



# ESP32-SU Specification

Version V1.0.0

Copyright©2021



## **Document resume**

| Version | Date       | Develop/revise content | Edition   | Approve   |
|---------|------------|------------------------|-----------|-----------|
| V1.0.0  | 2021.11.22 | First Edition          | Jiye Yang | Ning Guan |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |
|         |            |                        |           |           |



# Content

| 1. Product Overview                  |
|--------------------------------------|
| 1.1. Characteristic                  |
| 2. Main parameters                   |
| 2.1. Static electricity requirements |
| 2.2. Electrical characteristics      |
| 2.3. Wi-Fi RF performance            |
| 2.4. BLE RF performance8             |
| 2.5. Power consumption               |
| 3. Appearance dimensions             |
| 4. Pin definition                    |
| 5. Schematic                         |
| 6. Design guidance 14                |
| 6.1. Module application circuit      |
| 6.2. Power supply14                  |
| 6.3. GPIO                            |
| 7. Flow welding curve diagram        |
| 8. Product related models            |
| 9. Product packaging information     |
| 10. Contact us                       |
| Disclaimer and copyright notice      |
| Notice 20                            |



#### 1. Product Overview

ESP32-SU is a general type Wi-Fi + BT + BLE MCU module, powerful and versatile, can be used for low-power sensor networks and high standards tasks, such as voice encoding, audio streaming, and MP3 decoding.

The core of this module is the ESP32 chip, which has scalable, adaptive features. The chip is configured with two cores that can be controlled or powered alone. The user can cut off the CPU and use a low-power co-processor to continuously monitor state changes in the peripherals or whether certain analog quantities exceed the threshold. The ESP32 also incorporates rich peripherals, including a capacitive touch sensor, Hall sensor, low-noise sensing amplifier, SD card interface, Ethernet interface, high-speed SDIO / SPI, UART, I2S, and I2C. ESP32-SU module with built-in Xtensa® 32-bitLX6 dual-core processor supports main frequency for 80MHz, 160MHz, and 240MHz.

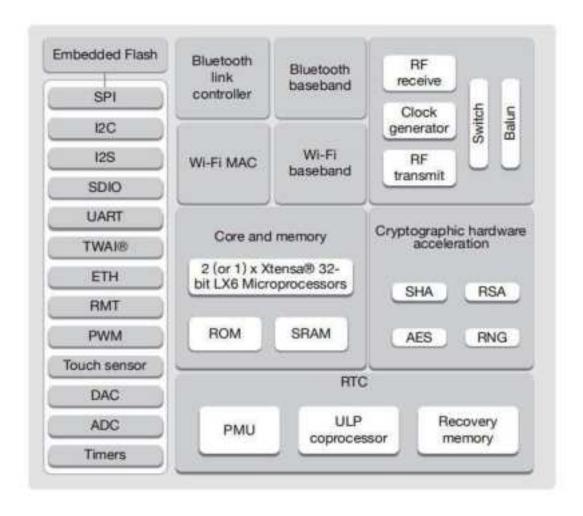



Figure 1 Main chip architecture diagram



#### 1.1. Characteristic

- Complete 802.11b/g/n Wi-Fi + BT + BLE SoC module
- A low-power dual-core 32-bit CPU is used as an application processor
- The main frequency is up to 240MHz, and the computing power is up to 600DMIPS
- Built-in for 520KB SRAM
- Support for interfaces such as UART / SPI / I2C / PWM / ADC / DAC
- SMD-38 package for easy welding and testing
- Multiple sleep modes are supported
- The STA / AP / STA + AP pattern and confounding patterns are supported
- Support for Android, IOS of SmartConfig (APP) / AirKiss (wechat) one-click distribution network
- Support for serial local upgrade and remote Firmware upgrade (FOTA)
- Universal AT instructions can be used easy and quickly
- Embedded Lwip and FreeRTOS



