

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No....: CTA23041400102 FCC ID.....: 2BBR3-XZX-9001

Compiled by

(position+printed name+signature)..: File administrators Zoey Cao

Supervised by

Project Engineer Amy Wen (position+printed name+signature)..:

Approved by

RF Manager Eric Wang (position+printed name+signature)..:

May 11, 2023 Date of issue....:

Testing Laboratory Name..... Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Address....::

Fuhai Street, Bao'an District, Shenzhen, China

XZX Video Technology shenzhen Co., LTD Applicant's name.....

701, No.5, Lane 2, Jiazitang Road, Jiazitang Community, Address.....:

Fenghuang Street, Guangming District, Shenzhen, China

Test specification....:

Standard..... FCC Part 15.247

TRF Originator...... Shenzhen CTA Testing Technology Co., Ltd.

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description....: In-vehicle smart products

XZX Trade Mark.....

Manufacturer...... XZX Video Technology shenzhen Co., LTD

Model/Type reference.....: XZX-9001

CTATESTING Listed Models: XZX-9002—XZX-9099, XZX-8501—XZX-8599,

CTATESTING

XZX-8301—XZX-8399, XZX-8601—XZX-8699

Modulation Type.....: CCK/DSSS/OFDM

Operation Frequency.....: From 2412 - 2462MHz Rating....: DC 12.0V From Battery

Result....:

Report No.: CTA23041400102 Page 2 of 32

TEST REPORT

Equipment under Test In-vehicle smart products

Model /Type XZX-9001

Series Model No. XZX-9002—XZX-9099, XZX-8501—XZX-8599,

XZX-8301—XZX-8399, XZX-8601—XZX-8699

Applicant XZX Video Technology shenzhen Co., LTD

701, No.5, Lane 2, Jiazitang Road, Jiazitang Community, Address

CTA TESTING Fenghuang Street, Guangming District, Shenzhen, China

Manufacturer XZX Video Technology shenzhen Co., LTD

CTA TESTING 701, No.5, Lane 2, Jiazitang Road, Jiazitang Community,

Fenghuang Street, Guangming District, Shenzhen, China CTA TESTING

GIN C'IN	CTATESTING	
 Test Result:	PASS	GT CTA
test report merely corresponds to the test	sample. se test result without the written permiss	sion of the test

It is not permitted to copy extracts of these test result without the written permission of the test . th laboratory.

Page 3 of 32 Report No.: CTA23041400102

Contents

		TATESTING	ontents	
		TA		
	1.1	TEST STANDARDS	5 W	4
		CTA		
	2	SUMMARY	ESTI	_
	2	SUMMARY	- ATA	5
	2.1	General Remarks		5
	2.2	Product Description		5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment und	ler Test (EUT)	5
	2.5	EUT operation mode	!	5
CTA	2.6	Block Diagram of Test Setup		6
	2.7	Related Submittal(s) / Grant (s)		6
	2.8	Modifications	16	6
		C		
	•	TEST ENVIRONMENT	TES	_
	3	TEST ENVIRONMENT		7
			-ES1	
	3.1	Address of the test laboratory	TATE	7
	3.2	Test Facility	CIT	7
	3.3	Environmental conditions	CTATES!	7
	3.4	Test Description		8
	3.5	Statement of the measurement uncertain		8
	3.6	Equipments Used during the Test		9
	3.0	Equipments Osed during the rest	•	9
		TATE		
	4 C	TEST CONDITIONS AND RES	= (7), =	10
			j.,	
	A Manifestory	AC Dawer Canducted Emission	TING	40
	4.1 4.2	AC Power Conducted Emission	ESTI	10
		Radiated Emission		11
	4.3	Maximum Peak Conducted Output Pow	er	17
	4.4	Power Spectral Density	CAL	18
	4.5	6dB Bandwidth	Manual Ma	21
	4.6	Out-of-band Emissions		24
	4.7	Antenna Requirement		31
	5111			
TATE	5	TEST SETUP PHOTOS OF TH	E EUT	3 2
Cir	•			
		TES		
	6	PHOTOS OF THE EUT		32
			CTATESTIN'	
			TAIL	
			CTATEST	

