Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Compiled by

(position+printed name+signature) .: File administrators Jinghua Xiao

Supervised by

(position+printed name+signature) .: Project Engineer Xudong Zhang

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue Oct. 17, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Cheluzhe technology co., LTD

10th Floor, Building A3, New Era Gongrong Industrial Park, No.2

Address Shihuan Road, Shilong Community, Shiyan Street, Baoan District,

Shenzhen, China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Car Radio

Trade Mark: N/A

Manufacturer Shenzhen Cheluzhe technology co., LTD

Model/Type reference BQ10

Listed Models Refer to page 2

Modulation GFSK, Π/4DQPSK, 8DPSK

Frequency From 2402MHz to 2480MHz

Rating DC 12.0V From external circuit

Result PASS

Report No.: CTA24100804002 Page 2 of 42

TEST REPORT

Equipment under Test Car Radio

Model /Type **BQ10**

Listed Models K810, K811, K812, CS10, CS20, GB100, GB200, BQ20, ZB-500S,

> ZB-500M, HG108, Q91, Q96, Q98, ML333, XBH-6201, XBH-6202, XBH-6203, XBH-6861, XBH-6862, XBH-6863, XBH-7701, XBH-7702, XBH-7703, XBH-8801, XBH-8802, XBH-8803, XBH-9901, XBH-9902,

CTA TESTING

XBH-9903, 7011A, 7021A, DQ20, BH60, DH36

Applicant Shenzhen Cheluzhe technology co., LTD

10th Floor, Building A3, New Era Gongrong Industrial Park, No.2 Shihuan Address

Road, Shilong Community, Shiyan Street, Baoan District, Shenzhen, China

Manufacturer Shenzhen Cheluzhe technology co., LTD

Address 10th Floor, Building A3, New Era Gongrong Industrial Park, No.2 Shihuan

Road, Shilong Community, Shiyan Street, Baoan District, Shenzhen, China

CTA TESTING

	Took Doorell	DA00	- cTA
(0	Test Result:	PASS	(ET)
ESTING			
TATES	The test report merely corresponds to the test		

CTATESTING

It is not permitted to copy extracts of these test result without the written permission of the test ath laboratory.

Page 3 of 42 Report No.: CTA24100804002

Contents

		Contents
	1	TEST STANDARDS 4
	CAC	-cTIN
	120	CHMMADY
	<u>Z</u>	<u>SUMMARY5</u>
		General Remarks 5 Product Description 5 Equipment Under Test 5
	2.1	General Remarks 5
	2.2	Product Description 5
	2.3	Equipment Under Test 5
	2.4	Short description of the Equipment under Test (EUT) 5
	2.5	EUT operation mode 5
	2.6	Block Diagram of Test Setup 6
	2.7	Related Submittal(s) / Grant (s) 6
CIL	2.8	Modifications 6
		TEST
	<u>3</u>	TEST ENVIRONMENT 7
	<u> </u>	
		Address of the test laboratory 7 Test Facility 7
	3.1	Address of the test laboratory 7
	3.2	Test Facility 7
	3.3	Environmental conditions 7
	3.4	Summary of measurement results 8
	3.5	Address of the test laboratory 7 Test Facility 7 Environmental conditions 7 Summary of measurement results 8 Statement of the measurement uncertainty 8
	3.6	Equipments Used during the Test 9
		in G
	<u>4</u>	TEST CONDITIONS AND RESULTS
	-	A C
		TIME
	4.1	AC Power Conducted Emission 11
	4.2	Radiated Emission 12 Maximum Peak Output Power 18 20dB Bandwidth 19 Frequency Separation 23 Number of hopping frequency 25 Time of Occupancy (Dwell Time) 27
	4.3	Maximum Peak Output Power 18
	4.4	20dB Bandwidth 19
	4.5	Frequency Separation 23
	4.6	Number of hopping frequency 25
	4.7	Time of Goodpaney (Biron Time)
	4.8	Out-of-band Emissions 31
	4.9	Pseudorandom Frequency Hopping Sequence
TE	4.10	Antenna Requirement 41
TAIL		- ING
CTATE	<u>5</u>	TEST SETUP PHOTOS OF THE EUT 42
	_	CD IV
	_	C CIT
	<u>6</u>	PHOTOS OF THE EUT
		C.TA.
		CTA TESTING
		- CTA

CTATESTING

Page 4 of 42 Report No.: CTA24100804002

TEST STANDARDS

CTA TESTING

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

CTA TESTING

CTATE

CTATE

CTATESTING

Page 5 of 42 Report No.: CTA24100804002

CTA TESTING

SUMMARY

General Remarks

Date of receipt of test sample	1	Oct. 10, 2024
	(CAP)	
Testing commenced on	No. of the last	Oct. 10, 2024
Testing concluded on	:	Oct. 17, 2024

2.2 Product Description

lesting commenced on	: Oct. 10, 2024				
Testing concluded on	: Oct. 17, 2024				
2.2 Product Descript	tion				
Product Name:	Car Radio				
Model/Type reference:	BQ10				
Power supply:	DC 12.0V From external circuit				
Hardware version:	V1.0				
Software version:	Android 8.1				
Testing sample ID:	CTA241008040-1# (Engineer sample) CTA241008040-2# (Normal sample)				
Bluetooth :					
Supported Type:	Bluetooth BR/EDR				
Modulation:	GFSK, π/4DQPSK, 8DPSK				
Operation frequency:	2402MHz~2480MHz				
Channel number:	79 CTA				
Channel separation:	1MHz				
Antenna type:	Internal antenna				
Antenna gain:	0.85 dBi				

Equipment Under Test

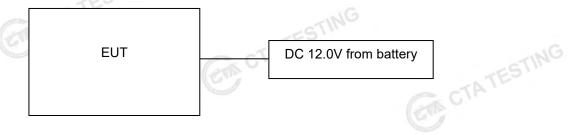
Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz	
(ETP)		•	12 V DC	0	24 V DC	
		0	Other (specified in blank be	low)	- IN
			(CL)		TES	2/1/
2.4 Short description of t	he E	qui	pment under Test (EU	T)	CTA	
This is a Car Radio.	'e man	ual	of the FLIT			

Short description of the Equipment under Test (EUT)

For more details, refer to the user's manual of the EUT.