# 2. Main parameters

**Table 1 Description of the main parameters** 

| Model                 | ESP32-SU                                 |  |
|-----------------------|------------------------------------------|--|
| Package               | SMD-38                                   |  |
| Size                  | 18*19.2*3.1(±0.2)mm                      |  |
| Antenna               | IPEX(external antenna)                   |  |
| Frequency             | 2400~2483.5MHz                           |  |
| Operating temperature | -40°C~85°C                               |  |
| Storage temperature   | -40°C~125°C,<90%RH                       |  |
| Power supply          | Voltage 3.0V~3.6V current>500mA          |  |
| Interface             | UART/GPIO/ADC/PWM/I2C/I2S/SPI/SDIO/DAC   |  |
| Ю                     | 26                                       |  |
| <b>UART rate</b>      | Support 300~4608000bps default 115200bps |  |
| Bluetooth             | Bluetooth 4.2BR/EDR and BLE standard     |  |
| Security              | WEP/WPA-PSK/WPA2-PSK                     |  |
| SPI Flash             | 4MByte⊠default                           |  |

# 2.1. Static electricity requirements

ESP32-SU is an electrostatic sensitive device, and special precautions must be taken when handling it.



Figure 2 ESD anti-static diagram



## 2.2. Electrical characteristics

**Table 2 Electrical characteristics table** 

| Pa                   | arameters                        | Conditions | Min.             | Typical<br>value | Max.                | Unit |
|----------------------|----------------------------------|------------|------------------|------------------|---------------------|------|
| Power supply voltage |                                  | VDD        | 3.0              | 3.3              | 3.6                 | V    |
| I/O                  | V <sub>IL</sub> /V <sub>IH</sub> | -          | -0.3/0.75V<br>DD | -                | 0.25VDD/VDD<br>+0.3 | V    |
|                      | V <sub>OL</sub> /V <sub>OH</sub> | -          | N/0.8VIO         | -                | 0.1VIO/N            | V    |
|                      | $I_{MAX}$                        | -          | -                | -                | 12                  | mA   |

## 2.3. Wi-Fi RF performance

Table 3 WiFi RF performance table

| Description                         | Typical values | Unit |  |  |  |  |  |
|-------------------------------------|----------------|------|--|--|--|--|--|
| Operating frequency                 | 2412-2462      | MHz  |  |  |  |  |  |
|                                     | Output power   |      |  |  |  |  |  |
| 11n MCS7                            | 17±2           | dBm  |  |  |  |  |  |
| 11g 54Mbps                          | 17±2           | dBm  |  |  |  |  |  |
| 11b mode                            | 17±2           | dBm  |  |  |  |  |  |
| Receiving sensitivity⊠typical value |                |      |  |  |  |  |  |
| 11b 1Mbps                           | -97            | dBm  |  |  |  |  |  |
| 11b 11Mbps                          | -88            | dBm  |  |  |  |  |  |
| 11g 6Mbps                           | -93            | dBm  |  |  |  |  |  |
| 11g 54Mbps                          | -75            | dBm  |  |  |  |  |  |
| 11n HT20(MCS7)                      | -72            | dBm  |  |  |  |  |  |
| 11n HT40(MCS7)                      | -69            | dBm  |  |  |  |  |  |



## 2.4. BLE RF performance

**Table 4 BLE RF performance table** 

| Description                                                           | Typical values | Unit |  |  |
|-----------------------------------------------------------------------|----------------|------|--|--|
| Output power                                                          |                |      |  |  |
| Transmitting power                                                    | 1±2            | dBm  |  |  |
| Receiving sensitivity Low power consumption Bluetooth (typical value) |                |      |  |  |
| Sensitivity@30.8%PER                                                  | -93            | dBm  |  |  |

## 2.5. Power consumption

The following power consumption data are based on a 3.3V power supply, ambient temperature of 25°C and measured using an internal regulator.

- All measurements were completed without the SAW filter at the antenna interface.
- All emission data were based on a 50% duty cycle, as measured in the mode of continuous emission.

