

TEST REPORT

Report No	CHTEW19010033 Rep	ort verification:			
Project No:	SHT1812013601EW				
FCC ID:	O55104818		Reporting: Chiral 2003		
Applicant's name:	SWAGTEK				
Address	10205 NW 19th Street STE10	1 Miami Florida	United States		
Manufacturer	SWAGTEK				
Address	10205 NW 19th Street STE10	1 Miami Florida	United States		
Test item description	10 inch Wi-Fi Tablet with key	/board			
Trade Mark	LOGIC, iSWAG, UNONU				
Model/Type reference:	Т10В				
Listed Model(s)	Stream X, U10B				
Standard:	FCC CFR Title 47 Part 15 Subpart E Section 15.407				
Date of receipt of test sample:	Dec.14,2018				
Date of testing	Dec.14,2018 ~ Jan.08,2018				
Date of issue	Jan.09,2018				
Result	PASS				
Compiled by		Y	'uomin7.li		
(position+printedname+signature):	File administrators Yueming L	i /	<u>, , , , , , , , , , , , , , , , , , , </u>		
Supervised by (position+printedname+signature):	Project Engineer Tom Ouyang]	<i>uoming.li</i> hom onyang		
Approved by (position+printedname+signature):	RF Manager Hans Hu	ł	tomsty		
Testing Laboratory Name: :	Shenzhen Huatongwei Inter	national Inspec	ction Co., Ltd		
Address	1/F, Bldg 3, Hongfa Hi-tech In Tianliao, Gongming, Shenzhe		enyu Road,		

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report Version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna requirement	11
5.2.	Conducted Emissions (AC Main)	12
5.3.	Maximum Conducted Output Power	15
5.4.	Maximum Power Spectral Density	17
5.5.	26dB bandwidth and 99% Occupy bandwidth	25
5.6.	6dB Bandwidth	30
5.7.	Band edge	35
5.8.	Radiated Spurious Emissions	39
5.9.	Frequency stability	45
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	47
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	49

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards: <u>FCC Rules Part 15.407</u>: General technical requirements.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

KDB789033 D02 v02r01: GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E

1.2. Report Version

Revision No.	Date of issue	Description
N/A	2019-01-09	Original

2. TEST DESCRIPTION

Test Item	FCC Rule	Result	Test Engineer
Antenna Requirement	15.203	PASS	Xiaokang Tan
Line Conducted Emissions (AC Main)	15.207	PASS	Zhiyong Zhang
Maximum Conducted Output Power	15.407(a)	PASS	Xiaokang Tan
Maximum Power Spectral Density	15.407(a)	PASS	Xiaokang Tan
26dB Bandwidth and 99% Ocuppy bandwith	15.407(a)	PASS	Xiaokang Tan
6dB Bandwidth	15.407(a)	PASS	Xiaokang Tan
Band edge	15.407(b)	PASS	Baojin Ling
Radiated Spurious Emissions	15.209	PASS	Baojin Ling
Frequency Stability	15.407(g)	PASS	Xiaokang Tan

Remark: The measurement uncertainty is not included in the test result.

3. SUMMARY

3.1. Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th Street STE101 Miami Florida United States
Manufacturer:	SWAGTEK
Address:	10205 NW 19th Street STE101 Miami Florida United States

3.2. Product Description

Name of EUT	10 inch Wi-Fi Tablet with keyboard			
Trade Mark:	LOGIC, iSWAG, UNONU			
Model No.:	T10B			
Listed Model(s):	Stream X, U10B			
Power supply:	DC 3.7V From the battery	/		
Adapter information :	Model:K-T100502000U Input:100-240Va.c.50-60Hz Output:5Vd.c.2000mA			
Hardware version:	EM_T8611B_V6.2 L7			
Software version:	android 8.1			
5G WIFI				
Supported type:	🛛 802.11a	🔀 802.11n(HT20)	🔀 802.11n(HT40)	
	802.11ac(HT20)	802.11ac(HT40)	802.11ac(HT80)	
Function:	Outdoor AP	🛛 Indoor AP	Fixed P2P	
	Client			
Modulation:	BPSK, QPSK, 16QAM, 6	4QAM		
Operation frequency:	Band I:	5150MHz~5250MHz		
	Band IV:	5725MHz~5850MHz		
Supported Bandwidth	20MHz:	802.11n, 802.11a		
	40MHz:	802.11n		
Antenna type:	FPC Antenna			
Antenna gain:	2dBi			

3.3. Operation state

Frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

		20MHz		40MHz		
Band	Test Channel	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
	CH_{L}	36	5180	38	5190	
I	CH _M	44	5220	-	-	
	СН _Н	48	5240	46	5230	
	CH∟	149	5745	151	5755	
IV	CH _M	157	5785	-	-	
	СН _Н	165	5825	159	5795	

Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)
802.11a	6Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0

> <u>Test mode</u>

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%). For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- \circ supplied by the lab

ſ	0	N/A	Manufacturer :	N/A
			Model No. :	N/A
	o N/A	N/A	Manufacturer :	N/A
	0	N/A	Model No. :	N/A

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory:Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.63 dB	(1)
Conducted spurious emissions 9kHz~40GHz	0.63 dB	(1)
Conducted Disturbance 150kHz~30MHz	3.35 dB	(1)
Radiated Emissions below 1GHz	4.28 dB	(1)
Radiated Emissions above 1GHz	5.16 dB	(1)
Occupied Bandwidth	69 Hz	(1)
Frequency error	69 Hz	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

