FCC ID: QW3-BTUD200X Issued on Jul. 28, 2005

FCC TEST REPORT

CATEGORY: Portable

PRODUCT NAME: Bluetooth v2.0+EDR class2 USB Adapter

FCC ID.: QW3-BTUD200X

FILING TYPE: Certification

BRAND NAME: Formosa Teletek

MODEL NAME: FB-UD200X (X:0~9, a~z, A~Z)

APPLICANT: Formosa Teletek Corporation

No. 358, Hwaya 2nd Gueishan Shiang, Taoyuan, Taiwan

MANUFACTURER: Formosa Teletek Corporation

No. 358, Hwaya 2nd Gueishan Shiang, Taoyuan, Taiwan

ISSUED BY: SPORTON INTERNATIONAL INC.

6F, No. 106, Sec. 1, Hsin Tai Wu Rd., His Chih, Taipei Hsien,

Taiwan, R.O.C.

Statements:

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

Certificate or Test Report could not be used by the applicant to claim the product endorsement by CNLA and any agency of U.S. government.

The test equipments used to perform the test are calibrated and traceable to NML/ROC or NIST/USA.

Report No.: FR572020

1190 ILAC MRA

Issued on Jul. 28, 2005

Table of Contents

HISTORY OF THIS TEST REPORT	II
CERTIFICATE OF COMPLIANCE	II
1. GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST	1
1.1. Applicant	
1.2. Manufacturer	
1.3. Basic Description of Equipment under Test	
1.4. Features of Equipment under Test	1
1.5. Table for Carrier Frequencies	2
2. TEST CONFIGURATION OF THE EQUIPMENT UNDER TEST	3
2.1. Connection Diagram of Test System	3
2.2. The Test Mode Description	
2.3. Description of Test Supporting Units	∠
3. GENERAL INFORMATION OF TEST	5
3.1. Test Facility	
3.2. Standards for Methods of Measurement	
3.3. Frequency Range Investigated	5
3.4. Test Distance	5
3.5. Test Software	5
4. LIST OF MEASUREMENTS	6
4.1. Summary of the Test Results	6
5. TEST RESULT	7
5.1. Test of Hopping Channel Bandwidth	7
5.2. Test of Hopping Channel Separation	10
5.3. Test of Number of Hopping Frequency	13
5.4. Test of Test of Dwell Time of Each Frequency	15
5.5. Maximum Peak Output Power	
5.6. Test of Band Edges Emission	23
5.7. Test of AC Power Line Conducted Emission	
5.8. Test of Spurious Radiated Emission	
5.9. RF Exposure	
5.10. Antenna Requirements	47
6. LIST OF MEASURING EQUIPMENTS USED	48
7. COMPANY PROFILE	50
7.1. Certificate of Accreditation	50
7.2. Test Location	50
8. CNLA CERTIFICATE OF ACCREDITATION	51
ADDENDIV A DUOTOCDADUS OF FUT	A1 A5

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255: Report No.: FR572020

FCC ID: QW3-BTUD200X Issued on Jul. 28, 2005

Issued on Jul. 28, 2005 Report No.: FR572020

HISTORY OF THIS TEST REPORT

Received Date: Jul. 20, 2005
Test Date: Jul. 25, 2005

Original Report Issue Date: Jul. 28, 2005

Report No.: FR572020

■ No additional attachment.

☐ Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255: Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005 Report No.: FR572020

CERTIFICATE OF COMPLIANCE

with

47 CFR FCC Part 15 Subpart C

PRODUCT NAME: Bluetooth v2.0+EDR class2 USB Adapter

BRAND NAME: Formosa Teletek

MODEL NAME: FB-UD200X (X:0~9, a~z, A~Z)

APPLICANT: Formosa Teletek Corporation

No. 358, Hwaya 2nd Gueishan Shiang, Taoyuan, Taiwan

MANUFACTURER: Formosa Teletek Corporation

No. 358, Hwaya 2nd Gueishan Shiang, Taoyuan, Taiwan

I HEREBY CERTIFY THAT:

The measurements shown in this test report were made in accordance with the procedures given in ANSI C63.4-2003 and all test are performed according to 47 CFR FCC Part 15 Subpart C. Testing was carried out on Jul. 25, 2005 at SPORTON International Inc. LAB.

Wayre Hsu / Supervisor Sporton International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255: Page No. : iii

Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005 Report No.: FR572020

1. General Description of Equipment under Test

1.1. Applicant

Formosa Teletek Corporation

No. 358, Hwaya 2nd Gueishan Shiang, Taoyuan, Taiwan

1.2. Manufacturer

Formosa Teletek Corporation

No. 358, Hwaya 2nd Gueishan Shiang, Taoyuan, Taiwan

1.3. Basic Description of Equipment under Test

This product is a class 2 Bluetooth USB Adapter. The technical data has been listed on section "Features of Equipment under Test".

1.4. Features of Equipment under Test

Items	Description
Type of Modulation	GFSK
Number of Channels	79
Frequency Band	2402 MHz ~ 2480 MHz
Carrier Frequency	See section 1.5 for details
Max. Peak Power	1.94 dBm
Antenna Type	Printed Antenna / 2.95 dBi
Testing Duty Cycle	42.19%
Test Power Source	DC 5V from host equipment
Temperature Range (Operating)	-10 ~ 50 °C

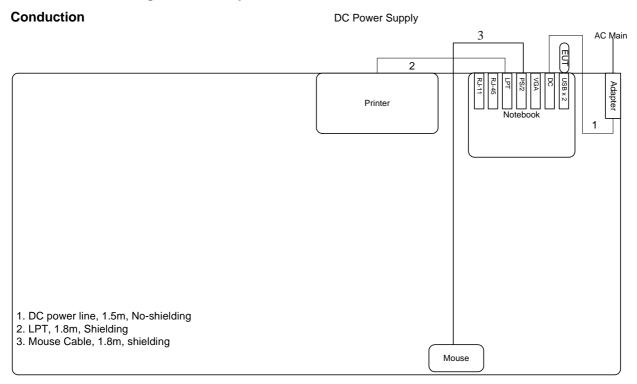
SPORTON International Inc.

Page No. : 1 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255

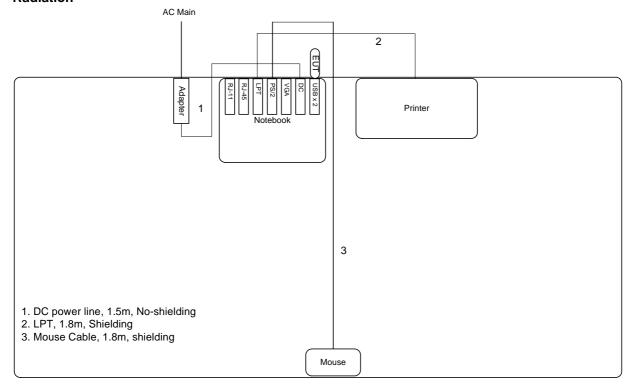
Issued on Jul. 28, 2005

1.5. Table for Carrier Frequencies

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
00	2402 MHz	20	2422 MHz	40	2442 MHz	60	2462 MHz
01	2403 MHz	21	2423 MHz	41	2443 MHz	61	2463 MHz
02	2404 MHz	22	2424 MHz	42	2444 MHz	62	2464 MHz
03	2405 MHz	23	2425 MHz	43	2445 MHz	63	2465 MHz
04	2406 MHz	24	2426 MHz	44	2446 MHz	64	2466 MHz
05	2407 MHz	25	2427 MHz	45	2447 MHz	65	2467 MHz
06	2408 MHz	26	2428 MHz	46	2448 MHz	66	2468 MHz
07	2409 MHz	27	2429 MHz	47	2449 MHz	67	2469 MHz
08	2410 MHz	28	2430 MHz	48	2450 MHz	68	2470 MHz
09	2411 MHz	29	2431 MHz	49	2451 MHz	69	2471 MHz
10	2412 MHz	30	2432 MHz	50	2452 MHz	70	2472 MHz
11	2413 MHz	31	2433 MHz	51	2453 MHz	71	2473 MHz
12	2414 MHz	32	2434 MHz	52	2454 MHz	72	2474 MHz
13	2415 MHz	33	2435 MHz	53	2455 MHz	73	2475 MHz
14	2416 MHz	34	2436 MHz	54	2456 MHz	74	2476 MHz
15	2417 MHz	35	2437 MHz	55	2457 MHz	75	2477 MHz
16	2418 MHz	36	2438 MHz	56	2458 MHz	76	2478 MHz
17	2419 MHz	37	2439 MHz	57	2459 MHz	77	2479 MHz
18	2420 MHz	38	2440 MHz	58	2460 MHz	78	2480 MHz
19	2421 MHz	39	2441 MHz	59	2461 MHz		


TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 2 of 51
Issued Date : Jul. 28, 2005

Report No.: FR572020


Issued on Jul. 28, 2005 Report No.: FR572020

2. Test Configuration of the Equipment under Test

Connection Diagram of Test System

Radiation

SPORTON International Inc.