**Table 5 Power consumption table** 

| Mode                                  | Min. | Average<br>value | Max. | Unit |
|---------------------------------------|------|------------------|------|------|
| Tx 802.11b DSSS1Mbps<br>POUT=+19.5dBm | -    | 240              | -    | mA   |
| Tx 802.11g OFDM54Mbps<br>POUT=+14dBm  | -    | 190              | -    | mA   |
| Tx 802.11nMCS7POUT=+13dBm             | -    | 183              | -    | mA   |
| Rx 802.11b/g/n                        | -    | 112              | -    | mA   |
| Rx 802.11n 40MHz                      | -    | 118              | -    | mA   |
| Light-Sleep                           | -    | 1.4              | -    | mA   |
| Deep-Sleep                            | -    | 60               | -    | μА   |



## 3. Appearance dimensions

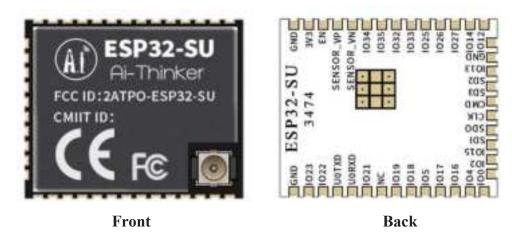



Figure 3 Appearance diagram pictures is for reference only, subject to physical objects)

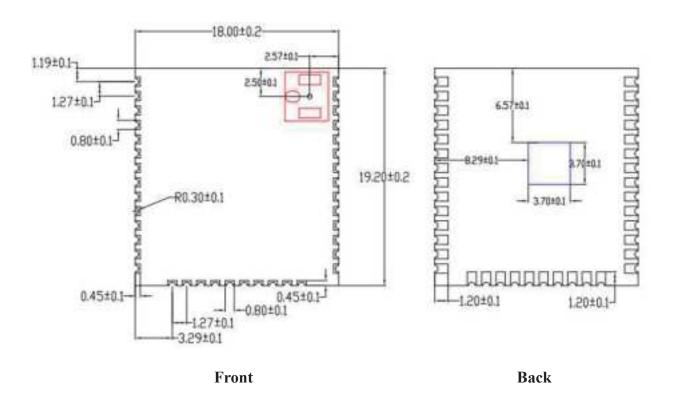



Figure 4 Module size diagram



### 4. Pin definition

ESP32-SU has a total of 38 interfaces. As shown in below pin diagram, the pin function definition table is the interface definition.

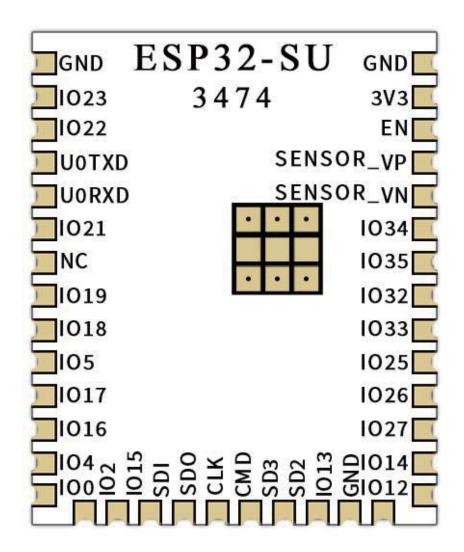



Figure 5 Schematic diagram of module pins (bottom view)