EUT operation mode 2.5


The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Page 6 of 42 Report No.: CTA24100804002

Operation Frequency:

Channel		Frequency (MHz)		
	00	2402		
STATE OF	01 -55	2403		
	= CTA	-ING		
	38	2440		
	39	2441		
	40	2442		
	:			
G	77	2479		
	78	2480		

2.6 **Block Diagram of Test Setup**

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

CTATE

CTA TESTING

2.8 **Modifications**

CTA TESTING

No modifications were implemented to meet testing criteria.

CTA TESTING

Page 7 of 42 Report No.: CTA24100804002

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China ET CTATE

3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform electromagnetic emission measurement

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

CTATE

CTATESTING

3.3 Environmental conditions

CTA TESTING During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

tadiated Efficient.	Half Miles
Temperature:	24 ° C
	7-3
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C	
Humidity:	46 %	JUG
Atmospheric pressure:	950-1050mbar	TATESTIN
onducted testing:	(ETA)	,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Temperature:	25 ° C	7

Conducted testina:

Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
TES!	
-TA	
CTA	
CTA	CTATESTIN

Page 8 of 42 Report No.: CTA24100804002

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re	orded eport	Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK		Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK П/4DQPSK 8DPSK	⊠ Full	GFSK	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	⊠ Middle	Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK П/4DQPSK 8DPSK	 Lowest ☐ Highest	GFSK П/4DQPSK 8DPSK	☐ Lowest ☐ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK П/4DQPSK 8DPSK		GFSK П/4DQPSK 8DPSK		Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK П/4DQPSK 8DPSK	☐ Lowest☐ Middle☐ Highest	GFSK	⊠ Middle	N/A

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	1	0.57 dB	(1)

Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

Ē	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
GA	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
ľ	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
ľ	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
10	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
-	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02

Report No.: CTA24100804002 Page 10 of 42

	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
0.7	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
0.44	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
	TING					CIN
CTATE	511	CTATESTING				
1		CTATES				

CTA TESTING

CTA TESTING

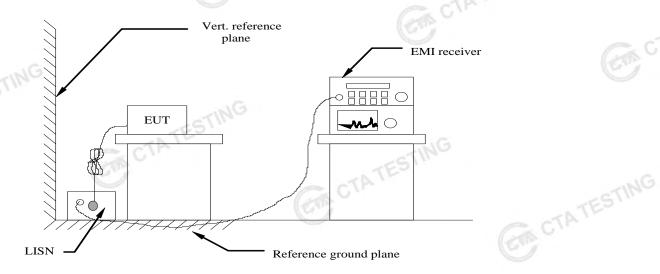
CTA TESTING

CTA TESTING

CTA TESTING

CTA TESTING

CTATE CTATE


Page 11 of 42 Report No.: CTA24100804002

CTATE

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

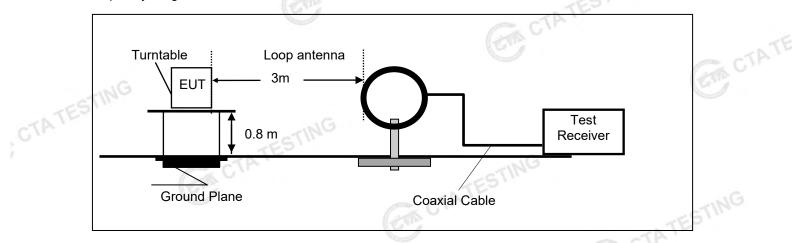
- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

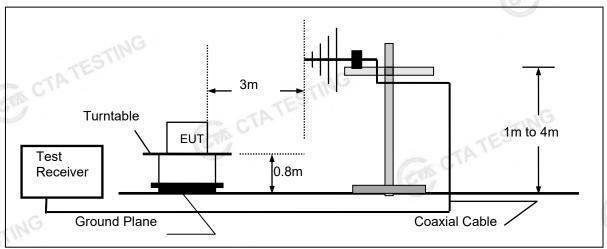
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

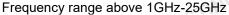
Fraguency range (MHz)	Limit (dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	_ 60	50
* Decreases with the logarithm of the frequen	ncy.	•

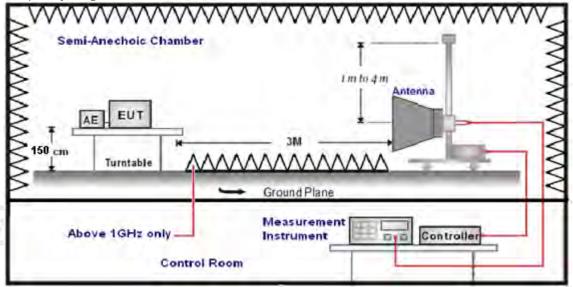
TEST RESULTS


The EUT is a Vehicle equipment, So this test item is not applicable for the EUT.