Report No.: CTA23041400102 Page 4 of 32

TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. (DTS) ,Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under §15.247 of The FCC rules. Report No.: CTA23041400102 Page 5 of 32

SUMMARY

2.1 General Remarks

2.1 General Remarks		TESTING
Date of receipt of test sample		Apr. 14, 2023
Testing commenced on	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	Apr. 14, 2023
Testing concluded on	:	May 11, 2023

2.2 Product Description

Product Name:	In-vehicle smart products
Model/Type reference:	XZX-9001
Power supply:	DC 12.0V From Battery
testing sample ID:	CTA230414001-1# (Engineer sample), CTA230414001-2# (Normal sample)
Hardware version:	KS-901(BOSE)-MB-V2.3
Software version:	P60.221210
WIFI:	
Supported type:	802.11b/802.11g/802.11n(H20)
Modulation:	802.11b: DSSS 802.11g/802.11n(H20): OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11
Channel separation:	5MHz
Antenna type:	FPC antenna
Antenna gain:	1.40 dBi

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	- 1	230V / 50 Hz	\circ	120V / 60Hz
		12 V DC	0	24 V DC
	0	Other (specified in blank bel	ow)	

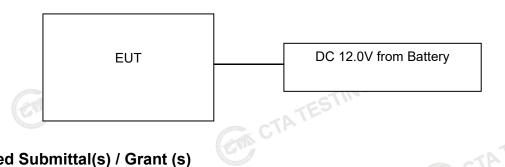
DC 12.0V From Battery

Short description of the Equipment under Test (EUT)

This is In-vehicle smart products.

For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode


The application provider specific test software(AT command) to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement.

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

Report No.: CTA23041400102 Page 6 of 32

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1 _ING	2412	8	2447
2.5	2417	9	2452
3	2422	JG 10	2457
4	2427	11	2462
5	2432		. C
6	2437		TING
7	2442		E2.

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. CTATES

Page 7 of 32 Report No.: CTA23041400102

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	25 ° C
Humidity:	45 %
	1000
Atmospheric pressure:	950-1050mbar

Conducted testing:

onducted testing.		_
Temperature:	25 ° C	
, *		
Humidity:	44 %	
-65/11		
Atmospheric pressure:	950-1050mbar	NG
Con C.		ESTIN
C Power Conducted Emission		ATE
Temperature:	24 ° C	

AC Power Conducted Emission

AC FOWER CONDUCTED LINESSION	
Temperature:	24 ° C
	CAIS
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
CTATESTING	CTATESTING

Report No.: CTA23041400102 Page 8 of 32

3.4 Test Description

	FCC PART 15.247			
	FCC Part 15.207 AC Power Conducted Emission			
	FCC Part 15.247(a)(2)	6dB Bandwidth	PASS	
	FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS	
	FCC Part 15.247(b)	Maximum Peak Conducted Output Power	PASS	
	FCC Part 15.247(e)	Power Spectral Density	PASS	
	FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS	
CIA	FCC Part 15.247(d)	Band Edge	PASS	
	FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS	

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Peak Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9KHz~1GHz&	11n(20MHz)/OFDM	6.5Mbps	1/6/11
Radiated Emission 1GHz~10 th Harmonic		LING	
(EM)	11b/DSSS	1 Mbps	1/11
Band Edge	11g/OFDM	6 Mbps	1/11
	11n(20MHz)/OFDM	6.5Mbps	1/11

