

# **RF Exposure Evaluation**

#### **Client Information:**

| Applicant:            | Superior Communications .                                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Applicant add.:       | 5027 Irwindale Ave.Suite Irwindale Ave California United States                                                                             |
| Manufacturer:         | Shenzhen Powerqi Technology Co.,Ltd.                                                                                                        |
| Manufacturer add.:    | Room 201, 302, 401 of A4 Building, Block A, Fangxing Science and Technology Park, No. 13 of Baonan Road, Longgang District, Shenzhen, China |
| Product Information:  |                                                                                                                                             |
| Product Name:         | Qi2.0 Duo Wireless Charger                                                                                                                  |
| Model No.:            | 11132PG                                                                                                                                     |
| Brand Name:           | PUREGEAR                                                                                                                                    |
| Test samples.:        | AiTSZ-240702023-1                                                                                                                           |
| FCC ID:               | YJW-11132PG                                                                                                                                 |
| Applicable standards: | FCC CFR 47 PART 1, § 1.1310<br>KDB 680106 D01 Wireless Power Transfer v04                                                                   |
| Prepared By:          |                                                                                                                                             |

#### Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

|                  | Tel.: +86 0755-230967639 | Fax.: +86 0755-230967639 |                               |  |
|------------------|--------------------------|--------------------------|-------------------------------|--|
| Date of Receipt: | July 02, 2024            | Date of Test:            | July 02, 2024 ~ July 10, 2024 |  |
| Date of Issue:   | July 10, 2024            | Test Result:             | Pass                          |  |

This device described above has been tested by Guangdong Asia Hongke Test Technology Limited and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Note: This report shall not be reproduced except in full, without the written approval of Guangdong Asia Hongke Test Technology Limited, this document may be altered or revised by Guangdong Asia Hongke Test Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Leon YI

Sean She



Leon.vi

Reviewed by: \_

Approved by: \_\_\_\_\_ Sean She



## **1 CONTENTS**

| CO | /ER P | AGE                                    | Page |
|----|-------|----------------------------------------|------|
| 1  | CON   | NTENTS                                 | 2    |
| 2  | TES   | T FACILITY                             | 4    |
|    | 2.1   | Deviation from standard                | 4    |
|    | 2.2   | Abnormalities from standard conditions | 4    |
|    | 2.3   | Test Location                          | 4    |
| 3  | GEN   | IERAL INFORMATION                      | 5    |
| 4  | TES   | T METHODOLOGY                          | 6    |
|    | 4.1   | Measuring Standard                     | 6    |
|    | 4.2   | Requirements                           | 6    |
|    | 4.3   | Limits                                 | 6    |
|    | 4.4   | Test Setup                             | 7    |
|    | 4.5   | Test Procedure                         | 7    |
| 5  | Equ   | ipment Approval Considerations         | 8    |
|    | 5.1   | Description of the test mode           | 9    |
|    | 5.2   | Peripheral List                        | 9    |
|    | 5.3   | Test Instruments list                  | 9    |
|    | 5.4   | Duty Cycle                             | 10   |
|    | 5.5   | Test Result                            | 11   |
|    | 1.1   | Test Setup photo                       | 14   |



**Revision History** 

| Revision | Issue Date    | Revisions     | Revised By |
|----------|---------------|---------------|------------|
| 00       | July 10, 2024 | Initial Issue | Sean She   |
|          |               |               |            |
|          |               |               |            |



### 2 TEST FACILITY

#### The test facility is recognized, certified or accredited by the following organizations:

#### FCC-Registration No.: 251906 Designation Number: CN1376

Guangdong Asia Hongke Test Technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

#### IC — Registration No.: 31737 CAB identifier: CN0165

The 3m Semi-anechoic chamber of Guangdong Asia Hongke Test Technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 31737

#### A2LA-Lab Cert. No.: 7133.01

Guangdong Asia Hongke Test Technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