Page 12 of 42 Report No.: CTA24100804002


4.2 **Radiated Emission**


TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Page 13 of 42 Report No.: CTA24100804002

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
19112-409112	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows:	STING
FS = RA + AF + CL - AG	CTATES
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	(EV)

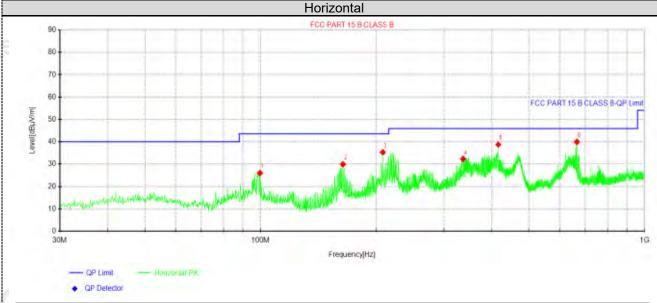
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance	Radiated (dBµV/m)	Radiated (µV/m)
	(Meters)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


Page 14 of 42 Report No.: CTA24100804002

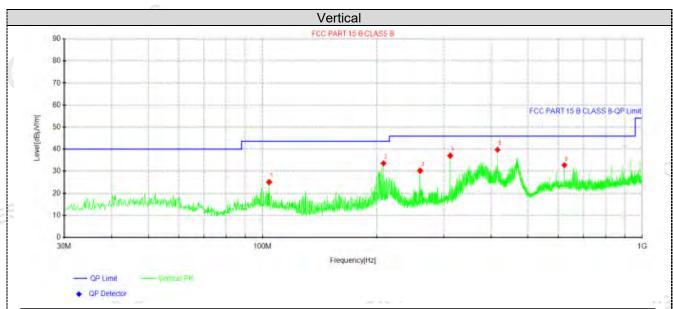
TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at GFSK, π/4 DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Su	uspe	ected Data	List							
N	10	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority
IN	IO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	99.5975	39.10	26.08	-13.02	43.50	17.42	100	186	Horizontal
	2	163.981	45.42	29.94	-15.48	43.50	13.56	100	174	Horizontal
	3	207.995	48.13	35.38	-12.75	43.50	8.12	100	314	Horizontal
	4	337.005	43.07	32.28	-10.79	46.00	13.72	100	359	Horizontal
	5	416.06	48.80	38.78	-10.02	46.00	7.22	100	186	Horizontal
	6	666.562	45.43	39.98	-5.45	46.00	6.02	100	359	Horizontal


Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

CTA TESTING

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Report No.: CTA24100804002 Page 15 of 42

Suspe	ected Data	List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolorita
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	103.962	38.19	25.17	-13.02	43.50	18.33	100	95	Vertical
2	207.995	46.37	33.62	-12.75	43.50	9.88	100	293	Vertical
3	260.011	42.22	30.26	-11.96	46.00	15.74	100	153	Vertical
4	311.906	47.99	37.10	-10.89	46.00	8.90	100	315	Vertical
5	416.06	49.76	39.74	-10.02	46.00	6.26	100	360	Vertical
6	624.003	38.45	32.73	-5.72	46.00	13.27	100	61	Vertical

CTATE

CTATESTING

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTING

CTA TESTING

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK (above 1GHz)

Freque	Frequency(MHz):			02	Pola	arity:	Н	IORIZONTA		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	amplifier		
4804.00	61.44	PK	74	12.56	65.71	32.33	5.12	41.72	-4.27	
4804.00	45.33	AV	54	8.67	49.60	32.33	5.12	41.72	-4.27	
7206.00	54.12	PK	74	19.88	54.64	36.6	6.49	43.61	-0.52	
7206.00	43.57	AV	54	10.43	44.09	36.6	6.49	43.61	-0.52	

	Freque	ncy(MHz)):	24	02	Pola	arity:		VERTICAL		
	Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
ſ	4804.00	59.73	PK	74	14.27	64.00	32.33	5.12	41.72	-4.27	
	4804.00	43.35	AV	54	10.65	47.62	32.33	5.12	41.72	-4.27	
	7206.00	52.07	PK	74	21.93	52.59	36.6	6.49	43.61	-0.52	
Ī	7206.00	42.14	AV	54	11.86	42.66	36.6	6.49	43.61	-0.52	

Freque	ncy(MHz)	:	24	41	Pola	arity:	Н	ORIZONTA	NL
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	60.91	PK	74	13.09	64.79	32.6	5.34	41.82	-3.88
4882.00	44.68	AV	54	9.32	48.56	32.6	5.34	41.82	-3.88
7323.00	53.69	PK	74	20.31	53.80	36.8	6.81	43.72	-0.11
7323.00	42.79	AV	54	11.21	42.90	36.8	6.81	43.72	-0.11

11 3-01/2									
Frequency(MHz):			2441		Polarity:		VERTICAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	58.71	PK	74	15.29	62.59	32.6	5.34	41.82	-3.88
4882.00	42.82	AV	54	11.18	46.70	32.6	5.34	41.82	-3.88
7323.00	51.37	PK	74	22.63	51.48	36.8	6.81	43.72	-0.11
7323.00	41.54	AV	54	12.46	41.65	36.8	6.81	43.72	-0.11

Frequency(MHz):		2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.39	PK	74	13.61	63.47	32.73	5.66	41.47	-3.08
4960.00	44.25	AV	54	9.75	47.33	32.73	5.66	41.47	-3.08
7440.00	52.94	PK	74	21.06	52.49	37.04	7.25	43.84	0.45
7440.00	42.34	PK	54	11.66	41.89	37.04	7.25	43.84	0.45

	100	1G							
Freque	Frequency(MHz):		2480		Polarity:		VERTICAL		•
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.17	PK	74	15.83	61.25	32.73	5.66	41.47	-3.08
4960.00	42.11	AV	54	11.89	45.19	32.73	5.66	41.47	-3.08
7440.00	50.80	PK	74	23.20	50.35	37.04	7.25	43.84	0.45
7440.00	40.96	PK	54	13.04	40.51	37.04	7.25	43.84	0.45

Page 17 of 42 Report No.: CTA24100804002

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, π/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK

Freque	ncy(MHz)	:	24	02	Pola	rity:	HORIZONTAL		\L
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	62.28	PK	74	11.72	72.70	27.42	4.31	42.15	-10.42
2390.00	42.87	AV	54	11.13	53.29	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	rity:		VERTICAL	•
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.13	PK	74	13.87	70.55	27.42	4.31	42.15	-10.42
2390.00	41.09	AV	54	12.91	51.51	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.61	PK	74	13.39	70.72	27.7	4.47	42.28	-10.11
2483.50	42.23	AV	54	11.77	52.34	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	80	Polarity:		VERTICAL		•
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	58.23	PK	74	15.77	68.34	27.7	4.47	42.28	-10.11
2483.50	40.35	AV	54	13.65	50.46	27.7	4.47	42.28	-10.11

REMARKS:

CTA TESTING

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

CTATESTING

- 3. Margin value = Limit value- Emission level.
- ETA TESTING 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 18 of 42 Report No.: CTA24100804002

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration

CTA TESTING

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	0.00		ATES
GFSK	39	1.21	20.97	Pass
	78	-0.16		
-187	3 00	0.94		
π/4DQPSK	39	2.08	20.97	Pass
	78	0.30		
1	00	1.18	TING	
8DPSK	39	2.29	20.97	Pass
	78	0.65	CIL	

CTATESTING

CTATESTING

Page 19 of 42 Report No.: CTA24100804002

20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

<u>Test Results</u>			CTAT
Modulation	Channel	20dB bandwidth (MHz)	Resu
ING	CH00	0.939	
GFSK	CH39	1.014	
CTA	CH78	0.945	
9	CH00	1.332	-1G
π/4DQPSK	CH39	1.275	Pass
	CH78	1.284	
	CH00	1.314	
8DPSK	CH39	1.293	
TING	CH78	1.293	

CTA TESTING

CTATESTING

Test plot as follows:

CTA TESTING

Report No.: CTA24100804002

Report No.: CTA24100804002

Page 23 of 42 Report No.: CTA24100804002

Frequency Separation

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

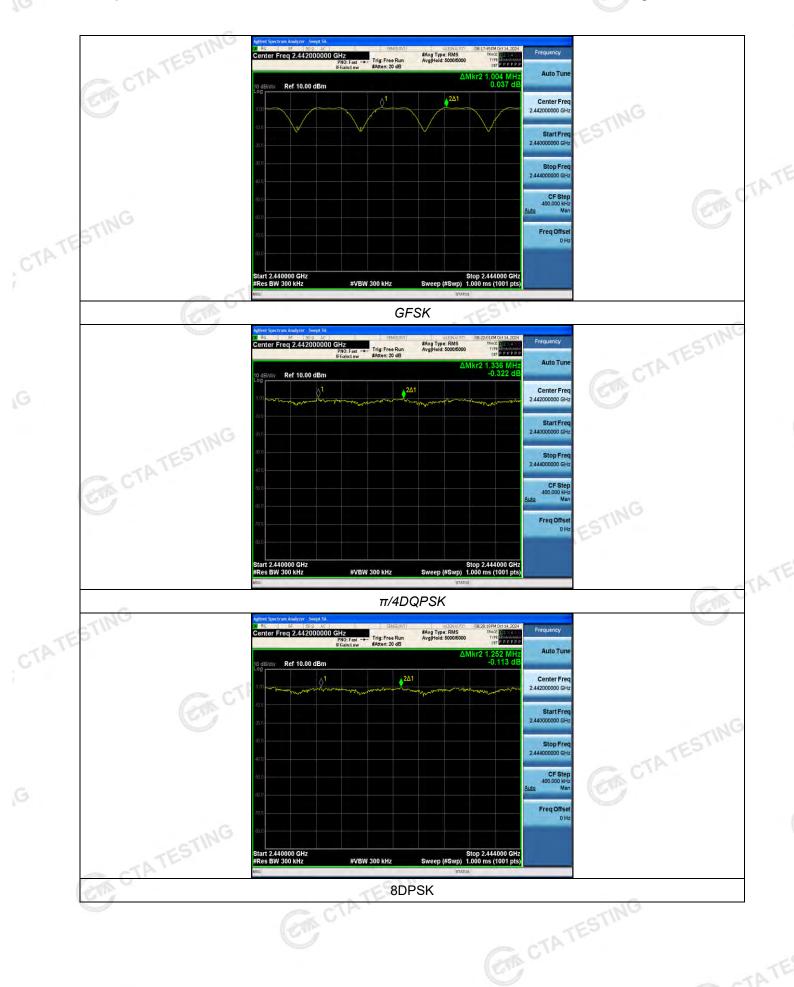
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
GFSK	CH38	1.004	25KHz or 2/3*20dB	Pass	
GFSK	CH39	1.004	bandwidth	rass	
π/4DQPSK	CH38	1.336	25KHz or 2/3*20dB	Pass	
	CH39	1.550	bandwidth	Pa55	
8DPSK	CH38	1.252	25KHz or 2/3*20dB	Door	
ODPSK	CH39	1.252	bandwidth	Pass	