## **Table 6 Pin function definition table**

| No. | Name      | Function                                                                                                      |
|-----|-----------|---------------------------------------------------------------------------------------------------------------|
| 1   | GND       | Ground                                                                                                        |
| 2   | 3V3       | For 3.3V power supply (VDD), the output current of the external power supply is recommended to be above 500mA |
| 3   | EN        | Chip enables pin, high level effective                                                                        |
| 4   | SENSOR_VP | GPIO36,SENSOR_VP,ADC_H,ADC1_CH0,RTC_GPIO0                                                                     |
| 5   | SENSOR_VN | GPIO39,SENSOR_VN,ADC1_CH3,ADC_H,RTC_GPIO3                                                                     |
| 6   | IO34      | GPIO34,ADC1_CH6,RTC_GPIO4                                                                                     |
| 7   | IO35      | GPIO35,ADC1_CH7,RTC_GPIO5                                                                                     |
| 8   | IO32      | GPIO32,XTAL_32K_P(32.768kHz crystaloscillator input),ADC1_CH4,TOUCH9,RTC_GPIO9                                |
| 9   | IO33      | GPIO33,XTAL_32K_N(32.768kHz crystaloscillator output),ADC1_CH5,TOUCH8,RTC_GPIO8                               |
| 10  | IO25      | GPIO25,DAC_1,ADC2_CH8,RTC_GPIO6,EMAC_RXD0                                                                     |
| 11  | IO26      | GPIO26,DAC_2,ADC2_CH9,RTC_GPIO7,EMAC_RXD1                                                                     |
| 12  | IO27      | GPIO27,ADC2_CH7,TOUCH7,RTC_GPIO17,EMAC_RX_DV                                                                  |
| 13  | IO14      | GPIO14,ADC2_CH6,TOUCH6,RTC_GPIO16,MTMS,HSPICLK,<br>HS2_CLK,SD_CLK,EMAC_TXD2                                   |
| 14  | IO12      | GPIO12,ADC2_CH5,TOUCH5,RTC_GPIO15,MTDI,HSPIQ,<br>HS2_DATA2,SD_DATA2,EMAC_TXD3                                 |
| 15  | GND       | Ground                                                                                                        |
| 16  | IO13      | GPIO13,ADC2_CH4,TOUCH4,RTC_GPIO14,MTCK,HSPID,<br>HS2_DATA3,SD_DATA3,EMAC_RX_ER                                |
| 17  | SHD/SD2   | Do not use as an IO port,SD_DATA2,SPIHD,HS1_DATA2,U1RXD                                                       |
| 18  | SWP/SD3   | Do not use as an IO port,SD_DATA3,SPIWP,HS1_DATA3,U1TXD                                                       |
| 19  | SCS/CMD   | Do not use as an IO port,SD_CMD,SPICS0,HS1_CMD,U1RTS                                                          |
| 20  | SCK/CLK   | Do not use as an IO port,SD_CLK,SPICLK,HS1_CLK,U1CTS                                                          |
| 21  | SDO/SD0   | Do not use as an IO port,SD_DATA0,SPIQ,HS1_DATA0,U2RTS                                                        |
| 22  | SDI/SD1   | Do not use as an IO port,SD_DATA1,SPID,HS1_DATA1,U2CTS                                                        |
| 23  | IO15      | GPIO15,ADC2_CH3,TOUCH3,MTDO,HSPICS0,RTC_GPIO13,<br>HS2_CMD,SD_CMD,EMAC_RXD3                                   |



| 24 | IO2  | GPIO2,ADC2_CH2,TOUCH2,RTC_GPIO12,HSPIWP,<br>HS2_DATA0,SD_DATA0            |
|----|------|---------------------------------------------------------------------------|
| 25 | IO0  | GPIO0,ADC2_CH1,TOUCH1,RTC_GPIO11,CLK_OUT1,<br>EMAC_TX_CLK                 |
| 26 | IO4  | GPIO4,ADC2_CH0,TOUCH0,RTC_GPIO10,HSPIHD,<br>HS2_DATA1,SD_DATA1,EMAC_TX_ER |
| 27 | IO16 | GPIO16,HS1_DATA4,U2RXD,EMAC_CLK_OUT                                       |
| 28 | IO17 | GPIO17,HS1_DATA5,U2TXD,EMAC_CLK_OUT_180                                   |
| 29 | IO5  | GPIO5,VSPICS0,HS1_DATA6,EMAC_RX_CLK                                       |
| 30 | IO18 | GPIO18,VSPICLK,HS1_DATA7                                                  |
| 31 | IO19 | GPIO19,VSPIQ,U0CTS,EMAC_TXD0                                              |
| 32 | NC   | <del>-</del>                                                              |
| 33 | IO21 | GPIO21,VSPIHD,EMAC_TX_EN                                                  |
| 34 | RXD0 | GPIO3,U0RXD,CLK_OUT2                                                      |
| 35 | TXD0 | GPIO1,U0TXD,CLK_OUT3,EMAC_RXD2                                            |
| 36 | IO22 | GPIO22,VSPIWP,U0RTS,EMAC_TXD1                                             |
| 37 | IO23 | GPIO23,VSPID,HS1_STROBE                                                   |
| 38 | GND  | Ground                                                                    |