#### 2.1 Deviation from standard

None

#### 2.2 Abnormalities from standard conditions

None

#### 2.3 Test Location

#### Guangdong Asia Hongke Test Technology Limited

Address: B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Tel.: +86 0755-230967639 Fax.: +86 0755-230967639



# **3 GENERAL INFORMATION**

| EUT Name:              | Qi2.0 Duo Wireless Charger                                                                                        |
|------------------------|-------------------------------------------------------------------------------------------------------------------|
| Model No:              | 11132PG                                                                                                           |
| Serial Model:          | 11132PG-VN                                                                                                        |
| Test sample(s) ID:     | AiTSZ-240702023-1                                                                                                 |
| Sample(s) Status:      | Engineer sample                                                                                                   |
| Operation frequency:   | 113kHz-205kHz                                                                                                     |
| Modulation Technology: | ASK                                                                                                               |
| Antenna Type:          | Loop coil Antenna                                                                                                 |
| Antenna gain:          | 0dBi                                                                                                              |
| Hardware version .:    | N/A                                                                                                               |
| Software version .:    | N/A                                                                                                               |
| Power supply:          | Input: 5V=3A,9V=3A,12V=2.5A<br>Output(Phone):15W Max<br>Output(AirPods): 5W Max<br>Total Output: 20W Max          |
| Model different:       | The 11132PG is produced in China and the 11132PG-VN is produced in Vietnam                                        |
| Note:                  | For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual. |



### 4 TEST METHODOLOGY

#### 4.1 Measuring Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. According to §1.1310 and §2.1091 RF exposure is calculated. According KDB680106 D01: KDB 680106 D01 Wireless Power Transfer v04.

#### 4.2 Requirements

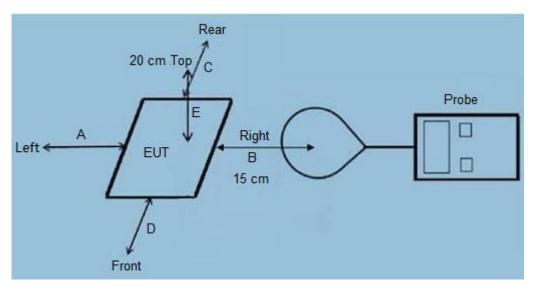
According to the item 3 of KDB 680106 D01v04:

Inductive wireless power transfer applications that meet all of the following requirements are excluded from submitting an RF exposure evaluation.

(1) Mobile Device and Portable Device Configurations

(2) Equipment Authorization Procedures for Devices Operating at Frequencies Below 4 MHz

(3) The aggregate H-field strengths anywhere at or beyond 15 cm surrounding the device, and 20 cm away from the top surface.


#### 4.3 Limits

The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b) Limits for Maximum Permissible Exposure (MPE)

| Frequency range<br>(MHz)                         | Electric field strength<br>(V/m) (A/m)                                       |                                                         | Power density<br>(mW/cm <sup>2</sup> ) | Averaging time<br>(minutes) |  |  |  |
|--------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------|-----------------------------|--|--|--|
| (A) Limits for Occupational/Controlled Exposures |                                                                              |                                                         |                                        |                             |  |  |  |
| 0.3-3.0                                          | 614                                                                          | 1.63                                                    | *(100)                                 | 6                           |  |  |  |
| 3.0-30                                           | 1842/f                                                                       | 4.89/f                                                  | *(900/f <sup>2</sup> )                 | 6                           |  |  |  |
| 30-300                                           | 61.4                                                                         | 0.163                                                   | 1.0                                    | 6                           |  |  |  |
| 300-1500                                         | /                                                                            | 1                                                       | f/300                                  | 6                           |  |  |  |
| 1500-100,000                                     | /                                                                            | /                                                       | 5                                      | 6                           |  |  |  |
|                                                  | (B) Limits for Genera                                                        | Population/Uncontrolle                                  | d Exposure                             |                             |  |  |  |
| 0.3-1.34                                         | 614                                                                          | 1.63                                                    | *(100)                                 | 30                          |  |  |  |
| 1.34-30                                          | 824/f                                                                        | 2.19/f                                                  | *(180/f <sup>2</sup> )                 | 30                          |  |  |  |
| 30-300                                           | 27.5                                                                         | 0.073                                                   | 0.2                                    | 30                          |  |  |  |
| 300-1500                                         | /                                                                            | 1                                                       | f/1500                                 | 30                          |  |  |  |
| 1500-100,000                                     | 1                                                                            | 1                                                       | 1.0                                    | 30                          |  |  |  |
| RF exposure com                                  | valent power density<br>pliance will need to be<br>ns should be within the l | determined with respect t<br>imits at 300kHz in Table 1 |                                        |                             |  |  |  |