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

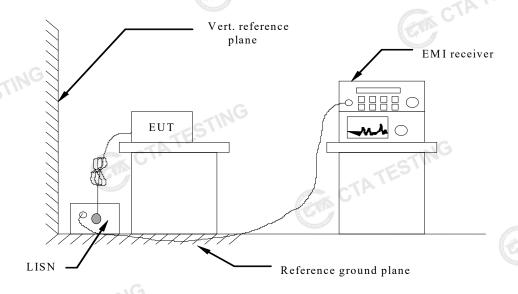
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 32 Report No.: CTA23041400102

Equipments Used during the Test


		U				
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/02
	LISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2022/08/03	2023/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2022/08/03	2023/08/02
. TE	Spectrum Analyzer	R&S	FSP	CTA-337	2022/08/03	2023/08/02
CTA	Vector Signal generator	Agilent	N5182A	CTA-305	2022/08/03	2023/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2022/08/03	2023/08/02
	Universal Radio Communication	CMW500	R&S	CTA-302	2022/08/03	2023/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/02
(G	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/02
TE	Automated filter bank	Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/02
CTATE	Power Sensor	Agilent	U2021XA	CTA-405	2022/08/03	2023/08/02
ř	Amplifier	Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/02
	(cm)	C	CTP CTP	TESTING	CT CT	ATESTING

Report No.: CTA23041400102 Page 10 of 32

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

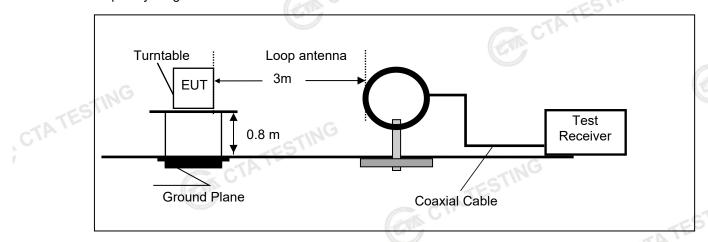
- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

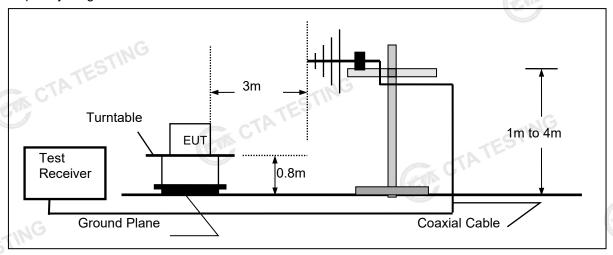
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

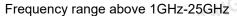
Frequency range (MHz)	Limit (dBuV)						
r requericy range (IVII IZ)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
* Decreases with the logarithm of the frequency.							

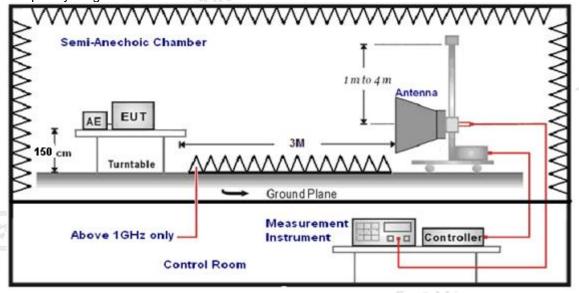
TEST RESULTS


The EUT is powered by the Battery, So this test item is not applicable for the EUT.

Report No.: CTA23041400102 Page 11 of 32


4.2 Radiated Emission


TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Page 12 of 32 Report No.: CTA23041400102

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	CAL
9KHz-30MHz	Active Loop Antenna	3	May no way to
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

7. Setting test receiver/spectrum as following table states:

	Test Frequency range	Test Receiver/Spectrum Setting	Detector
1	9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows.	TESTING
FS = RA + AF + CL - AG	CTA
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