Note: Some pins have been pulled up internally, please refer to the schematic.

**Table 7 System Start-up Mode** 

| System start-up mode                        |           |     |   |  |  |
|---------------------------------------------|-----------|-----|---|--|--|
| Pin Default SPI start-up mode Download mode |           |     |   |  |  |
| IO0                                         | Pull up   | 1   | 0 |  |  |
| IO2                                         | Pull down | N/C | 0 |  |  |



# 5. Schematic

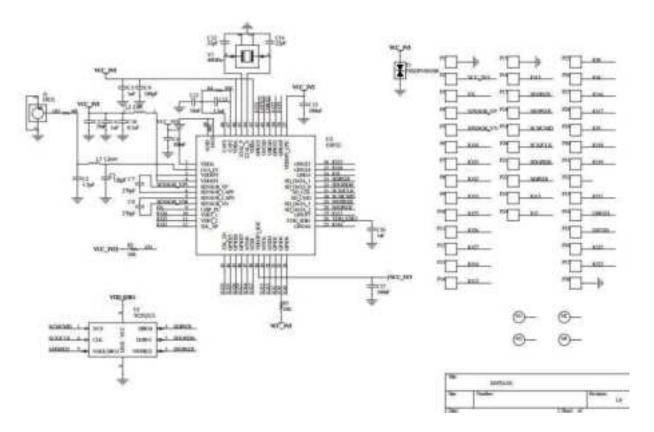



Figure 6 Module schematic



## 6. Design guidance

## 6.1. Module application circuit

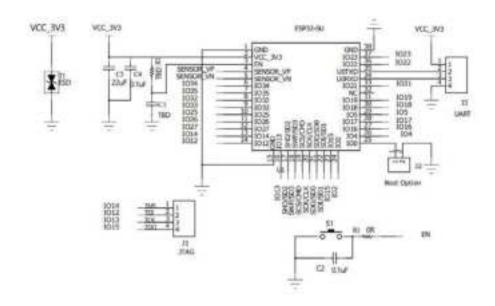



Figure 7 Application circuit diagram

#### Note

- IO0 for start control pinnormal operating mode is at high level, in flash firmware mode at low level. Inside the chip default high level.
- To ensure the normal power supply when powered on the chip, the RC delay circuit needs to be added at the EN pin. The EN pin inside the module already has a 10k pull up resistance.

## 6.2. Power supply

- Recommended voltage of 3.3V, peak current above 500mA.
- LDO is recommended; DC-DC ripple within 30mV.
- The DC-DC power supply circuit proposes to reserve the dynamic response capacitance to optimize the output ripple with large load changes.



■ It is recommended to add ESD devices on 3.3V power interface.