Page No. : 3 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255

Issued on Jul. 28, 2005 Report No.: FR572020

2.2. The Test Mode Description

- 1. For FHSS modulation, GFSK is the worst case on all test items.
- 2. According to ANSI C63.4-2003: Frequency range of EUT is more than 10 MHz, we have to test the lowest, middle and highest channels of EUT.
- 3. Spurious emission below 1GHz is independent of channel selection and there will be no effect on test results so only channel 39 with GFSK modulation was tested.
- 4. AC conduction emission is measured when EUT links with the notebook.

2.3. Description of Test Supporting Units

Support unit	Brand	Model No.	FCC ID
Notebook	COMPAQ	PP2150 (1500)	DoC
Printer	EPSON	LQ-680	DoC
Mouse (PS2)	LOGITECH	M-S34	DoC

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 4 of 51
Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005 Report No.: FR572020

3. General Information of Test

3.1. Test Facility

Test Site Location : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiag, Tao

Yuan Hsien, Taiwan, R.O.C.

: TEL 886-3-327-3456 : FAX 886-3-318-0055

Test Site No : 03CH03-HY, CO04-HY

Standards for Methods of Measurement 3.2.

Here is the list of the standards followed in this test report.

ANSI C63.4-2003

47 CFR FCC Part 15 Subpart C

3.3. Frequency Range Investigated

Radiated emission test: from 30 MHz to 10th carrier harmonic.

3.4. Test Distance

The test distance of radiated emission (30MHz~1GHz) test from antenna to EUT is 3 M.

The test distance of radiated emission (1GHz~10th carrier harmonic) test from antenna to EUT is 3 M.

3.5. **Test Software**

An executive program, EMITEST.EXE under WIN XP, which generates a complete line of continuously repeating "H" pattern was used as the test software.

Power Parameters of Bluetooth

Test Software Version		Broadcom blue tool	
Frequency	2402 MHz	2441 MHz	2480 MHz
Parameters	0	0	0

Page No. : 5 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005

4. List of Measurements

4.1. Summary of the Test Results

Applied Standard: 47 CFR FCC Part 15 Subpart C				
Paragraph	FCC Section	Description of Test	Result	
5.1	15.247(a)(1)	Hopping Channel Bandwidth	Pass	
5.2	15.247(a)(1)	Hopping Channel Separation	Pass	
5.3	15.247(b)(1)	Number of Hopping Frequency Used	Pass	
5.4	15.247(a)(1)(iii)	Dwell Time of Each Frequency	Pass	
5.5	15.247(b)(1)	Maximum Peak Output Power	Pass	
5.6	15.247(d)	Band Edges Emission	Pass	
5.7	15.207	AC Power Line Conducted Emission	Pass	
5.8	15.247(d)	Spurious Radiated Emission	Pass	
5.9	15.203/15.247(b)/(c)	Antenna Requirement	Pass	

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Report No.: FR572020

Issued on Jul. 28, 2005 Report No.: FR572020

5. Test Result

5.1. Test of Hopping Channel Bandwidth

5.1.1 Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.1.2 Measuring Instruments

Item 16 of the table on section 6.

5.1.3 Description of Major Test Instruments Setting

 Spectrum Analyzer : R&S FSP30

Attenuation Auto

Center Frequency 2402 MHz / 2441 MHz / 2480 MHz

Span Frequency > 20dB Bandwidth

RB30 kHz VΒ 100 kHz Detector Peak Trace Max Hold Sweep Time Auto

5.1.4 Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 30KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time to Auto.
- 4. The 20dB spectrum width is the spectrum with level higher than 20dB below the peak level.
- 5. Repeat above point 1~3 for the lowest, middle, and highest channel of the EUT.

5.1.5 Test Setup Layout

5.1.6 Test Criteria

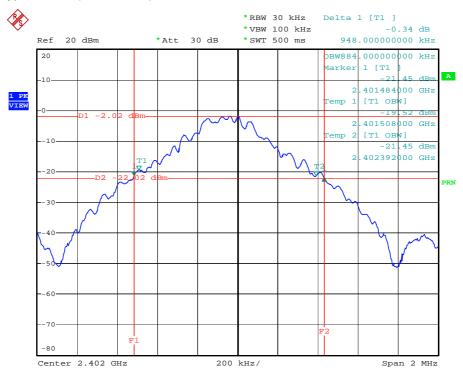
All test results complied with the requirements of Section 15.247(a)(1). Measurement Uncertainty is 1x10⁻⁵.

SPORTON International Inc.

Page No. : 7 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255

Issued on Jul. 28, 2005 Report No.: FR572020

5.1.7 Test Result


 Temperature: 25°C Relative Humidity: 60%

Duty Cycle of the Equipment During the Test: 42.19%

Test Engineer: Eason Lu

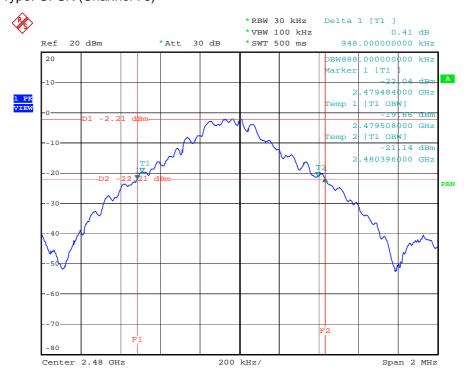
Modulation Type	Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	99% Occupied BW (kHz)	Min. Limit (kHz)
GFSK	00	2402 MHz	948.00	884.00	25
GFSK	39	2441 MHz	956.00	884.00	25
GFSK	78	2480 MHz	948.00	888.00	25

Modulation Type: GFSK (Channel 00):

22.JUL.2005 16:10:10

Page No. : 8 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005

FAX: 886-2-2696-2255


Issued on Jul. 28, 2005 Report No.: FR572020

Modulation Type: GFSK (Channel 39):

22.JUL.2005 16:13:43

Modulation Type: GFSK (Channel 78):

22.JUL.2005 16:15:14 Date:

Page No. : 9 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255

Issued on Jul. 28, 2005 Report No.: FR572020

5.2. **Test of Hopping Channel Separation**

5.2.1 Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

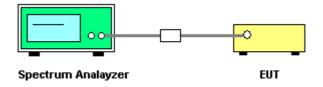
5.2.2 Measuring Instruments

Item 16 of the table on section 6.

5.2.3 Description of Major Test Instruments Setting

• Spectrum Analyzer : R&S FSP30

Attenuation Auto


Center Frequency : 2402 MHz / 2441 MHz / 2480 MHz Span Frequency > One time channel separation

RB 100 kHz **VB** 100 kHz Detector Peak Trace Max Hold Sweep Time Auto

5.2.4 Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time to Auto.
- 4. The Hopping Channel Separation is defined as the separation between 2 neighboring hopping frequencies.
- 5. Repeat above points 1~3 for the lowest, middle, and highest channel of the EUT.

5.2.5 Test Setup Layout

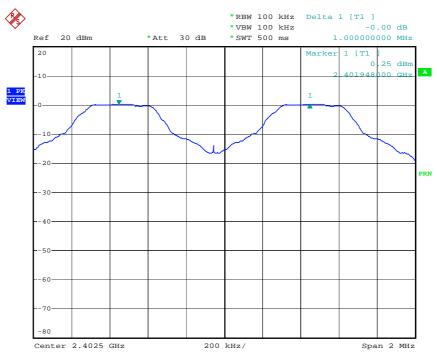
5.2.6 Test Criteria

All test results complied with the requirements of Section 15.247(a)(1). Measurement Uncertainty is 1x10⁻⁵.