#### 4.4 Test Setup



#### 4.5 Test Procedure

1) The RF exposure test was performed in anechoic chamber.

2) The measurement probe was placed at test distance (15 cm from all sides and 20 cm from the top) which is between the edge of the charger and the geometric center of probe.

3) The highest emission level was recorded and compared with limit as soon as measurement of each points (A, B, C, D, E,F) were completed.

4) The EUT was measured according to the dictates of KDB 680106 D01 Wireless Power Transfer v04.

Remark: The EUT's test position A, B, C, D, E and F is valid for the E and H field measurements.



# 5 Equipment Approval Considerations

The EUT does comply with KDB 680106 D01 as follow table.

| Requirements of section 5 of KDB 680106 D01                                                                                                                                          |     | Description                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------|
| Mobile Device and Portable Device Configurations                                                                                                                                     | Yes | Mobile Device                                                                                    |
| Equipment Authorization Procedures for Devices Operating at<br>Frequencies Below 4 MHz                                                                                               | Yes | The device operate in the frequency range 113kHz-205kHz                                          |
| RF Exposure compliance may be ensured only for a minimum separation distance that is greater than 20 cm, while use conditions at smaller distances can still be considered unlikely. | Yes | The EUT H-field strengths at 15<br>cm surrounding the device and<br>20 cm above the top surface. |



### 5.1 Description of the test mode

Equipment under test was operated during the measurement under the following conditions:

| Test Mode                                                                                    | Description                         |            |  |  |  |
|----------------------------------------------------------------------------------------------|-------------------------------------|------------|--|--|--|
| Mode 1                                                                                       | AC Adapter + EUT + Phone + Earphone |            |  |  |  |
| Mode 2                                                                                       | AC Adapter + EUT + Phone            | Pre-tested |  |  |  |
| Mode 3                                                                                       | AC Adapter + EUT + Earphone         | Pre-tested |  |  |  |
| Mode 4                                                                                       | AC Adapter + EUT                    | Pre-tested |  |  |  |
| Mode 5                                                                                       | Test the EUT in idle mode.          | Pre-tested |  |  |  |
| Note: 1. All test modes were pre-tested, but we only recorded the worst case in this report. |                                     |            |  |  |  |
|                                                                                              |                                     |            |  |  |  |

### 5.2 Peripheral List

| No. | Equipment | Manufacturer | Model No. | Serial<br>No. | Power cord | signal cable |
|-----|-----------|--------------|-----------|---------------|------------|--------------|
| 1   | Phone     | OSCAL        | PILOT2    | N/A           | N/A        | N/A          |
| 2   | Adapter   | HNT          | HNT-QC530 | N/A           | N/A        | N/A          |
| 3   | Earphone  | PocBuds      | K6        | N/A           | N/A        | N/A          |

#### 5.3 Test Instruments list

| Test Equipment                                     | Manufacturer | Model No.                           | SN.            | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |
|----------------------------------------------------|--------------|-------------------------------------|----------------|------------------------|----------------------------|
| Magnetic Amplitude<br>and Gradient Probe<br>System | SPEAG        | MAGPy-8H3D+E3D V2<br>& MAGPy-DAS V2 | 3107 &<br>3097 | 03.15.2024             | 03.14.2025                 |