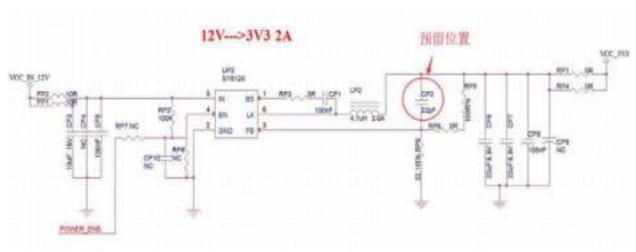



Figure 8 DC-DC anti-hypertensive circuit diagram



#### **6.3. GPIO**

- Some IO ports are lead outside the module, if using, a proposed resistance of 10-100 ohms on the IO port. This suppresses the overshoot and enables smoother levels on both sides, helping for both EMI and ESD.
- The up and down of the special IO port should refer to the use instructions of the specification, which will affect the start-up configuration of the module.
- The IO port of the module is 3.3V, if the main control does not match the IO port level of the module, the level conversion circuit should be increased.
- If the IO port is directly connected to the peripheral interface, or terminals such as pin header, it is recommended to reserve ESD devices at the IO port line near the terminal.

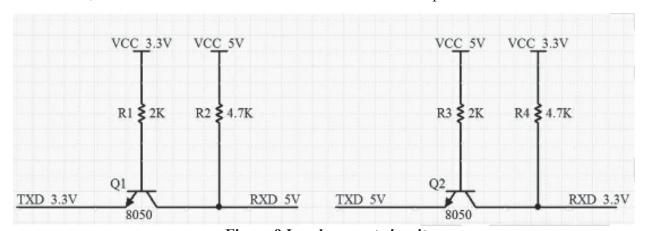



Figure 9 Level convert circuit



# 7. Flow welding curve diagram

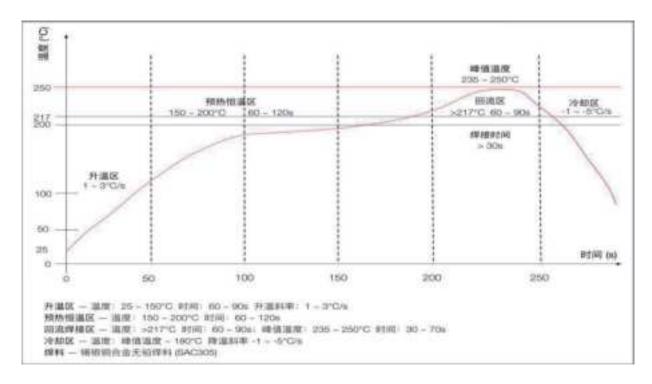



Figure 10 Flow welding diagram



# 8. Product related models

**Table 7 Product related model list** 

| Model name                       | Package                                                 | Size                  | Antenna                          |  |  |
|----------------------------------|---------------------------------------------------------|-----------------------|----------------------------------|--|--|
| ESP32-SU                         | SMD-38                                                  | 19.2*18.0*3.0(±0.2)mm | IPEX                             |  |  |
| ESP32-S                          | SMD-38                                                  | 25.5*18.0*3.0(±0.2)mm | On-board PCB<br>antenna<br>/IPEX |  |  |
| NodeMCU-32  ⊠match with  ESP32-S | DIP-30                                                  | 48.26*25.4(±0.2)mm    | On-board PCB<br>antenna<br>/IPEX |  |  |
| Pro                              | Product related information https://docs.ai-thinker.com |                       |                                  |  |  |



# 9. Product packaging information

ESP32-SU module was packaged in a tape, 700pcs /pcs. As shown in the below image:



Figure 11 Package and packing diagram

## 10. Contact us

<u>Ai-Thinker offical website</u> <u>Office forum</u> <u>Develop DOCS</u>

<u>LinkedIn</u> <u>Tmall shop</u> <u>Taobao shop</u> <u>Alibaba shop</u>

Technic support email support@aithinker.com

Domestic business cooperation sales@aithinker.com

#### Overseas business cooperation overseas@aithinker.com

Company Address Room 403,408-410, Block C, Huafeng Smart Innovation Port, Gushu 2nd Road, Xixiang, Baoan District, Shenzhen.

Tel +86-0755-29162996





Wechat offical account



## Disclaimer and copyright notice

The information in this article, including the URL address for reference, is subject to change without notice.