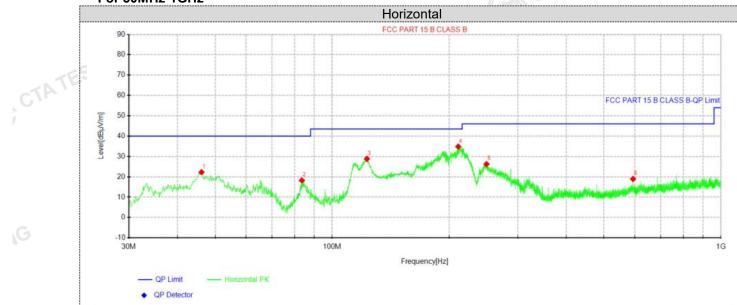
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBμV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

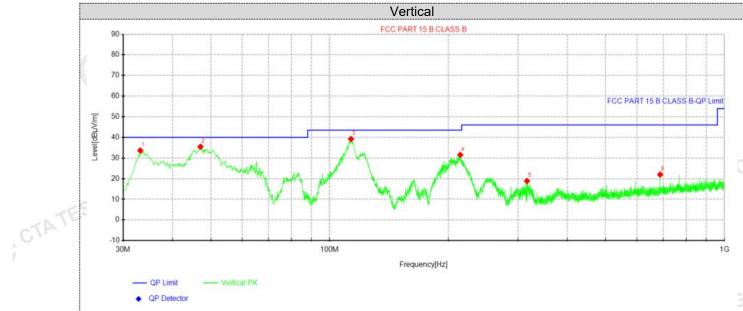

Report No.: CTA23041400102 Page 13 of 32

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


Susp	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	46.1262	38.64	22.28	-16.36	40.00	17.72	100	60	Horizontal			
2	83.5925	39.06	18.23	-20.83	40.00	21.77	100	350	Horizontal			
3	122.877	49.42	28.83	-20.59	43.50	14.67	100	260	Horizontal			
4	211.026	53.91	34.84	-19.07	43.50	8.66	100	300	Horizontal			
5	249.462	44.23	26.24	-17.99	46.00	19.76	100	30	Horizontal			
6	594.055	31.35	18.95	-12.40	46.00	27.05	100	320	Horizontal			

CTA TESTING

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m) CTATES

Report No.: CTA23041400102 Page 14 of 32

Susp	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	33.1525	51.80	33.62	-18.18	40.00	6.38	100	340	Vertical		
2	47.0962	51.76	35.47	-16.29	40.00	4.53	100	120	Vertical		
3	113.298	58.57	39.24	-19.33	43.50	4.26	100	300	Vertical		
4	214.3	50.49	31.52	-18.97	43.50	11.98	100	230	Vertical		
5	316.15	35.89	18.87	-17.02	46.00	27.13	100	90	Vertical		
6	687.538	33.74	22.00	-11.74	46.00	24.00	100	260	Vertical		

CTATE

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 15 of 32 Report No.: CTA23041400102

For 1GHz to 25GHz

Note: 802.11b/802.11g/802.11n (H20) Mode all have been tested, only worse case 802.11b mode is reported

(above 1GHz)

Frequency(MHz):			2412		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	61.51	PK	74	12.49	65.87	32.4	5.11	41.87	-4.36
4824.00	45.97	AV	54	8.03	50.33	32.4	5.11	41.87	-4.36
7236.00	54.12	PK	74	19.88	54.75	36.58	6.43	43.64	-0.63
7236.00	43.69	AV	54	10.31	44.32	36.58	6.43	43.64	-0.63

Frequency(MHz):			2412		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	59.17	PK	74	14.83	63.53	32.4	5.11	41.87	-4.36
4824.00	45.59	AV	54	8.41	49.95	32.4	5.11	41.87	-4.36
7236.00	53.63	PK	74	20.37	54.26	36.58	6.43	43.64	-0.63
7236.00	42.68	AV	54	11.32	43.31	36.58	6.43	43.64	-0.63

Frequency(MHz):			2437		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	61.43	PK	74	12.57	65.38	32.56	5.34	41.85	-3.95
4874.00	46.03	AV	54	7.97	49.98	32.56	5.34	41.85	-3.95
7311.00	54.49	PK	74	19.51	54.85	36.54	6.81	43.71	-0.36
7311.00	42.44	AV	54 G	11.56	42.80	36.54	6.81	43.71	-0.36
							LED.		

