst Case Mode:	Bluetooth		
Worst Case Data Rate:	1 Mbps		
Measurement Distance:	3 Meters		
Operating Frequency:	2480MHz		
Channel:	78		

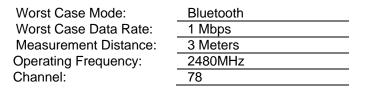
Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Duty Cycle Correction [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4960.00	Avg	Н	-	-	-78.99	5.31	0.00	33.32	53.98	-20.66
4960.00	Peak	Н	-	-	-66.04	5.31	0.00	46.27	73.98	-27.71
7440.00	Avg	Н	-	-	-79.46	7.92	0.00	35.46	53.98	-18.52
7440.00	Peak	Н	-	-	-67.01	7.92	0.00	47.91	73.98	-26.07
12400.00	Avg	Н	-	-	-80.40	15.97	0.00	42.57	53.98	-11.41
12400.00	Peak	Н	-	-	-67.74	15.97	0.00	55.23	73.98	-18.75

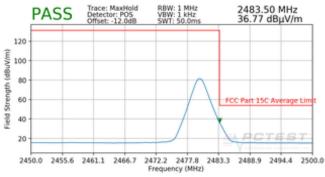
Table 7-9. Radiated Measurements

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 47 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset	Indset	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

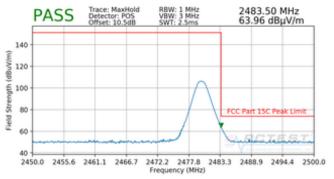

7.10 Radiated Restricted Band Edge Measurements §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting. Two different amplitude offsets were used depending on whether peak or average measurements were measured. The average measurements use a duty cycle correction factor (DCCF).

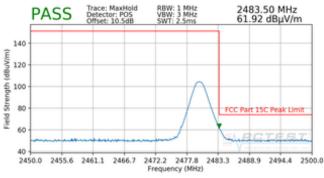

The amplitude offset shown in the following plots for average measurements was calculated using the formula:

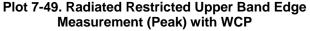

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) - Preamplifier Gain + DCCF

Worst Case Mode:	Bluetooth
Worst Case Data Rate:	1 Mbps
Measurement Distance:	3 Meters
Operating Frequency:	2480MHz
Channel:	78



Plot 7-46. Radiated Restricted Upper Band Edge Measurement (Average)





Plot 7-47. Radiated Restricted Upper Band Edge Measurement (Peak)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 49 of 56	
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 48 of 56	
© 2018 PCTEST Engineering La	V 7 5 2/26/2018				

7.11 Radiated Spurious Emissions Measurements – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-10 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-10. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of EC	
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 49 of 56	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

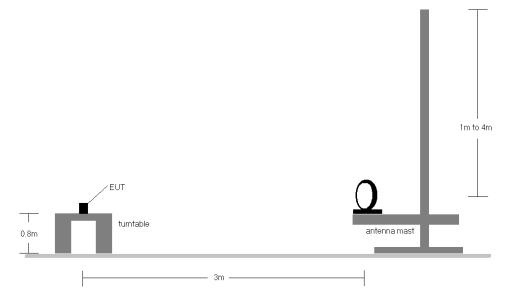
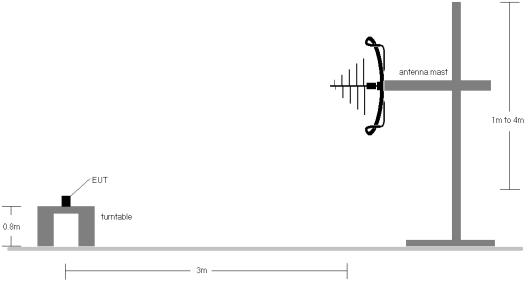
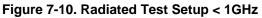
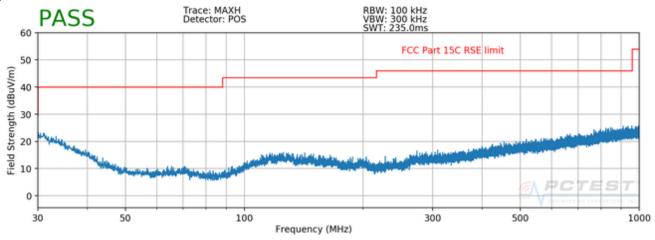




Figure 7-9. Radiated Test Setup < 30Mhz

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 50
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 50 of 56
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			



- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen (8.10) are below the limit shown in Table 7-10.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 51 of 50	
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 51 of 56	
© 2018 PCTEST Engineering La	horatory Inc			V 7 5 2/26/2018	

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-50. Radiated Spurious Plot below 1GHz (Pol. H)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 52 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset	able Handset	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