The document is provided "as is" without any guarantee responsibility, including any guarantee for merchantability, suitability for a specific purpose, or non-infringement, and any guarantee mentioned elsewhere in any proposal, specification or sample. This document does not bear any responsibility, including the responsibility for infringement of any patent rights arising from the use of the information in this document. This document does not grant any license for the use of intellectual property rights in estoppel or other ways, whether express or implied.

The test data obtained in the article are all obtained from Ai-Thinker's laboratory tests, and the actual results may vary slightly.

All brand names, trademarks and registered trademarks mentioned in this article are the property of their respective owners, and it is hereby declared.

The final interpretation right belongs to Shenzhen Ai-Thinker Technology Co., Ltd.

#### **Notice**

Due to product version upgrades or other reasons, the contents of this manual may be changed.

Shenzhen Ai-Thinker Technology Co., Ltd. reserves the right to modify the contents of this manual without any notice or prompt.

This manual is only used as a guide. Shenzhen Ai-Thinker Technology Co., Ltd. makes every effort to provide accurate information in this manual. However, Shenzhen Ai-Thinker Technology Co., Ltd. does not guarantee that the contents of the manual are completely free of errors. All statements and information in this manual And the suggestion does not constitute any express or implied guarantee.

#### **FCC WARNING**

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This device complies with Part 15 of the FCC Rules.

Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This device and its antenna(s) must not be co-located or operating in conjunction with any other antenna or transmitter.

15.105 Information to the user.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- —Reorient or relocate the receiving antenna.
- —Increase the separation between the equipment and receiver.
- —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- —Consult the dealer or an experienced radio/TV technician for help.

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20

cm between the radiator and your body.

Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.

This transmitter must not be co-located or operating in conjunction with any other

antenna or transmitter.

The availability of some specific channels and/or operational frequency bands are country dependent and are firmware programmed at the factory to match the intended destination.

The firmware setting is not accessible by the end user.

The final end product must be labelled in a visible area with the following:

"Contains Transmitter Module "2ATPO-ESP32-SU"

#### Requirement per KDB996369 D03

#### 2.2 List of applicable FCC rules

List the FCC rules that are applicable to the modular transmitter. These are the rules that specifically establish the bands of operation, the power, spurious emissions, and operating fundamental frequencies. DO NOT list compliance to unintentional-radiator rules (Part 15 Subpart B) since that is not a condition of a module grant that is extended to a host manufacturer. See also Section 2.10 below concerning the need to notify host manufacturers that further testing is required.3

**Explanation:** This module meets the requirements of FCC part 15C (15.247).it Specifically identified AC Power Line Conducted Emission, Radiated Spurious emissions, Band edge and RF Conducted Spurious Emissions, Conducted Peak Output Power, Bandwidth, Power Spectral Density, Antenna Requirement.

Summarize the specific operational use conditions

Describe use conditions that are applicable to the modular transmitter, including for example any limits on antennas, etc. For example, if point-to-point antennas are used that require reduction in power or compensation for cable loss, then this information must be in the instructions. If the use condition limitations extend to professional users, then instructions must state that this information also extends to the host manufacturer's instruction manual. In addition, certain information may also be needed, such as peak gain per frequency band and minimum gain, specifically for master devices in 5 GHz DFS bands.

Explanation: host Equipment modification module can only be used in the situation where the distance from the human body is more than 20cm and the antenna gain is less than 1dBi.

If a modular transmitter is approved as a "limited module," then the module manufacturer isresponsible for approving the host environment that the limited module is used with. The manufacturer of a limited module must describe, both in the filing and in the installation instructions, the alternative means that the limited module manufacturer uses to verify that the host meets the necessary requirements to satisfy the module limiting conditions.

A limited module manufacturer has the flexibility to define its alternative method to address the conditions that limit the initial approval, such as: shielding, minimum signaling amplitude, buffered modulation/data inputs, or power supply regulation. The alternative method could include that the limited

module manufacturer reviews detailed test data or host designs prior to giving the host manufacturer approval.