Frequency(MHz):		2437		Polarity:		VERTICAL			
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	60.64	PK	74	13.36	64.59	32.56	5.34	41.85	-3.95
4874.00	45.79	AV	54	8.21	49.74	32.56	5.34	41.85	-3.95
7311.00	53.57	PK	74	20.43	53.93	36.54	6.81	43.71	-0.36
7311.00	40.91	AV	54	13.09	41.27	36.54	6.81	43.71	-0.36

	at A l					- NG			
Frequency(MHz):			2462		Pola	Polarity:		HORIZONTAL	
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	61.07	PK	74	12.93	64.53	32.73	5.64	41.83	-3.46
4924.00	45.38	AV	54	8.62	48.84	32.73	5.64	41.83	-3.46
7386.00	54.92	PK	74	19.08	54.98	36.5	7.23	43.79	-0.06
7386.00	42.18	PK	54	11.82	42.24	36.5	7.23	43.79	-0.06
_	271	110							

Frequency(MHz):			24	62	Polarity:		VERTICAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	59.65	PK	74	14.35	63.11	32.73	5.64	41.83	-3.46
4924.00	45.57	AV	54	8.43	49.03	32.73	5.64	41.83	-3.46
7386.00	53.53	PK	74	20.47	53.59	36.5	7.23	43.79	-0.06
7386.00	41.69	PK	54	12.31	41.75	36.5	7.23	43.79	-0.06

Page 16 of 32 Report No.: CTA23041400102

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit. 4)
- RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Results of Band Edges Test (Radiated)

Note: 802.11b/802.11g/802.11n (H20) MIMO Mode all have been tested, only worse case 802.11b mode is reported

Frequency(MHz):		24	12	Pola	arity:	Н	ORIZONTA	L	
Frequency (MHz)	Emis Lev (dBu	vel .	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.32	PK	74	12.68	71.74	27.42	4.31	42.15	-10.42
2390.00	44.03	AV	54	9.97	54.45	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	12	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.36	PK	74	13.64	70.78	27.42	4.31	42.15	-10.42
2390.00	44.78	AV	54	9.22	55.20	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	62	Polarity: HORIZONTAL		\L		
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	61.24	PK	74	12.76	71.35	27.7	4.47	42.28	-10.11
2483.50	44.94	AV	54	9.06	55.05	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	62	Pola	arity:	VERTICAL		
Frequency	Emis		Limit	Margin	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor
(MHz)	Le _' (dBu'	vei V/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
(MHz) 2483.50			(dBuV/m) 74	(dB) 14.79		(dB/m) 27.7	(dB) 4.47	(dB) 42.28	

Note:

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- -- Mean the PK detector measured value is below average limit. 3)
- 4) The other emission levels were very low against the limit.
- CTA TESTING 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Report No.: CTA23041400102 Page 17 of 32

Maximum Peak Conducted Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Test Results		CTATESTIN	ESTING	
Туре	Channel	Output power PK (dBm)	Limit (dBm)	Result
	01	13.95	The same of the sa	
802.11b	06	12.68	30.00	Pass
TESTING	11	12.06		
CTA.	01	13.42		
802.11g	06	12.47	30.00	Pass
	11	11.75	TESTIN	
	01	13.31	CIL	
802.11n(HT20)	06	12.46	30.00	Pass
NG.	11	11.56		(311)

Note:

- Measured output power at difference data rate for each mode and recorded worst case for each mode.
- 2) Test results including cable loss.
- 3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20;