Page No. : 10 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255

Issued on Jul. 28, 2005 Report No.: FR572020

5.2.7 Test Result

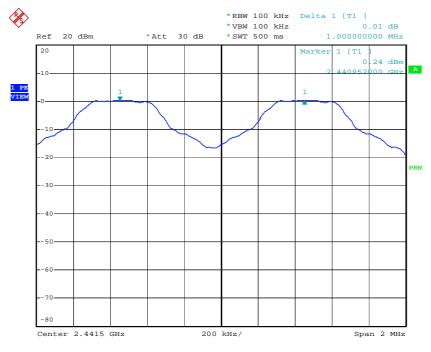

 Temperature: 25°C Relative Humidity: 60%

Duty Cycle of the Equipment During the Test: 42.19%

Test Engineer: Eason Lu

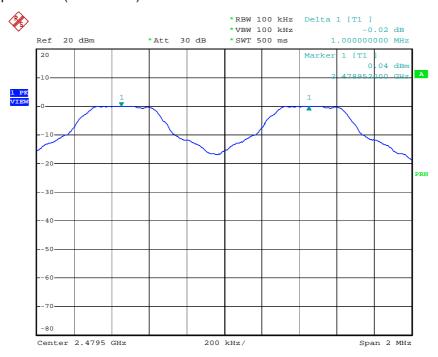
Modulation Type	Channel No.	Frequency (MHz)	Hopping Channel Separation (kHz)	Min. Limit (kHz)
GFSK	00	2402 MHz	1000	948.00
GFSK	39	2441 MHz	1000	956.00
GFSK	78	2480 MHz	1000	948.00

Modulation Type: GFSK (Channel 00):



22.JUL.2005 16:19:57

Page No. : 11 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255


Issued on Jul. 28, 2005 Report No.: FR572020

Modulation Type: GFSK (Channel 39):

22.JUL.2005 16:19:02

Modulation Type: GFSK (Channel 78):

Date: 22.JUL.2005 16:18:06

Page No. : 12 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255

Issued on Jul. 28, 2005 Report No.: FR572020

Test of Number of Hopping Frequency

5.3.1 Applicable Standard

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels.

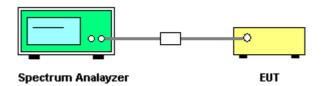
5.3.2 Measuring Instruments

Item 16 of the table on section 6.

5.3.3 Description of Major Test Instruments Setting

• Spectrum Analyzer : R&S FSP30

Attenuation Auto


Center Frequency : 2402 MHz ~ 2480 MHz : > Operation frequency range Span Frequency

RB : 100 kHz **VB** : 100 kHz

5.3.4 Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time to Auto.
- 4. Observe hopping frequency in 2400MHz~2483.5MHz, there are at least 75 non-overlapping channels.
- 5. Repeat above point 1~3 for the lowest, middle and highest channel of the EUT.

5.3.5 Test Setup Layout

5.3.6 Test Criteria

All test results complied with the requirements of Section 15.247(b)(1). Measurement Uncertainty is 1x10⁻⁵.

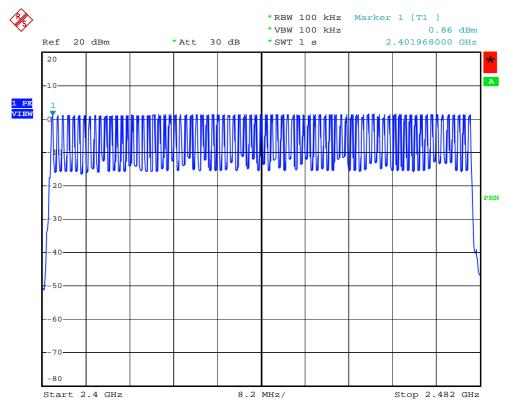
5.3.7 Test Result

Temperature: 25°C Relative Humidity: 60%

Duty Cycle of the Equipment During the Test: 42.19%

Test Engineer: Eason Lu

Modulation	Channel	Frequency	Number of Hopping Ch. (Channels)	Min. Limit
Type	No.	(MHz)		(Channels)
GFSK	00 ~ 78	2402 MHz ~ 2480 MHz	79	75


SPORTON International Inc.

Page No. : 13 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005

FAX: 886-2-2696-2255

Issued on Jul. 28, 2005 Report No.: FR572020

Modulation Type: GFSK (Channel 00 ~ Channel 78):

Date: 22.JUL.2005 19:53:19

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 14 of 51 Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005 Report No.: FR572020

Test of Test of Dwell Time of Each Frequency

5.4.1 Applicable Standard

Section 15.247 (a)(1): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

5.4.2 Measuring Instruments

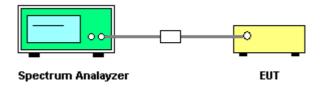
Item 16 of the table on section 6.

5.4.3 Description of Major Test Instruments Setting

 Spectrum Analyzer R&S FSP30

Attenuation Auto

Center Frequency 2402 MHz / 2441 MHz / 2480 MHz


Span Frequency 0MHz RB 1 MHz **VB** 1 MHz Detector Peak Trigger Video

Sweep Time > One pulse time

5.4.4 Test Procedures and Test Instruments Setting

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 1000kHz and VBW to 1000kHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is more than once pulse time.
- 4. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- 5. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 6. Measure the maximum time duration of one single pulse.
- 7. DH5 Packet permit maximum 3.37 hops per second in each channel. So, the dwell time is the time duration of the pulse times 106.6 within 31.6 seconds.
- 8. DH3 Packet permit maximum 5.06 hops per second in each channel. So, the dwell time is the time duration of the pulse times 160 within 31.6 seconds.
- 9. DH1 Packet permit maximum 10.12 hops per second in each channel. So, the dwell time is the time duration of the pulse times 320 within 31.6 seconds.

5.4.5 Test Setup Layout

5.4.6 Test Criteria

All test results complied with the requirements of Section 15.247(a)(1)(iii). Measurement Uncertainty is 1x10⁻⁵.

SPORTON International Inc.

Page No. : 15 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255

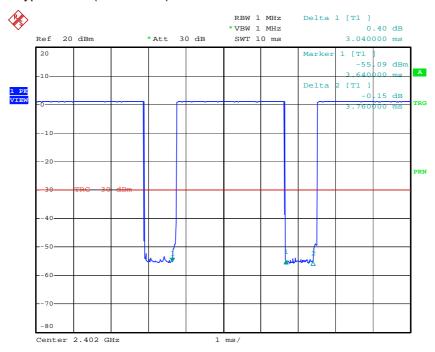
Issued on Jul. 28, 2005

5.4.7 Test Result

Temperature: 25°CRelative Humidity: 60%

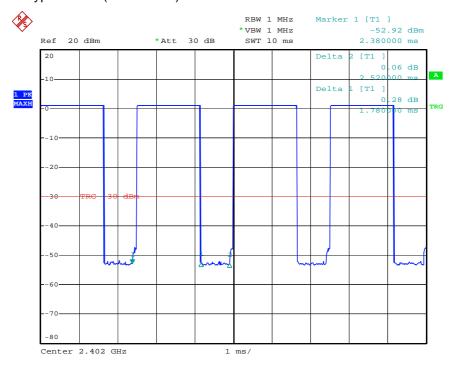
• Duty Cycle of the Equipment During the Test: 42.19%

Test Engineer: Eason Lu


Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)
DH5	2402 MHz	3.0400	0.3243	0.4000
DH3	2402 MHz	1.7800	0.2848	0.4000
DH1	2402 MHz	0.5400	0.1728	0.4000
DH5	2441 MHz	3.0400	0.3243	0.4000
DH3	2441 MHz	1.7800	0.2848	0.4000
DH1	2441 MHz	0.5200	0.1664	0.4000
DH5	2480 MHz	3.0400	0.3243	0.4000
DH3	2480 MHz	1.7800	0.2848	0.4000
DH1	2480 MHz	0.5200	0.1664	0.4000

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 16 of 51
Issued Date : Jul. 28, 2005

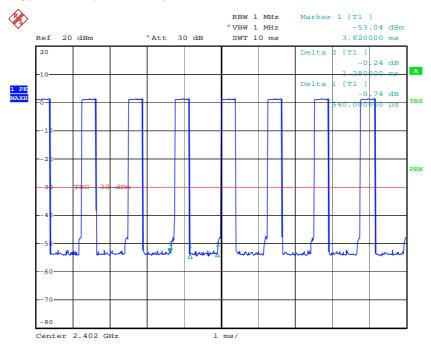
Report No.: FR572020


Issued on Jul. 28, 2005 Report No.: FR572020

DH5 Modulation Type: GFSK (Channel 00):