CTATE

CTA TESTING

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle


Test plot as follows: CTATESTING

CTA TESTING

CTATESTING

EM CTATESTING

Report No.: CTA24100804002

Page 25 of 42 Report No.: CTA24100804002

Number of hopping frequency

Limit C

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

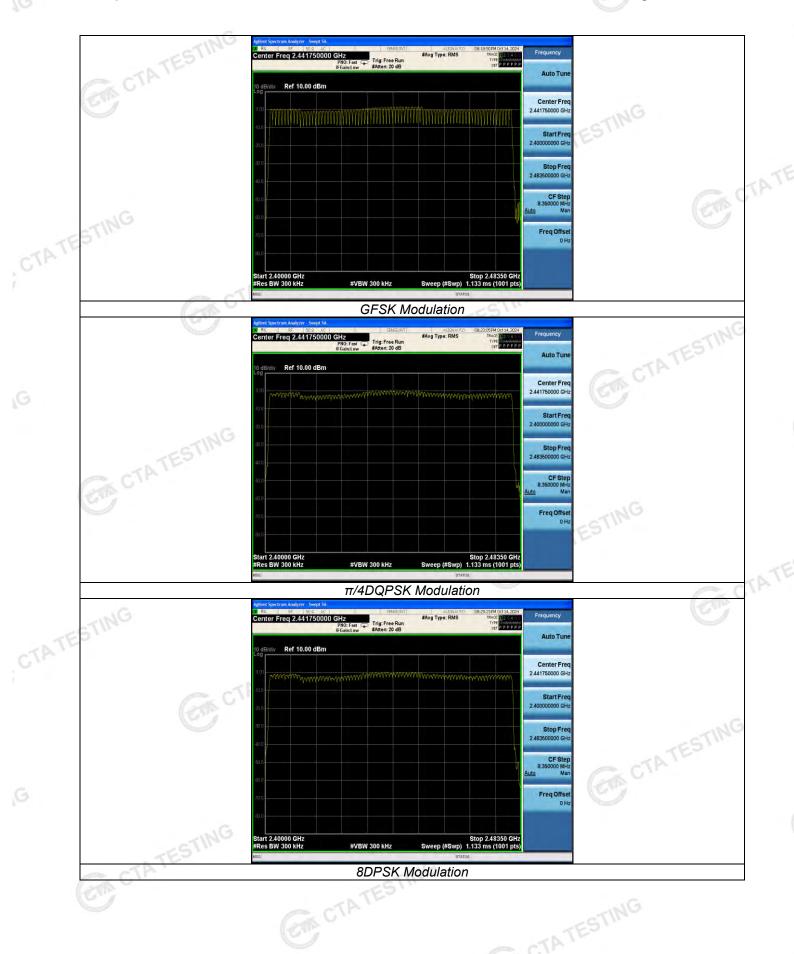
Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration

Test Results

Test Results	CTAT	Es	STING
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	(8)	60.
π/4DQPSK	79	≥15	Pass
8DPSK	79		


CTATE

CTATESTING

Test plot as follows:

CTA TESTING

CTA TESTING

Page 27 of 42 Report No.: CTA24100804002

Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

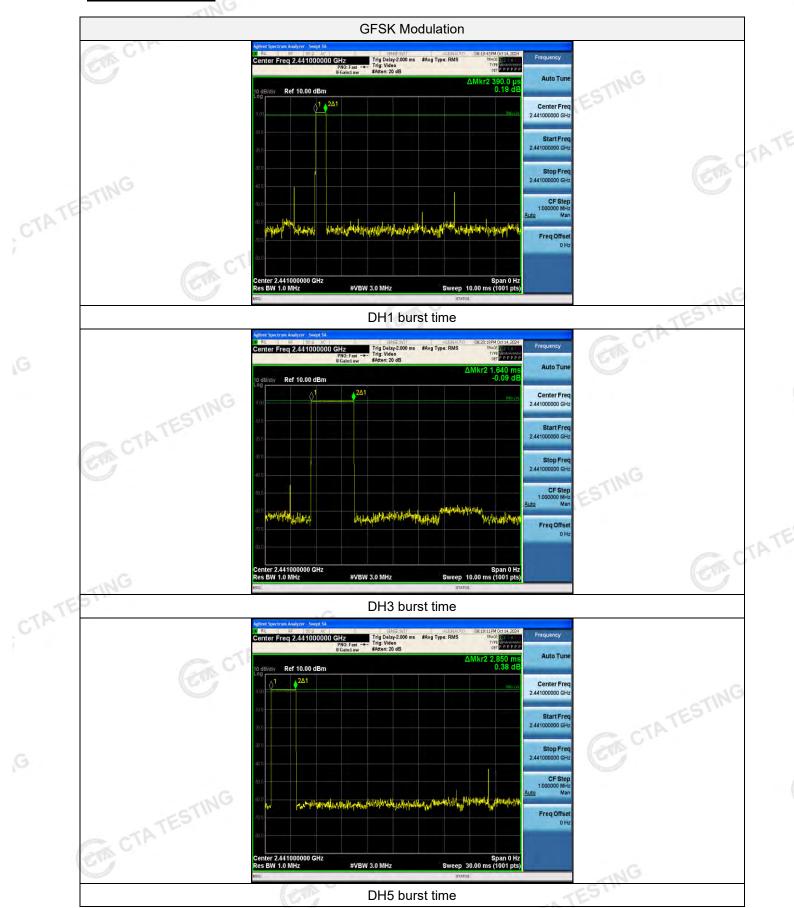
CTA TESTING

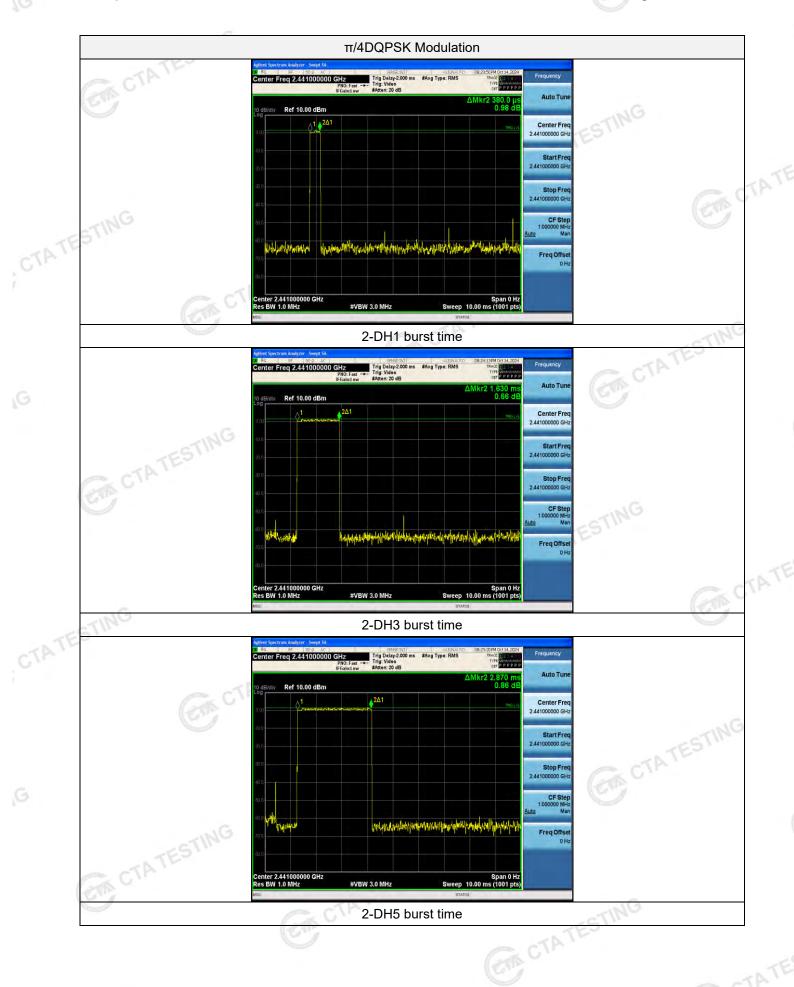
Test Results

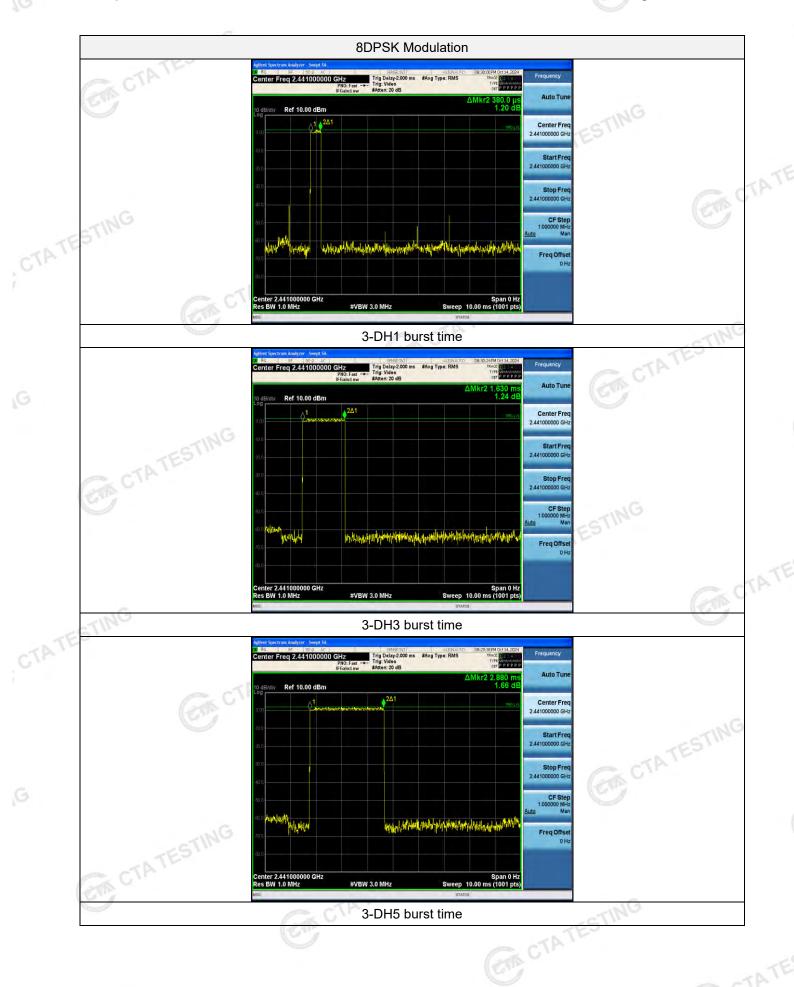
Test Results			CTATES		TESTING	
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result	
	DH1	0.390	0.125			
GFSK	DH3	1.640	0.262	0.40	Pass	
TES	DH5	2.850	0.304			
CIL	2-DH1	0.380	0.122			
π/4DQPSK	2-DH3	1.630	0.261	0.40	Pass	
	2-DH5	2.870	0.306	TESTIN		
	3-DH1	0.380	0.122	CTA		
8DPSK	3-DH3	1.630	0.261	0.40	Pass	
	3-DH5	2.880	0.307		Conc	

Note:We have tested all mode at high,middle and low channel,and recoreded worst case at middle channel.

CTA TESTING


Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3

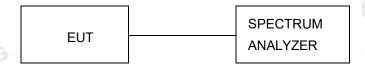

Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2-DH5, 3-DH5

Page 28 of 42 Report No.: CTA24100804002

Test plot as follows:

Report No.: CTA24100804002 Page 31 of 42

Out-of-band Emissions 4.8


Limit (

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

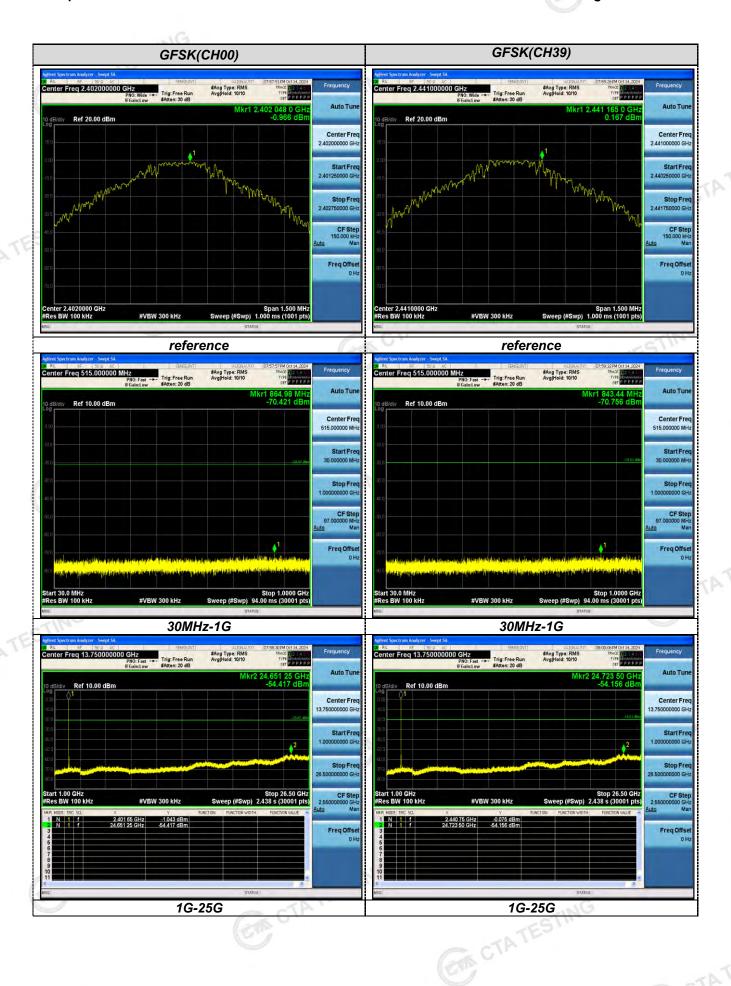
Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

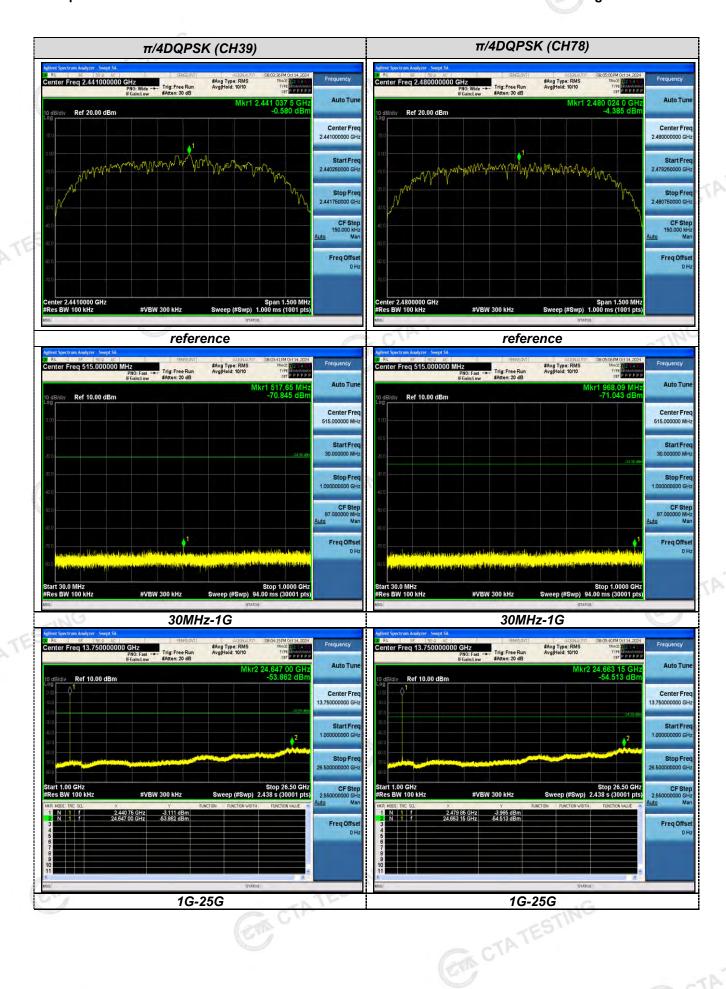
Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