Report No.: CTA23041400102 Page 18 of 32

Power Spectral Density

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

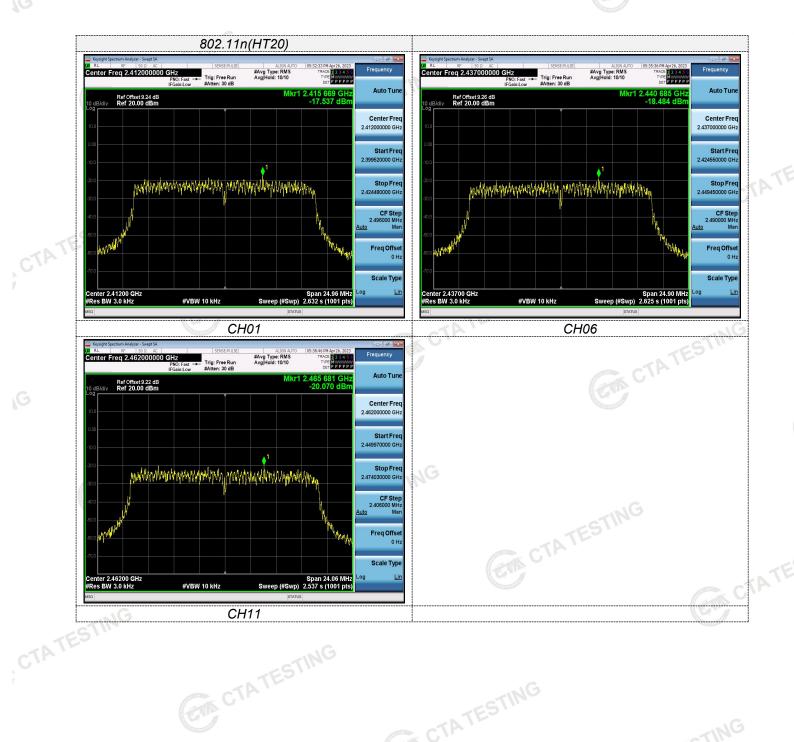
Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration


EUT	CACTATESTIN	SPECTRUM ANALYZER	ESTING
	C.	GW C	TATES

Test Results


Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result	
511	01	-10.99			
802.11b	06	-12.68	8.00	Pass	
	11-5	-13.76			
	01	-17.00	ING		
802.11g	06	-18.40	8.00	Pass	
	11	-19.60			
	01	-17.54		STIN	
802.11n(HT20)	06	-18.48	8.00	Pass	
	11	-20.07	Sec. Ltd	C/L.	

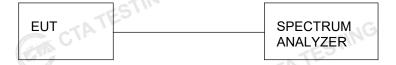
- Measured peak power spectrum density at difference data rate for each mode and recorded worst case 1) for each mode.
- Test results including cable loss;
- Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 3)

Please refer to following plots;

Report No.: CTA23041400102 Page 20 of 32

Report No.: CTA23041400102 Page 21 of 32

4.5 6dB Bandwidth


Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

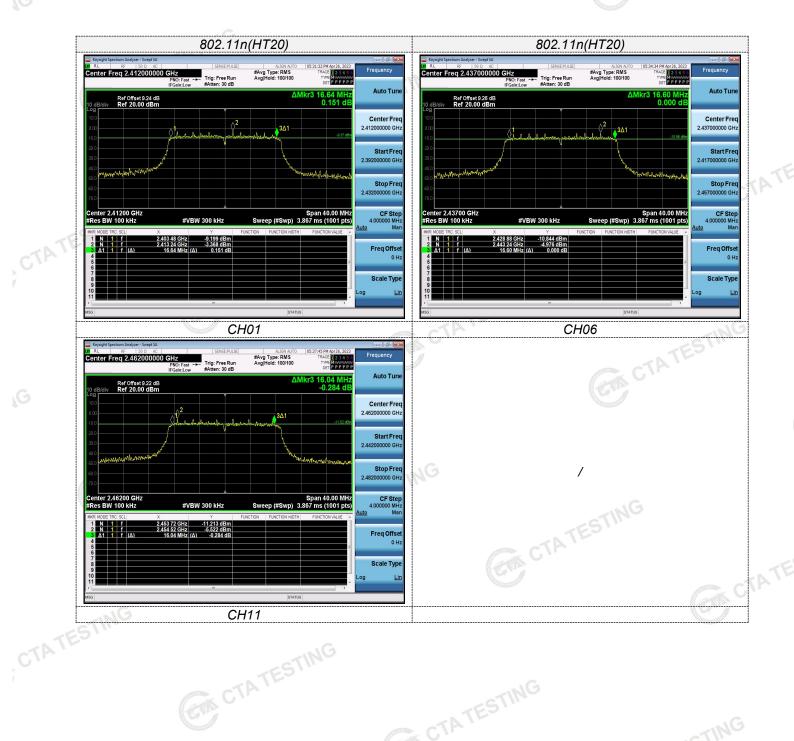
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Test Results		CTATES.		TATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	01	7.600	William CA Lea	
802.11b	06	8.040	≥500	Pass
GTIN	11	8.600		
TATES	01	16.280		
802.11g	06	16.280	≥500	Pass
GVI	11	15.960	NG.	
311.1	01 C	16.640	STING	
802.11n(HT20)	06	16.600	≥500	Pass
	11	16.040	G V	