This limited module procedure is also applicable for RF exposure evaluation when it is necessary to demonstrate compliance in a specific host. The module manufacturer must state how control of the product into which the modular transmitter will be installed will be maintained such that full compliance of the product is always ensured. For additional hosts other than the specific host originally granted with a limited module, a Class II permissive change is required on the module grant to register the additional host as a specific host also approved with the module. **Explanation:** The module is a single module.

#### 2.6 RF exposure considerations

**Antennas** 

It is essential for module grantees to clearly and explicitly state the RF exposure conditions that permit a host product manufacturer to use the module. Two types of instructions are required for RF exposure information: (1) to the host product manufacturer, to define the application conditions (mobile, portable – xx cm from a person's body); and (2) additional text needed for the host product manufacturer to provide to end users in their end-product manuals. If RF exposure statements and use conditions are not provided, then the host product manufacturer is required to take responsibility of the module through a change in FCC ID (new application).

**Explanation:** The module complies with FCC radiofrequency radiation exposure limits for uncontrolled environments. The device is installed and operated with a distance of more than 20 cm between the radiator and your body." This module follows FCC statement design, FCC ID: 2ATPO-ESP32-SU

A list of antennas included in the application for certification must be provided in the instructions. For modular transmitters approved as limited modules, all applicable professional installer instructions must be included as part of the information to the host product manufacturer. The antenna list shall also identify the antenna types (monopole, PIFA, dipole, etc. (note that for example an "omni-directional antenna" is not considered to be a specific "antenna type")).

For situations where the host product manufacturer is responsible for an external connector, for example with an RF pin and antenna trace design, the integration instructions shall inform the installer that unique antenna connector must be used on the Part 15 authorized transmitters used in the host product.

The module manufacturers shall provide a list of acceptable unique connectors.

**Explanation:** The OEM host can equipped an antenna which antenna gain shall not greater than 1dBi.

#### 2.7 Label and compliance information

Grantees are responsible for the continued compliance of their modules to the FCC rules. This

includes advising host product manufacturers that they need to provide a physical or e-label stating "Contains FCC ID" with their finished product. See Guidelines for Labeling and User Information for RF Devices – KDB Publication 784748.

**Explanation:** The host system using this module, should have label in a visible area indicated the following texts: "Contains FCC ID: 2ATPO-ESP32-SU.

#### 2.8 Information on test modes and additional testing requirements5

Additional guidance for testing host products is given in KDB Publication 996369 D04 Module Integration Guide. Test modes should take into consideration different operational conditions for a stand-alone modular transmitter in a host, as well as for multiple simultaneously transmitting modules or other transmitters in a host product.

The grantee should provide information on how to configure test modes for host product evaluation for different operational conditions for a stand-alone modular transmitter in a host, versus with multiple, simultaneously transmitting modules or other transmitters in a host.

Grantees can increase the utility of their modular transmitters by providing special means, modes, or instructions that simulates or characterizes a connection by enabling a transmitter. This can greatly simplify a host manufacturer's determination that a module as installed in a host complies with FCC requirements.

**Explanation:** Shenzhen Ai-Thinker Technology Co., Ltd. can increase the utility of our modular transmitters by providing instructions that simulates or characterizes a connection by enabling a transmitter.

#### 2.9 Additional testing, Part 15 Subpart B disclaimer

The grantee should include a statement that the modular transmitter is only FCC authorized for the specific rule parts (i.e., FCC transmitter rules) listed on the grant, and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. If the grantee markets their product

as being Part 15

Subpart B compliant (when it also contains unintentional-radiator digital circuity), then the grantee shall provide a notice stating that the final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.

**Explanation:** The module without unintentional-radiator digital circuity, so the module does not require an evaluation by FCC Part 15 Subpart B. The host shoule be evaluated by the FCC Subpart B.