### 5.4 Duty Cycle

| Mode                | ON Time(ms) | Period(ms) | Duty Cycle(%) |
|---------------------|-------------|------------|---------------|
| Operating(125.2kHz) | /           | /          | 100           |
| Operating(194.3kHz) | /           | /          | 100           |

| Keysight Spectrum Analyzer - Swept S | A                               |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RF 50 Ω 🚹 D                          |                                 | NSE:PULSE                                                                                                        |                                     | 03:59:42 PM Jul 10, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Center Freq 125.200 kl               | HZ<br>PNO: Wide ↔<br>IFGain:Low | Trig: Free Run<br>Atten: 6 dB                                                                                    | Avg Type: Log-Pwr                   | TRACE 1 2 3 4 5<br>TYPE WWWWW<br>DET P NNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 dB/div Ref -20.00 dB               | m                               |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| og                                   |                                 |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0                                  |                                 |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0                                  |                                 |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      |                                 |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0                                  |                                 |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| i0.0                                 |                                 | and the second | man and a contraction of the second | hand the state of |
|                                      |                                 |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0                                  |                                 |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0                                  |                                 |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0                                  |                                 |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      |                                 |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100                                  |                                 |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 110                                  |                                 |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      |                                 |                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| enter 125.200 kHz<br>es BW 3.0 kHz   | #VBI                            | W 10 kHz                                                                                                         | Swee                                | Span 0 H<br>p 500.0 ms (1001 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| G                                    |                                 |                                                                                                                  | STATUS ! DC Coupled                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Keysight Spectrum Analyzer - Swept SA  K R F 50 Ω Δ DC | SENSE:PULSE                                        |                                    | 04:02:12 PM Jul 10, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------|----------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Center Freq 194.300 kHz                                | PNO: Wide Trig: Free Rui<br>IFGain:Low Atten: 6 dB | Avg Type: Log-Pwr<br>n             | TRACE 12 3 4 5 6<br>TYPE WWWWWW<br>DET P NNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 dB/div Ref -20.00 dBm                               |                                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -30.0                                                  |                                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -40.0                                                  |                                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -50.0                                                  |                                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -60.0                                                  | and            | antalan antalan tarta da antalanta | - Contraction and a Contraction of the Contraction |
| -70.0                                                  |                                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -80.0                                                  |                                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -90.0                                                  |                                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -100                                                   |                                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -110                                                   |                                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Center 194.300 kHz<br>Res BW 3.0 kHz                   | #VBW 10 kHz                                        |                                    | Span 0 Hz<br>500.0 ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MSG                                                    |                                                    | 🗓 status 🥂 DC Coupled              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



### 5.5 Test Result

| MPE              |                    |          |         |         |
|------------------|--------------------|----------|---------|---------|
| Test distance    | Battery Probe from |          | E-field | H-field |
| Test distance    | levels             | EUT Side | (V/m)   | (A/m)   |
| 20cm             | < 1%               | Тор      | 12.19   | 0.58    |
| 15cm             | < 1%               | Тор      | 12.54   | 0.48    |
| 15cm             | < 1%               | Left     | 11.89   | 0.56    |
| 15cm             | < 1%               | Right    | 12.27   | 0.68    |
| 15cm             | < 1%               | Front    | 12.12   | 0.46    |
| 15cm             | < 1%               | Rear     | 12.23   | 0.72    |
| Limit            |                    |          | 614     | 1.63    |
| Margin Limit (%) |                    |          | 2.04%   | 44.17%  |

| MPE              |         |            |         |         |
|------------------|---------|------------|---------|---------|
| Test distance    | Battery | Probe from | E-field | H-field |
| Test distance    | levels  | EUT Side   | (V/m)   | (A/m)   |
| 20cm             | < 50%   | Тор        | 11.59   | 0.63    |
| 15cm             | < 50%   | Тор        | 10.79   | 0.71    |
| 15cm             | < 50%   | Left       | 10.90   | 0.55    |
| 15cm             | < 50%   | Right      | 11.13   | 0.62    |
| 15cm             | < 50%   | Front      | 11.03   | 0.64    |
| 15cm             | < 50%   | Rear       | 10.75   | 0.59    |
| Limit            |         |            | 614     | 1.63    |
| Margin Limit (%) |         |            | 1.89%   | 43.56%  |