Note:

- Measured peak power spectrum density at difference data rate for each mode and recorded worst case 1) for each mode.
- 2) Test results including cable loss;
- Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20;

Please refer to following plots;

Report No.: CTA23041400102 Page 23 of 32

Page 24 of 32 Report No.: CTA23041400102

Out-of-band Emissions

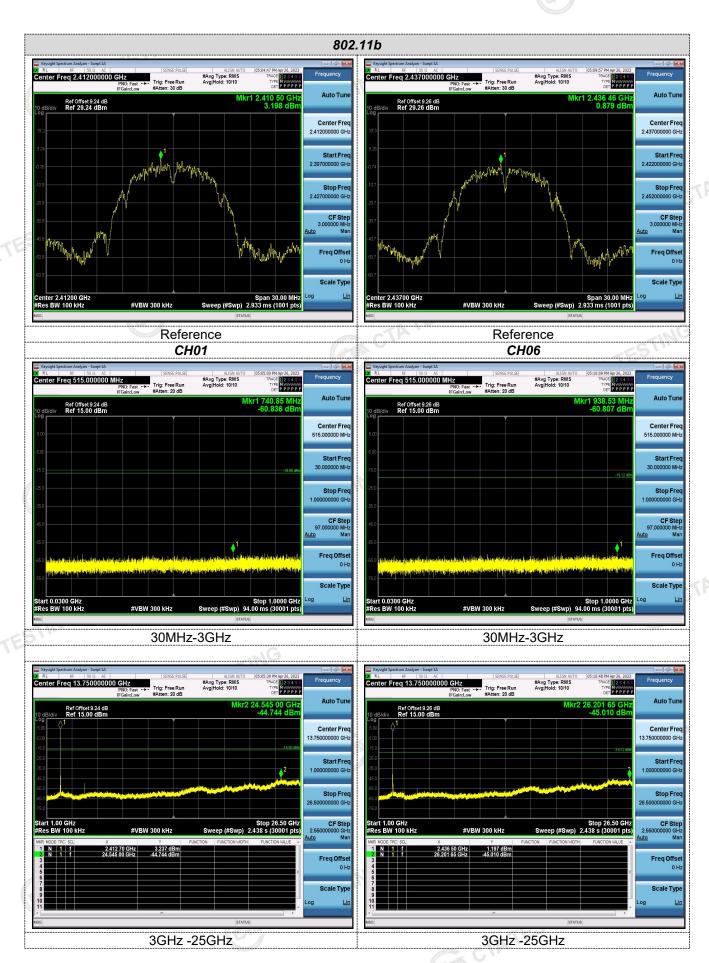
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration



Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data. And record the worst data in the report.

Test plot as follows: CTATESTING

Report No.: CTA23041400102 Page 25 of 32