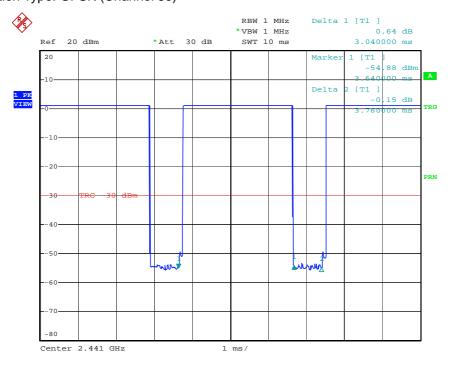
22.JUL.2005 17:57:39 Date:

DH3 Modulation Type: GFSK (Channel 00):



22.JUL.2005 17:52:12 Date:

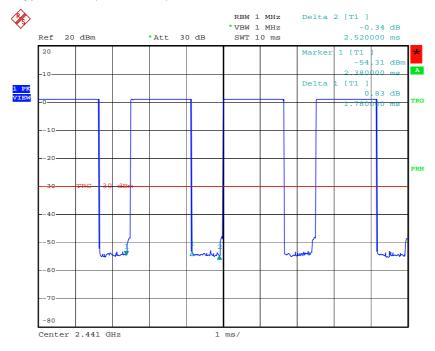
Page No. : 17 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255


Issued on Jul. 28, 2005 Report No.: FR572020

DH1 Modulation Type: GFSK (Channel 00):

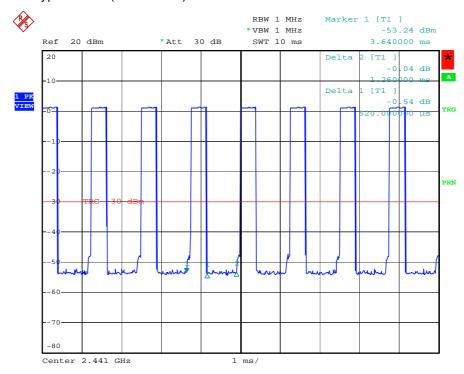
22.JUL.2005 17:29:17

DH5 Modulation Type: GFSK (Channel 39):



22.JUL.2005 17:56:32 Date:

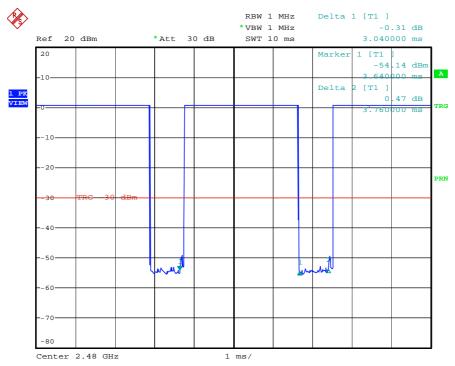
Page No. : 18 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255


Issued on Jul. 28, 2005 Report No.: FR572020

DH3 Modulation Type: GFSK (Channel 39):

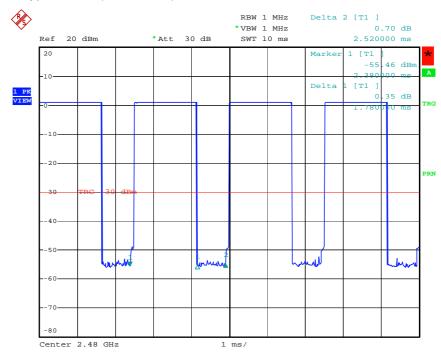
22.JUL.2005 17:52:48

DH1 Modulation Type: GFSK (Channel 39):



22.JUL.2005 17:30:11 Date:

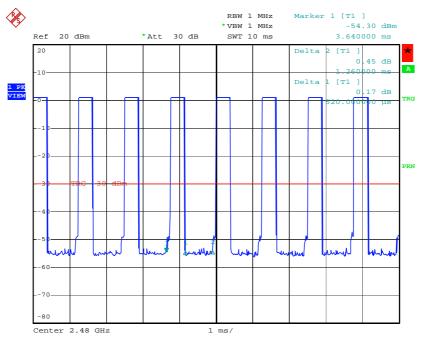
Page No. : 19 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255


Issued on Jul. 28, 2005 Report No.: FR572020

DH5 Modulation Type: GFSK (Channel 78):

22.JUL.2005 17:57:14 Date:

DH3 Modulation Type: GFSK (Channel 78):



22.JUL.2005 17:53:19 Date:

Page No. : 20 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255

Issued on Jul. 28, 2005 Report No.: FR572020

DH1 Modulation Type: GFSK (Channel 78):

Date: 22.JUL.2005 17:30:45

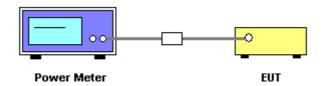
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 21 of 51
Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005 Report No.: FR572020

Maximum Peak Output Power

5.5.1 Applicable Standard

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels and The maximum peak output power shall not exceed 1 watt.


5.5.2 Measuring Instruments

Item 17, 19 of the table on section 6.

5.5.3 Test Procedures and Test Instruments Setting

- 1. The transmitter output was connected to the peak power meter and recorded the peak value.
- 2. Repeated point 1 for the lowest, middle, and highest channel of the EUT.

5.5.4 Test Setup Layout

5.5.5 Test Criteria

All test results complied with the requirements of 15.247(b)(1). Measurement Uncertainty is 1.5dB.

5.5.6 Test Result of Conducted Peak Power

Temperature: 25°C Relative Humidity: 60%

Duty Cycle of the Equipment During the Test: 42.19%

Test Engineer: Eason Lu

Modulation Type	Channel No.	Frequency (MHz)	Output Power (dBm)	Limits (dBm)
GFSK	00	2402 MHz	1.94	30
GFSK	GFSK 39		1.91	30
GFSK	78	2480 MHz	1.67	30

SPORTON International Inc.

Page No. : 22 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005

FAX: 886-2-2696-2255

Issued on Jul. 28, 2005 Report No.: FR572020

5.6. **Test of Band Edges Emission**

5.6.1 Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

5.6.2 Measuring Instruments

Item 1~15 of the table on section 6 for radiated measurement. Item 16 of the table on section 6 for conducted measurement.

5.6.3 Description of Major Test Instruments Setting

Spectrum Analyzer : R&S FSP30 (Conducted Measurement)

Attenuation Auto

Center Frequency : 2402 MHz / 2480 MHz

: 100MHz Span Frequency RB 100 kHz VB : 100 kHz : Peak Detector Trace Max Hold Sweep Time : Auto

Spectrum Analyzer : R&S FSP40 (Radiated Measurement)

Attenuation : Auto

: 2402 MHz / 2480 MHz Center Frequency

Span Frequency : 100MHz

RB : 1 MHz for PK value / 1 MHz for AV value **VB** 1 MHz for PK value / 10 Hz for AV value

: Peak Detector Trace : Max Hold Sweep Time Auto

5.6.4 Test Procedures

Conducted Measurement

1. The transmitter is set to the lowest channel.

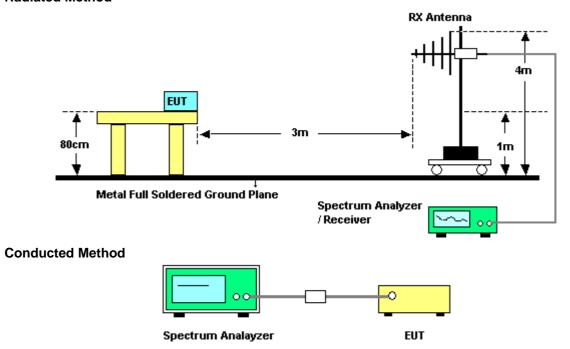
- 2. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.
- 3. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100MHz bandwidth from lower band edge. Then detector set to peak and max hold this trace.
- 4. The lowest band edges emission was measured and recorded.
- 5. The transmitter set to the highest channel and repeated point 2~4.

SPORTON International Inc.

Page No. : 23 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255

Issued on Jul. 28, 2005 Report No.: FR572020

Radiated Measurement


- 1. Configure the EUT according to ANSI C63.4-2003.
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For band edge emission, use 10Hz VBW and 1MHz RBW for reading under AV and use 1MHz VBW and 1 MHz RBW for reading under PK.
- 6. The transmitter set to the highest channel and repeated point 2~5.

When pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. So duty factor is shown below:

Duty factor = $20 \times \log 10(0.4219) = -7.5$ dB Average value = Peak value + Duty factor

5.6.5 Test Setup

Radiated Method

5.6.6 Test Criteria

All test results complied with the requirements of 15.247(d). Measurement Uncertainty is 2.26dB.

Page No. : 24 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255

Issued on Jul. 28, 2005 Report No.: FR572020

5.6.7 Test Results for CH 00 / 2402 MHz

Modulation Type: GFSKTemperature: 27°CRelative Humidity: 60%

Duty Cycle of the Equipment During the Test: 42.19%

Test Engineer: Ted Chiu

Freq	Level	Over Limit	Read Level	Limit Line	Factor		Preamp Factor	Remark
MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
2389.800	54.22	-19.78	24.10	74.00	30.12	1.90	0.00	Peak
2389.800	28.74	-25.26	-1.38	54.00	30.12	1.90	0.00	Average

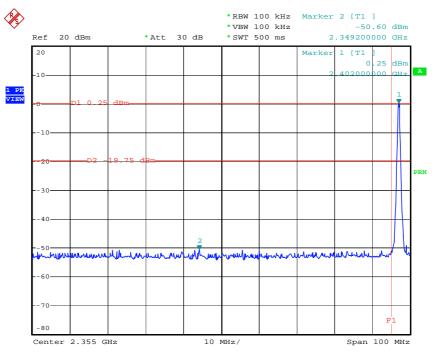
5.6.8 Test Results for CH 78 / 2480 MHz

Modulation Type: GFSKTemperature: 27°CRelative Humidity: 60%

Duty Cycle of the Equipment During the Test: 42.19%

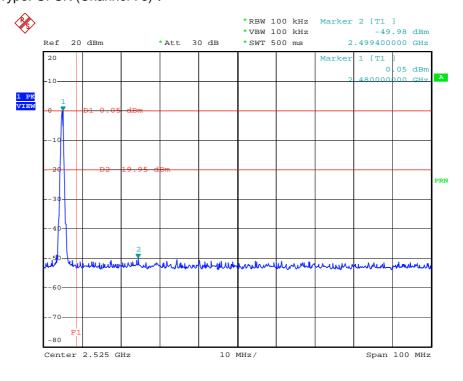
Test Engineer: Ted Chiu

Freq	Level	Over Limit	Read Level	Limit Line	Factor		Preamp Factor	Remark
MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
2483.500	60.95	-13.05	30.62	74.00	30.33	1.96	0.00	Peak
2483.500	35.47	-18.53	5.14	54.00	30.33	1.96	0.00	Average


Level*: The max field strength in the restricted bands.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 25 of 51 Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005 Report No.: FR572020


5.6.9 Test Result of Conducted Emission

Modulation Type: GFSK (Channel 00):

Date: 22.JUL.2005 16:11:53

Modulation Type: GFSK (Channel 78):

22.JUL.2005 16:16:37 Date:

Page No. : 26 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255

Issued on Jul. 28, 2005 Report No.: FR572020

5.7. Test of AC Power Line Conducted Emission

5.7.1 Applicable Standard

Section 15.207: For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)		
0.15~0.5	66~56	56~46		
0.5~5	56	46		
5~30	60	50		

5.7.2 Measuring Instruments

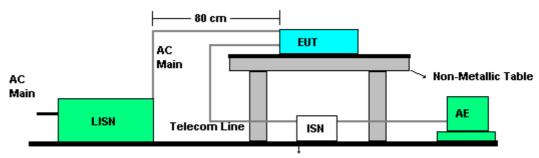
Please reference item 26~30 in chapter 6 for the instruments used for testing.

5.7.3 Description of Major Test Instruments Setting

Test Receiver : R&S ESCS 30

Attenuation : 10 dB
Start Frequency : 0.15 MHz
Stop Frequency : 30 MHz
IF Bandwidth : 9 KHz

5.7.4 Test Procedures


- 1. Configure the EUT according to ANSI C63.4-2003.
- 2. The EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN)
- 4. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 5. The frequency range from 150 KHz to 30 MHz was searched.
- 6. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. The measurement has to be done between each power line and ground at the power terminal for each RF channel. Only one RF channel has to be investigated since this test is independent with the RF channel selection.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Issued Date: Jul. 28, 2005

Issued on Jul. 28, 2005 Report No.: FR572020

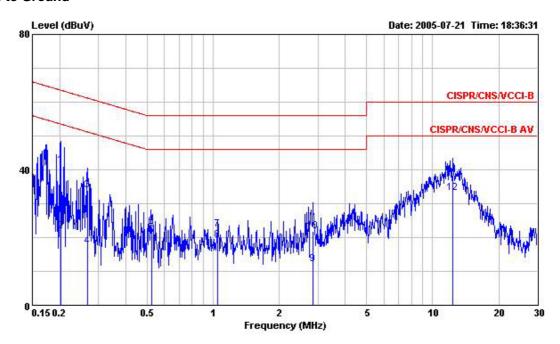
5.7.5 Test Setup Layout

Metal Full Soldered Ground Plane

5.7.6 Test Criteria

All test results complied with the requirements of 15.207. Measurement Uncertainty is 2.54dB.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 28 of 51 Issued Date : Jul. 28, 2005

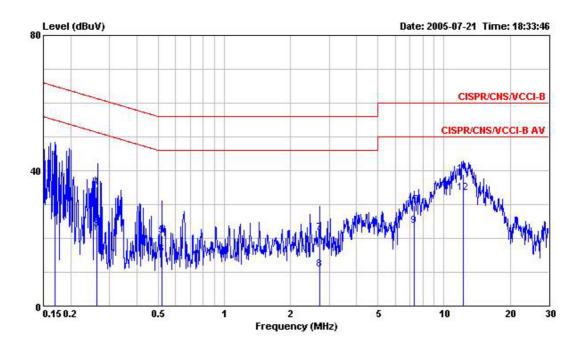


Issued on Jul. 28, 2005

5.7.7 Test Result of Conducted Emission

Temperature: 25°CRelative Humidity: 46%Test Engineer: Sky Wu

Line to Ground



	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.2018130	41.31	-22.23	63.54	41.05	0.06	0.20	QP
2	0.2018130	21.88	-31.66	53.54	21.62	0.06	0.20	Average
3	0.2672410	33.83	-27.37	61.20	33.48	0.06	0.29	QP
4	0.2672410	17.48	-33.72	51.20	17.13	0.06	0.29	Average
5	0.5224490	20.44	-25.56	46.00	20.06	0.11	0.27	Average
6	0.5224490	23.27	-32.73	56.00	22.89	0.11	0.27	QP
7	1.050	22.42	-33.58	56.00	21.70	0.11	0.61	QP
8	1.050	19.18	-26.82	46.00	18.46	0.11	0.61	Average
9	2.851	12.09	-33.91	46.00	11.67	0.16	0.26	Average
10	2.851	21.82	-34.18	56.00	21.40	0.16	0.26	QP
11	12.379	38.48	-21.52	60.00	37.29	0.21	0.98	QP
12	@ 12.379	33.05	-16.95	50.00	31.86	0.21	0.98	Average

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Report No.: FR572020

Issued on Jul. 28, 2005

Neutral to Ground

			0ver	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	8 .
1	0.1694400	42.29	-22.70	64.99	41.78	0.11	0.40	QP
2	0.1694400	31.73	-23.26	54.99	31.22	0.11	0.40	Average
3	0.2631440	22.55	-28.78	51.33	22.16	0.11	0.28	Average
4	0.2631440	35.05	-26.28	61.33	34.66	0.11	0.28	QP
5	0.5182420	20.87	-35.13	56.00	20.38	0.23	0.26	QP
6	0.5182420	15.26	-30.74	46.00	14.77	0.23	0.26	Average
7	2.721	21.47	-34.53	56.00	20.98	0.23	0.26	QP
8	2.721	10.82	-35.18	46.00	10.33	0.23	0.26	Average
9	7.331	23.75	-26.25	50.00	23.20	0.30	0.25	Average
10	7.331	29.79	-30.21	60.00	29.24	0.30	0.25	QP
11	12.251	38.93	-21.07	60.00	37.64	0.33	0.96	QP
12	@ 12.251	33.36	-16.64	50.00	32.07	0.33	0.96	Average

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Report No.: FR572020

Issued on Jul. 28, 2005

5.7.8 Photographs of Conducted Emission Test Configuration

FRONT VIEW

REAR VIEW

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 31 of 51

Report No.: FR572020

Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005 Report No.: FR572020

5.8. **Test of Spurious Radiated Emission**

5.8.1 Applicable Standard

Section 15.247(d): Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

5.8.2 Measuring Instruments

Please reference item 1~15 in chapter 6 for the instruments used for testing.