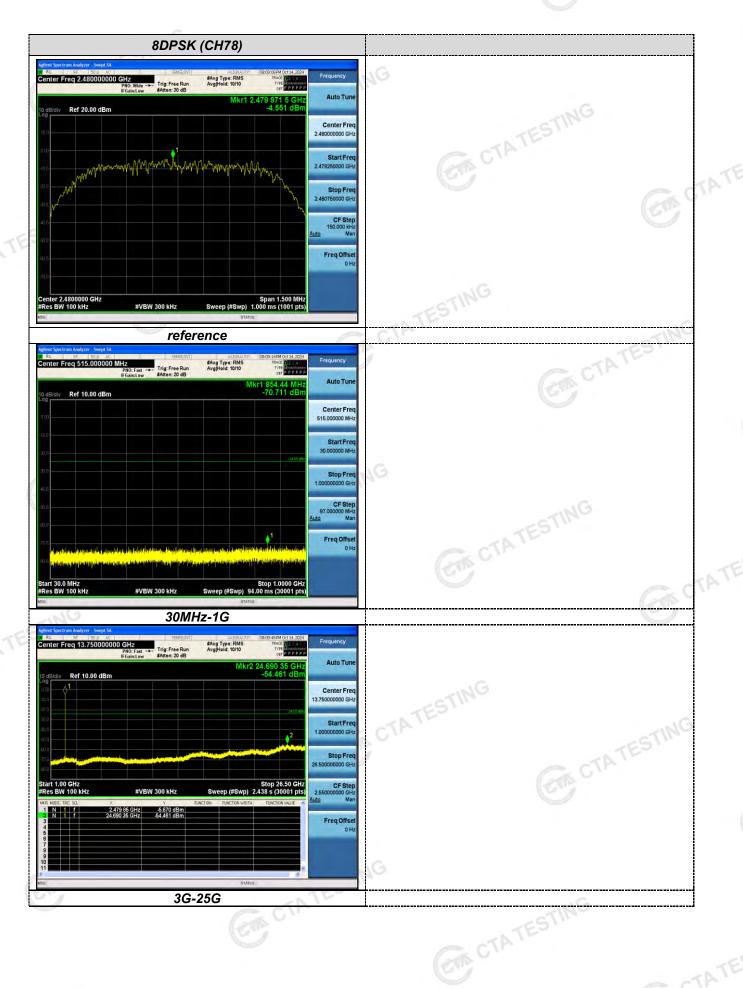
EM CTATESTING


CTATE


CTA TESTING


We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

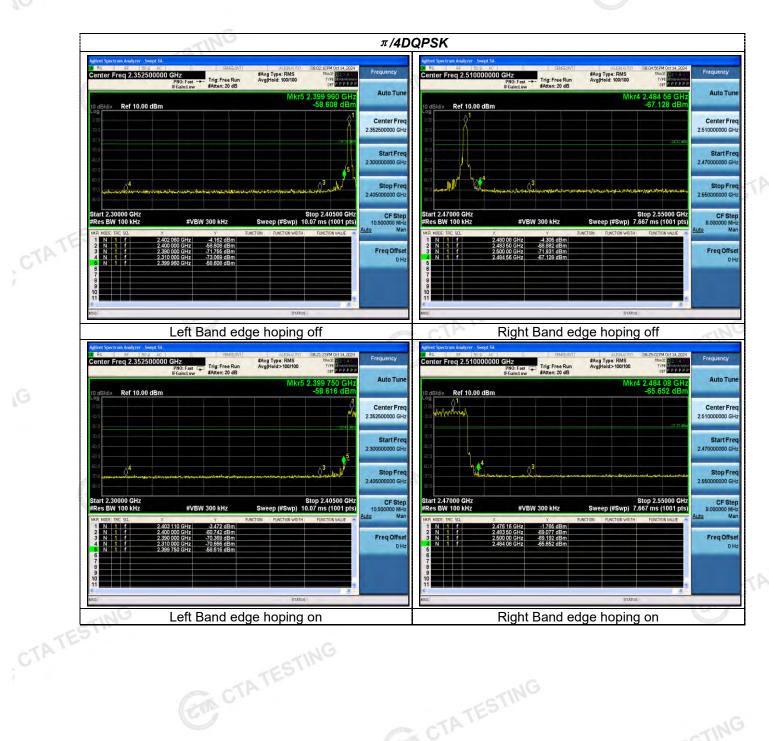

CTA TESTING

Page 37 of 42 Report No.: CTA24100804002

Band-edge Measurements for RF Conducted Emissions: **GFSK** #Avg Type: RMS Avg|Hold: 100/100 #Avg Type: RMS Avg|Hold: 100/100 Ref 10.00 dBm Ref 10.00 dBm Center Fre Center Fre CF Step 10.500000 ML Stop 2.40500 GHz Sweep (#Swp) 10.07 ms (1001 pts) Freq Offs Freq Offse Right Band edge hoping off Left Band edge hoping off #Avg Type: RMS Avg|Hold:>100/100 Auto Tun Auto Tun Ref 10.00 dBm Ref 10.00 dBm rififfili, Stop Fre Stop Fre 2.550000000 GH CF Step #VBW 300 kHz Freq Offse Freq Offse

Left Band edge hoping on

CTATESTING


CTA TESTING

CTA TESTING

CTA TESTING

Right Band edge hoping on

Page 38 of 42 Report No.: CTA24100804002

CTA TESTING

CTATESTING

CTA TESTING

Page 39 of 42 Report No.: CTA24100804002

CTA TESTING

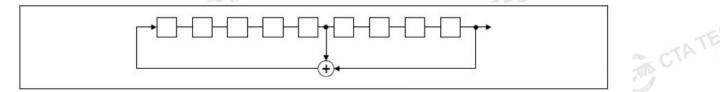
CTATESTING

CTA TESTING

Page 40 of 42 Report No.: CTA24100804002

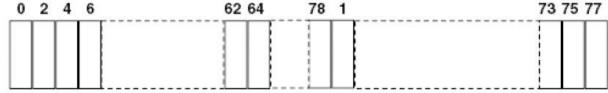
Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

CTATES

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Page 41 of 42 Report No.: CTA24100804002

4.10 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

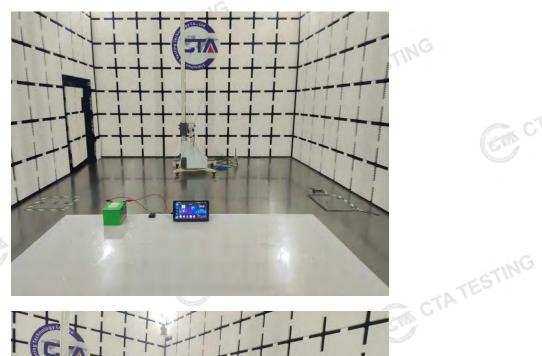
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed. CTA TESTING

Antenna Connected Construction

CTA TESTING

The maximum gain of antenna was 0.85 dBi.

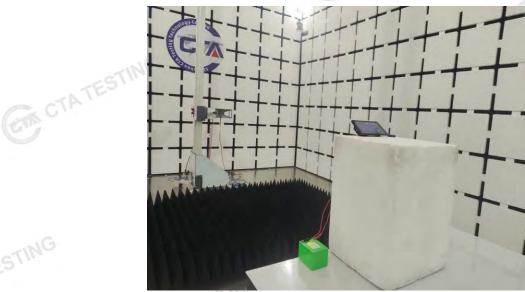
Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATES


CTATE

CTA TESTING

CTA TESTING

Page 42 of 42 Report No.: CTA24100804002


Test Setup Photos of the EUT

CTATE

CTATE

CTA TESTING

CTATESTING Photos of the EUT

CTA TESTING

Reference to the test report No. CTA24100804001.

****************** End of Report ************