7.12 Line Conducted Measurement Data §15.207; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission (MHz)	Conducted Limit (dBµV)				
	Quasi-peak	Average			
0.15 – 0.5	66 to 56*	56 to 46*			
0.5 – 5	56	46			
5 – 30	60	50			

Table 7-11. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

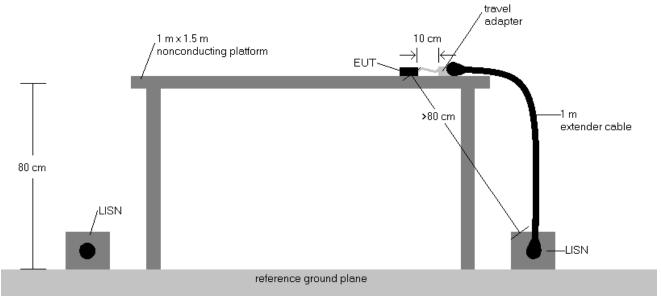
ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Average Field Strength Measurements

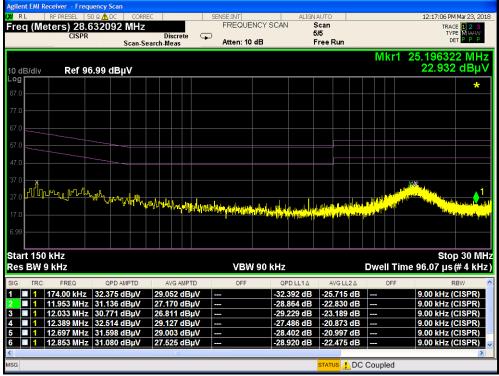

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 52 of 56
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 53 of 56
© 2018 PCTEST Engineering La	V 7 5 2/26/2018			

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes


- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207 and RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 54 of 56	
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 54 of 56	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

<u> </u>		eceiver - Fre																		
LXI RI		RF PRESEL			CORREC			9	ENSE:INT	UENCY	SCAN		VAUTO Scan					12		1 Mar 23, 2018
Fred		eters) 28 CISP		J92 N	IHZ	Dis	crete	Ģ	TICEG		JOHN		5/5						TY	2 1 2 3 PE MWW
				S	can-Sear	ch Me	as	-	Atten:	10 dB			Freel	Run					D	et <u>P P P</u>
																N	lkr			2 MHz
10 dE	B/div	Ref 9	96.99	dBµ∖	/													2	2.989	dBµV
Log																				*
87.0																				
77.0																				
07.0																				
67.0																				
57.0				┿╼╼╼			_			_										
47.0																				
																		W X		
37.0	_																Luite	J.	N NIL	
27.0	տվի	ᡁᠺᡔᠬᡁᡀ᠊ᠥ	Մրետա	UR POL	ulha k					_			1.1.44	at at ta	ul ta	L. M	ni Luut	يان <mark>انىكىرى</mark> لىر	La ^{l'Ar} t	
17.0				u		4had	V V	No all and a second second		hiji Ma			enter 19 Dentister	الله والاري.	ulual in	տելել՝Դ՝			- William	Like and the second
												Contraction								
6.99																				
	t 150								2.0							-				p 30 MHz
Res	BW 9	J KHZ							VE	SW 90	KHZ					DWe		ime 96	.07 µs	(#4 kHz)
SIG	TRC	FREQ		2PD AMP			G AMP		OF	F		D LL1∆		VG LL			OFF			RBW 🔷
1		11.941 MH				33.90						843 dB		.091						CISPR)
2		12.073 MH 12.185 MH)38 dE		32.40 32.34						962 dB 443 dB		.596						CISPR) CISPR)
4		12.389 MH				32.98					_	184 dB		.018						CISPR)
5		12.413 MH		665 dE		33.48						335 dB		.518						CISPR)
6	1	13.253 MH	z 35.	510 dE	βµV	32.32	1 dB	μV			-24.	490 dB	-17	.679	dB			9.0	0 kHz (CISPR)
MSG				_	_	_		_	_	_	_		STAT		DC	Cour	blod			2
NOG							_						STAT	<u></u>	200	Cont	hea			

Plot 7-51. Line-Conducted Test Plot (L1)

Plot 7-52. Line-Conducted Test Plot (N)

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo EE of EC
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset		Page 55 of 56
© 2018 PCTEST Engineering La	aboratory Inc	•		V 7 5 2/26/2018

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the LG Portable Handset FCC ID: ZNFV350A is in compliance with Part 15 Subpart C (15.247) of the FCC Rules.

FCC ID: ZNFV350A		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage EC of EC
1M1803120039-09.ZNF	March 15 - April 4, 2018	Portable Handset	Page 56 of 56	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			