5.8.3 Description of Major Test Instruments Setting

 Spectrum Analyzer R&S FSP40

Attenuation Auto

Start Frequency 1000 MHz

Stop Frequency 10th carrier harmonic RB / VB 1 MHz / 1MHz for Peak RB/VB 1 MHz / 10Hz for Average

Test Receiver R&S ESCS 30

Attenuation Auto Start Frequency 30 MHz Stop Frequency 1000 MHz

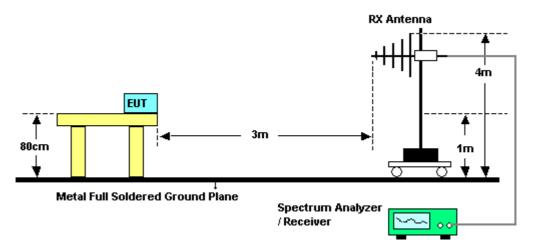
RB 120 KHz for QP or PK

5.8.4 Test Procedures

- 1. Configure the EUT according to ANSI C63.4-2003.
- 2. The EUT was placed on the top of the turntable 0.8 meter above ground.
- 3. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 4. Power on the EUT and all the supporting units.
- 5. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 6. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 7. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 8. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 9. For emission above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 10. If the emission level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz and average method for above the 1GHz. the reported.

SPORTON International Inc.

Page No. : 32 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005


FAX: 886-2-2696-2255

Issued on Jul. 28, 2005

11. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB higher than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

5.8.5 Test Setup Layout

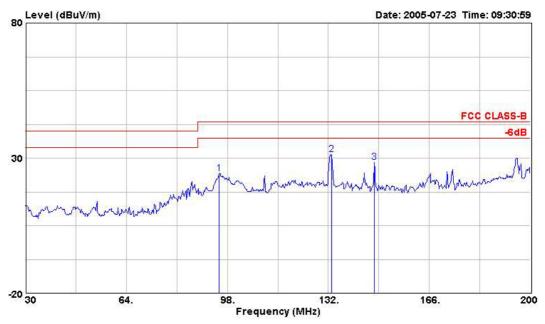
5.8.6 Test Criteria

All test results complied with the requirements of Section 15.247(d). Measurement Uncertainty is 2.26dB.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 33 of 51 Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005

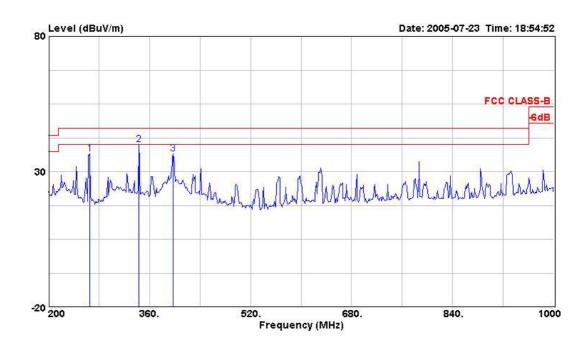
Report No.: FR572020


5.8.7 Test Results for CH 39 / 2441 MHz (for emission below 1GHz)

 Temperature: 28°C Relative Humidity: 60%

Duty Cycle of the Equipment During the Test: 42.19%

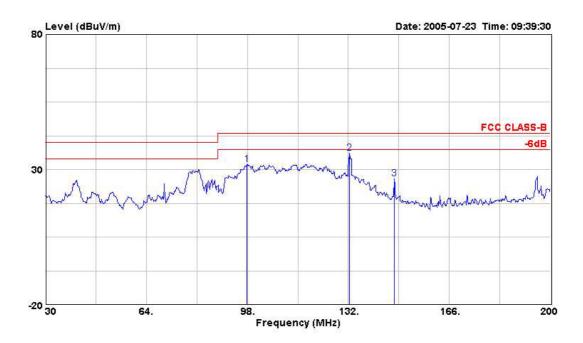
Test Engineer: Ted Chiu


(A) Polarization: Horizontal

	Freq	Level	Over Limit	Read Level		Factor		Preamp Factor		Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB			deg
1	95.110	24.30	-19.20	44.28	43.50	-19.98	0.93	29.67	Peak		
2	133.190	31.42	-12.08	48.57	43.50	-17.15	1.15	30.72	Peak	===	
3	147.470	28.42	-15.08	45.66	43.50	-17.24	1.19	30.50	Peak		

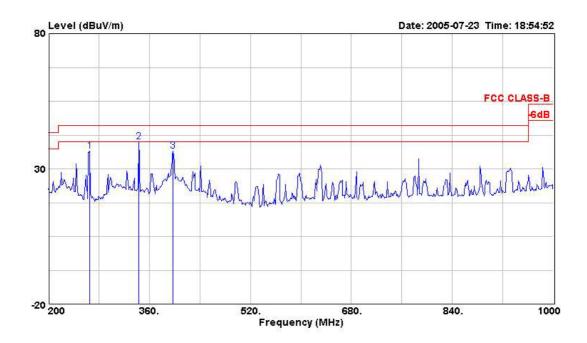
Page No. : 34 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005 Report No.: FR572020


	Freq	Level	Over Limit	Read Level		Factor		Preamp Factor		Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB		cm	deg
1	265.600	36.48	-9.52	52.88	46.00	-16.40	1.62	30.79	Peak		
2 0	343.200	39.99	-6.01	54.04	46.00	-14.05	1.78	30.94	Peak		
3	397.600	36.67	-9.33	49.15	46.00	-12.48	1.97	31.17	Peak		

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

Issued on Jul. 28, 2005 Report No.: FR572020


(B) Polarization: Vertical

			Over	Read	Limit		Cable	Preamp		Ant	Table
	Freq	Level	Limit	Level	Line	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB		cm	deg
1	97.830	31.81	-11.69	52.24	43.50	-20.43	0.94	30.26	Peak		
2	132.340	36.02	-7.48	53.19	43.50	-17.17	1.15	30.71	Peak		0.000000
3	147.470	26.67	-16.83	43.91	43.50	-17.24	1.19	30.50	Peak		

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

Issued on Jul. 28, 2005 Report No.: FR572020

	Freq	Level	Over Limit	Read Level	Limit Line	Factor		Preamp Factor		Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB		cm	deg
1	265.600	36.48	-9.52	52.88	46.00	-16.40	1.62	30.79	Peak		
2 0	343.200	39.99	-6.01	54.04	46.00	-14.05	1.78	30.94	Peak		
3	397.600	36.67	-9.33	49.15	46.00	-12.48	1.97	31.17	Peak		

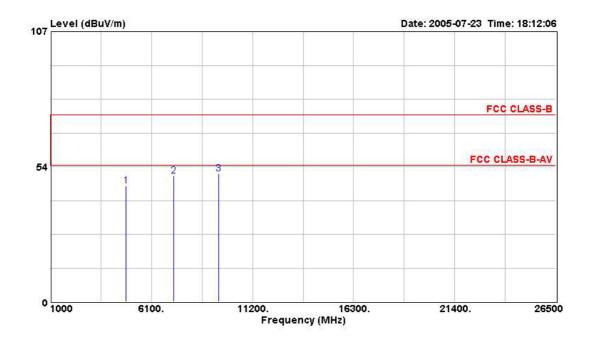
Note:

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

Issued on Jul. 28, 2005

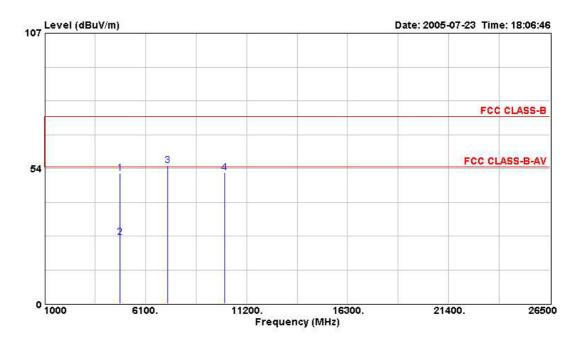

5.8.8 Test Results for CH 00 / 2402 MHz (for emission above 1GHz)

Temperature: 28°CRelative Humidity: 60%

Duty Cycle of the Equipment During the Test: 42.19%

Test Engineer: Ted Chiu

(A) Polarization: Horizontal



	Freq	Level	Over Limit	Read Level		Factor		Preamp Factor		Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB		cm	deg
1	4808.000	45.96	-28.04	42.57	74.00	3.40	2.84	32.54	PEAK		
2	7204.000	49.84	-24.16	42.69	74.00	7.15	3.61	32.35	PEAK		
3	9472.000	50.71	-23.29	42.00	74.00	8.71	4.02	33.40	PEAK		