| MPE              |                    |          |         |         |
|------------------|--------------------|----------|---------|---------|
| Toot distance    | Battery Probe from |          | E-field | H-field |
| Test distance    | levels             | EUT Side | (V/m)   | (A/m)   |
| 20cm             | < 99%              | Тор      | 11.04   | 0.40    |
| 15cm             | < 99%              | Тор      | 10.09   | 0.40    |
| 15cm             | < 99%              | Left     | 10.64   | 0.40    |
| 15cm             | < 99%              | Right    | 10.60   | 0.44    |
| 15cm             | < 99%              | Front    | 10.68   | 0.35    |
| 15cm             | < 99%              | Rear     | 10.80   | 0.25    |
| Limit            |                    |          | 614     | 1.63    |
| Margin Limit (%) |                    |          | 1.80%   | 26.99%  |



| MPE              |         |            |         |         |  |
|------------------|---------|------------|---------|---------|--|
| Test distance    | Battery | Probe from | E-field | H-field |  |
| Test distance    | levels  | EUT Side   | (V/m)   | (A/m)   |  |
| 20cm             | < 1%    | Тор        | 10.66   | 0.35    |  |
| 15cm             | < 1%    | Тор        | 10.88   | 0.23    |  |
| 15cm             | < 1%    | Left       | 10.78   | 0.45    |  |
| 15cm             | < 1%    | Right      | 10.85   | 0.40    |  |
| 15cm             | < 1%    | Front      | 10.43   | 0.33    |  |
| 15cm             | < 1%    | Rear       | 10.48   | 0.24    |  |
| Limit            |         |            | 614     | 1.63    |  |
| Margin Limit (%) |         |            | 1.77%   | 27.61%  |  |

| MPE              |         |            |         |         |
|------------------|---------|------------|---------|---------|
| Test distance    | Battery | Probe from | E-field | H-field |
| Test distance    | levels  | EUT Side   | (V/m)   | (A/m)   |
| 20cm             | < 50%   | Тор        | 9.83    | 0.19    |
| 15cm             | < 50%   | Тор        | 8.56    | 0.30    |
| 15cm             | < 50%   | Left       | 9.27    | 0.11    |
| 15cm             | < 50%   | Right      | 9.30    | 0.17    |
| 15cm             | < 50%   | Front      | 9.27    | 0.24    |
| 15cm             | < 50%   | Rear       | 9.08    | 0.36    |
| Limit            |         |            | 614     | 1.63    |
| Margin Limit (%) |         |            | 1.60%   | 22.09%  |

| MPE              |         |            |         |         |
|------------------|---------|------------|---------|---------|
| Test distance    | Battery | Probe from | E-field | H-field |
| Test distance    | levels  | EUT Side   | (V/m)   | (A/m)   |
| 20cm             | < 99%   | Тор        | 9.48    | 0.16    |
| 15cm             | < 99%   | Тор        | 8.58    | 0.10    |
| 15cm             | < 99%   | Left       | 8.84    | 0.27    |
| 15cm             | < 99%   | Right      | 8.97    | 0.18    |
| 15cm             | < 99%   | Front      | 8.93    | 0.12    |
| 15cm             | < 99%   | Rear       | 8.98    | 0.24    |
| Limit            |         |            | 614     | 1.63    |
| Margin Limit (%) |         |            | 1.54%   | 16.56%  |

Note: All test modes were pre-tested, but we only recorded the worst case in this report.



### **Total exposure**

MPE-based total exposure ratio (Worst case):

E-field:

Coil 1+Coil 2 = 0.0204 + 0.0177= 0.0381 < 1

H-field:

Coil 1+Coil 2 = 0.4417 + 0.22761 = 0.7078 < 1



# 1.1 Test Setup photo



Left















\*\*\*End of report\*\*\*