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 38 of 51 Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005 Report No.: FR572020

(B) Polarization: Vertical

	Freq	Level	Over Limit	Read Level	Limit Line	Factor		Preamp Factor		Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB		cm	deg
1	4804.000	51.67	-22.33	48.27	74.00	3.40	2.84	32.54	PEAK		
2	4804.000	26.20	-27.80	22.80	54.00	3.40	2.84	32.54	Average		
3	7204.000	54.50	-19.50	47.35	74.00	7.15	3.61	32.35	PEAK	0.00.00	
4	10080.000	51.84	-22.16	42.22	74.00	9.62	4.04	33.40	PEAK		

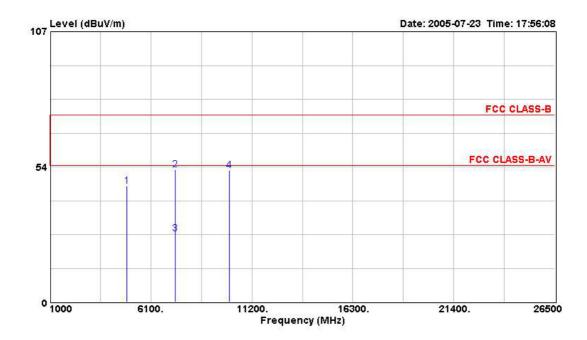
Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 39 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005

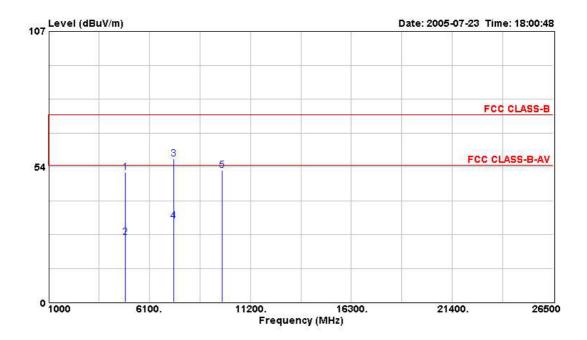

5.8.9 Test Results for CH 39 / 2441 MHz (for emission above 1GHz)

Temperature: 27°CRelative Humidity: 60%

Duty Cycle of the Equipment During the Test: 42.19%

Test Engineer: Ted Chiu

(A) Polarization: Horizontal



	Freq	Level	Over Limit	Read Level		Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB		cm	deg
1	4884.000	45.96	-28.04	42.43	74.00	3.53	2.87	32.55	PEAK		
2	7320.000	52.48	-21.52	45.25	74.00	7.23	3.65	32.61	PEAK		
3	7320.000	27.00	-27.00	19.77	54.00	7.23	3.65	32.61	Average		0.0000
4	10044.000	51.96	-22.04	42.39	74.00	9.57	4.01	33.42	PEAK		

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 40 of 51 Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005 Report No.: FR572020

(B) Polarization: Vertical

	Freq	Level	Over Limit	Read Level	Limit Line	Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB		cm	deg
1	4884.000	51.16	-22.84	47.63	74.00	3.53	2.87	32.55	PEAK		
2	4884.000	25.68	-28.32	22.15	54.00	3.53	2.87	32.55	Average	-	
3	7324.000	56.57	-17.43	49.35	74.00	7.23	3.65	32.61	PEAK		
4	7324.000	32.08	-21.92	24.85	54.00	7.23	3.65	32.61	Average		
5	9764.000	52.12	-21.88	42.97	74.00	9.15	3.99	33.44	PEAK		

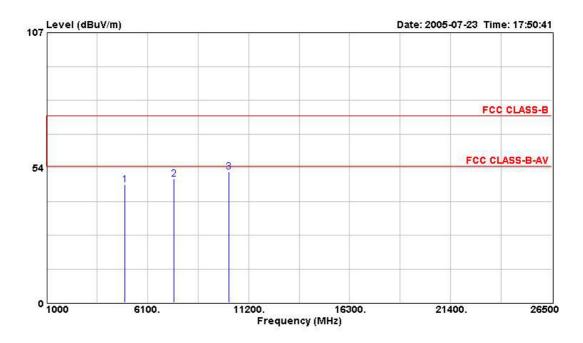
Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 41 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005

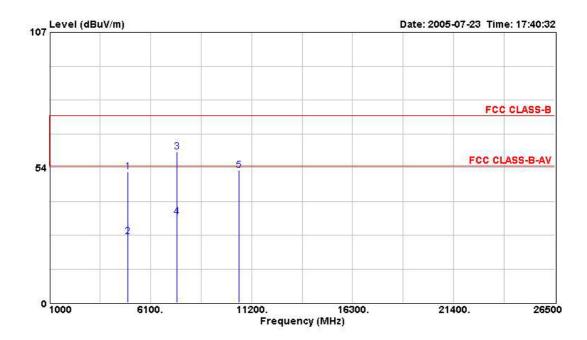

5.8.10 Test Results for CH 78 / 2480 MHz (for emission above 1GHz)

Temperature: 27°CRelative Humidity: 60%

Duty Cycle of the Equipment During the Test: 42.19%

Test Engineer: Ted Chiu

(A) Polarization: Horizontal


L

			Over	Read	Limit		Cable	Preamp		Ant	Table
	Freq	Level	Limit	Level	Line	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB		cm	deg
1	4960.000	46.83	-27.17	43.14	74.00	3.70	2.91	32.56	PEAK		
2	7440.000	48.99	-25.01	41.69	74.00	7.30	3.69	32.87	PEAK	===	
3	10200.000	51.95	-22.05	42.14	74.00	9.81	4.14	33.29	PEAK		

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 42 of 51 Issued Date : Jul. 28, 2005

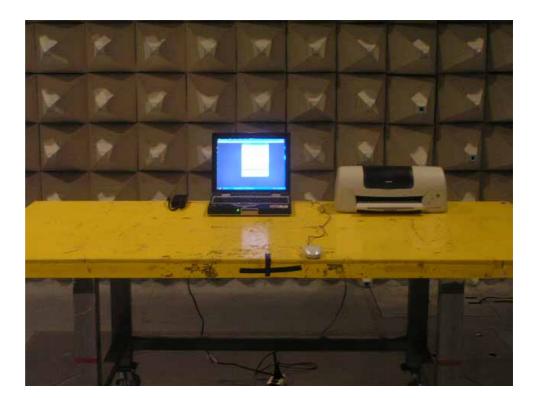
Issued on Jul. 28, 2005 Report No.: FR572020

(B) Polarization: Vertical

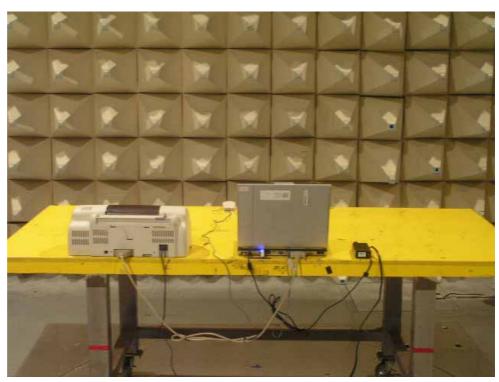
	Freq	Level	Over Limit	Read Level		Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB		cm	deg
1	4960.000	51.72	-22.28	48.03	74.00	3.70	2.91	32.56	PEAK		
2	4960.000	26.25	-27.75	22.55	54.00	3.70	2.91	32.56	Average		
3	7440.000	59.69	-14.31	52.39	74.00	7.30	3.69	32.87	PEAK		
4	7440.000	34.21	-19.79	26.91	54.00	7.30	3.69	32.87	Average		0.0000
5	10548.000	52.40	-21.60	42.07	74.00	10.34	4.44	32.97	PEAK		

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)


Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 43 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005



Issued on Jul. 28, 2005

5.8.11 Photographs of Radiated Emission Test Configuration

FRONT VIEW

REAR VIEW

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 44 of 51

Report No.: FR572020

Issued on Jul. 28, 2005

Report No.: FR572020

5.9. **RF Exposure**

5.9.1 Limit For Maximum Permissible Exposure (MPE)

This product can be classified as mobile device, so the 20cm separation distance warning is required. In this section, the power density at 20cm location is calculated to examine if it is lower than the limit.

Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

F = frequency in MHz

5.9.2 MPE Calculation Method

$$\text{E (V/m)} = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd \text{ (mW/cm}^2\text{)} = \frac{E^2}{377}$

 $\mathbf{E} = \text{Electric field}$ (V/m)

P = Peak RF output power (mW)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=20cm, as well as the gain of the used antenna, the RF power density can be obtained.

SPORTON International Inc.

Page No. : 45 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005

^{*}Plane-wave equivalent power density

Issued on Jul. 28, 2005 Report No.: FR572020

5.9.3 Calculated Result and Limit

Modulation Type: GFSKTemperature: 26°CRelative Humidity: 50%

Duty Cycle of the Equipment During the Test: 42.19%

Test Engineer: Ted Chiu

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)
2.95	1.9724	1.9400	1.5631	0.000614	1

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 46 of 51
Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005

5.10. Antenna Requirements

5.10.1 Standard Applicable

Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 15.247(b)/(c):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

5.10.2 Antenna Connected Construction

There is no antenna connector for this printed antenna.

5.10.3 Antenna Gain

Antenna gain of EUT is less than 6dBi. Therefore peak conducted power limit shall not be degraded any more. Antenna report of manufacturer will have more detail antenna gain or antenna pattern.

5.10.4 Test Criteria

All test results complied with the requirements of 15.203/15.247(b)/(c).

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 47 of 51

Report No.: FR572020

Issued on Jul. 28, 2005

6. List of Measuring Equipments Used

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
1	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Jun. 16, 2005	Radiation (03CH03-HY)
2	Spectrum analyzer	R&S	FSP40	100004	9KHZ ~ 40GHz	Aug. 31, 2004	Radiation (03CH03-HY)
3	Amplifier	SCHAFFNER	CPA9231A	18667	9KHz ~ 2GHz	Jan. 10, 2005	Radiation (03CH03-HY)
4	Amplifier	Agilent	8449B	3008A02120	1GHz ~ 26.5GHz	May 31, 2005	Radiation (03CH03-HY)
5	Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30MHz ~ 200MHz	Jul. 28, 2004	Radiation (03CH03-HY)
6	Log Antenna	SCHWARZBECK	VUSLP 9111	221	200MHz ~ 1GHz	Jul. 28, 2004	Radiation (03CH03-HY)
7	Horn Antenna	EMCO	3115	6741	1GHz ~ 18GHz	Apr. 22, 2005	Radiation (03CH03-HY)
9	RF Cable-R03m	Jye Bao	RG142	CB021	30MHz ~ 1GHz	Feb. 22, 2005	Radiation (03CH03-HY)
10	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz ~ 40GHz	Dec.01, 2004	Radiation (03CH03-HY)
11	Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
12	Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)

^{*} Calibration Interval of instruments listed above is one year.

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
13	Amplifier	MITEQ	AMF-6F-260400	923364	26.5GHz ~ 40GHz	Jan. 05, 2004*	Radiation (03CH03-HY)
14	Loop Antenna	R&S	HFH2-Z2	860004/001	9kHz ~ 30MHz	May 24, 2004*	Radiation (03CH03-HY)
15	Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz ~ 40GHz	Jun. 09, 2004*	Radiation (03CH03-HY)

Calibration Interval of instruments listed above is two years.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 48 of 51
Issued Date : Jul. 28, 2005

Issued on Jul. 28, 2005

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
16	Spectrum analyzer	R&S	FSP30	100023	9kHz ~ 30GHx	Aug. 02, 2004	Conducted (TH01-HY)
17	Power meter	R&S	NRVS	100444	DC ~ 40GHz	Jul. 06, 2005	Conducted (TH01-HY)
18	Power sensor	R&S	NRV-Z55	100049	DC ~ 40GHz	Jul. 06, 2005	Conducted (TH01-HY)
19	Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Apr. 28, 2005	Conducted (TH01-HY)
20	AC power source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Apr. 21, 2005	Conducted (TH01-HY)
21	DC power source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Nov. 28, 2004	Conducted (TH01-HY)
22	Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 01, 2004	Conducted (TH01-HY)
23	RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Jan. 01, 2005	Conducted (TH01-HY)
24	RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz	Jan. 01, 2005	Conducted (TH01-HY)
25	Oscilloscope	Tektronix	TDS1012	CO38515	100MHz / 1GS/s	Apr. 15, 2005	Conducted (TH01-HY)
26	EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Feb. 16, 2005	Conduction (CO04-HY)
27	LISN	MessTec	NNB-2/16Z	2001/004	9kHz – 30MHz	Apr. 20, 2005	Conduction (CO04-HY)
28	LISN (Support Unit)	MessTec	NNB-2/16Z	99041	9kHz – 30MHz	May. 05, 2005	Conduction (CO04-HY)
29	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9kHz – 30MHz	Apr. 20, 2005	Conduction (CO04-HY)
30	EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

Issued on Jul. 28, 2005

Report No.: FR572020

7. Company Profile

SPORTON Lab. was established in 1986 with one shielded room: the first private EMI test facility, offering local manufacturers an alternative EMI test familial apart from ERSO. In 1988, one 3M and 10M/3M open area test site were setup and also obtained official accreditation from FCC, VCCI and NEMKO. In 1993, a Safety laboratory was founded and obtained accreditation from UL of USA, CSA of Canada and TUV (Rhineland & PS) of Germany. In 1995, one EMC lab, including EMI and EMS test facilities was setup. In 1997, SPORTON Group has provided financial expense to relocate the headquarter to Orient Scientific Park in Taipei Hsien to offer more comprehensive, more qualified and better service to local suppliers and manufactures. In 1999, Safety Group and Component Group were setup. In 2001, SPORTON has established 3M/10M chamber in Hwa Ya Technology Park.

7.1. Certificate of Accreditation

Taiwan	BSMI, CNLA, DGT
USA	FCC, NVLAP, UL
EU	Nemko, TUV
Japan	VCCI
Canada	Industry Canada

7.2. Test Location

SHIJR	ADD:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL:	02-2696-2468
	FAX:	02-2696-2255
HWA YA	ADD:	No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL:	03-327-3456
	FAX:	03-318-0055
LINKOU	ADD:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL:	02-2601-1640
	FAX:	02-2601-1695
DUNGHU	ADD:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
DUNGHU	ADD: TEL:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C. 02-2631-4739
DUNGHU		•
DUNGHU	TEL:	02-2631-4739
	TEL : FAX :	02-2631-4739 02-2631-9740
	TEL: FAX: ADD:	02-2631-4739 02-2631-9740 7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL: FAX: ADD: TEL:	02-2631-4739 02-2631-9740 7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C. 02-8227-2020
JUNGHE	TEL: FAX: ADD: TEL: FAX:	02-2631-4739 02-2631-9740 7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C. 02-8227-2020 02-8227-2626

Page No. : 50 of 51 TEL: 886-2-2696-2468 Issued Date : Jul. 28, 2005 FAX: 886-2-2696-2255

Issued on Jul. 28, 2005 Report No.: FR572020

8. CNLA Certificate of Accreditation

Test Lab. : Sporton International Inc.

Accreditation Number : 1190

Originally Accredited : 2003/12/15

Effective Period : 2003/12/15~2006/12/14

Accredited Scope : 47 CFR FCC Part 15 Subpart C (9kHz~40GHz)

Talwan Accreditation Foundation
Chinese National Laboratory Accreditation
Certificate of Accreditation

Accreditation Criteria: ISO 17025 Accreditation Number: 1190

Organization/Laboratory: EMC & Wireless Communications Laboratory, Sporton International Inc.

Originally Accredited: December 15, 2003

Effective Period: December 15, 2003 To December 14, 2006

Accredited Scope: Electrical Testing Field, 7 items, details shown in the following pages.

Specific Accreditation Recognition and Approval of Designated Laboratory for Commodities

Program: Inspection

President, Taiwan Accreditation Foundation

Date: July 19, 2004

(This document is invalid unless accompanied by all 4 pages)

CNLA-ZL03191E Page 1 of 4

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 51 of 51