Condu	Conducted Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	EMI Test Receiver	R&S	ESCI	101247	10/27/2018	10/26/2019
2	Artificial Mains	SCHWARZBECK	NNLK 8121	573	10/27/2018	10/26/2019
3	Pulse Limiter	R&S	ESH3-Z2	101488	10/27/2018	10/26/2019
4	RF Connection Cable	HUBER+SUHNER	EF400	N/A	11/14/2017	11/13/2019
5	Test Software	R&S	ES-K1	N/A	N/A	N/A
6	Temperature and Humidity Meter	ΜΙΑΟΧΙΝ	TH10R	N/A	10/30/2018	10/29/2019

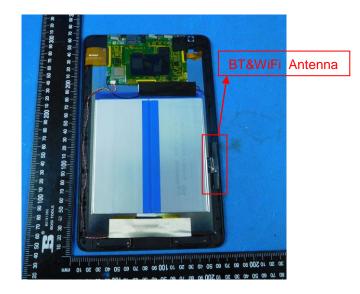
Radia	ted Emissions(Below 1GHz)				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	Semi-Anechoic Chamber	Albatross projects	SAC-3m-02	C11121	09/30/2018	09/29/2021
2	EMI Test Receiver	R&S	ESCI	100900	10/28/2018	10/27/2019
3	Loop Antenna	R&S	HFH2-Z2	100020	04/02/2018	04/02/2021
4	Ultra-Broadband Antenna	SCHWARZBECK	VULB9163	546	04/05/2017	04/04/2020
5	RF Connection Cable	HUBER+SUHNER	N/A	N/A	09/28/2018	09/27/2019
6	RF Connection Cable	HUBER+SUHNER	SUCOFLEX104	501184/4	09/28/2018	09/27/2019
7	Test Software	R&S	ES-K1	N/A	N/A	N/A
8	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
9	Antenna Mast	Maturo Germany	TAM-4.0-P	N/A	N/A	N/A
10	Temperature and Humidity Meter	KEJIAN	KJ03	N/A	10/30/2018	10/29/2019

Radia	ted Emissions(Above 1GH	z)				
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	Anechoic Chamber	Albatross projects	SAC-3m-01	C11121	09/30/2018	09/29/2021
2	Horn Antenna	SCHWARZBECK	9120D	1011	03/27/2017	03/26/2020
3	Preamplifier	BONN	BLWA0160-2M	1811887	11/14/2018	11/13/2019
4	Pre-amplifier	SCHWARZBECK	BBV 9743	9743-0022	10/17/2018	10/16/2019
5	Broadband Pre-amplifier	SCHWARZBECK	BBV 9718	9718-248	04/28/2018	04/27/2019
6	Spectrum Analyzer	R&S	FSP40	100597	10/27/2018	10/26/2019
7	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	11/15/2018	11/14/2019
8	RF Connection Cable	HUBER+SUHNER	RE-7-FH	N/A	11/15/2018	11/14/2019
9	Test Software	Audix	E3	N/A	N/A	N/A
10	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
11	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A
12	Temperature and Humidity Meter	MINGLE	YH101	N/A	10/30/2018	10/29/2019

RF Cor	RF Conducted Test						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)	
1	Spectrum Analyzer	R&S	FSV40	100048	10/28/2018	10/27/2019	
2	EXA Signal Analyzer	Agilent	N9020A	MY5050187	09/29/2018	09/28/2019	
3	OSP	R&S	OSP120	101317	N/A	N/A	

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement


Requirement

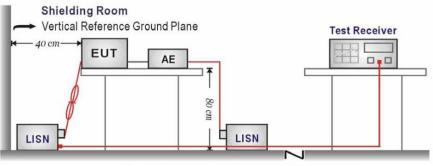
FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test Result:

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. Conducted Emissions (AC Main)


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

Fraguanay ranga (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

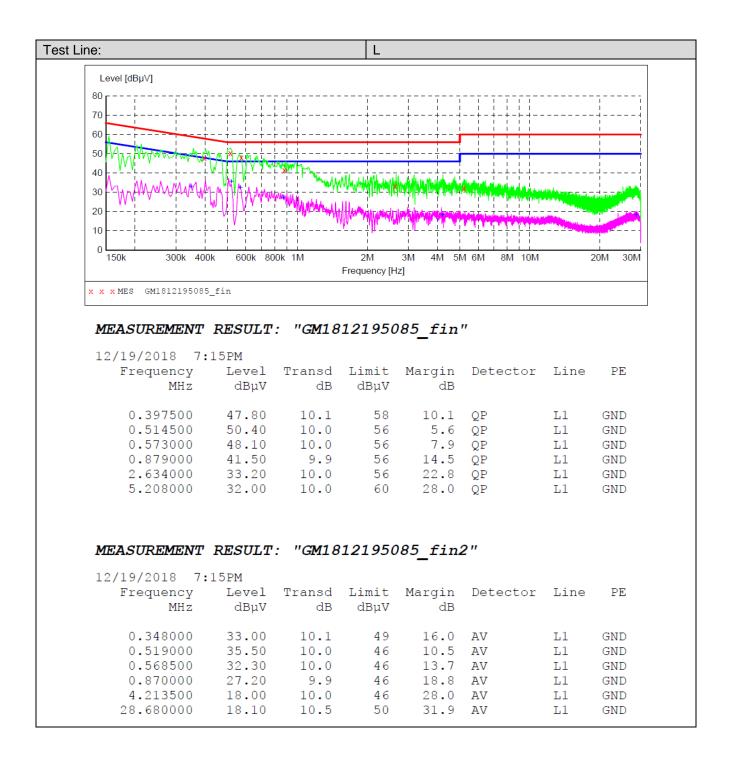
→ Horizontal Ground Reference Plane

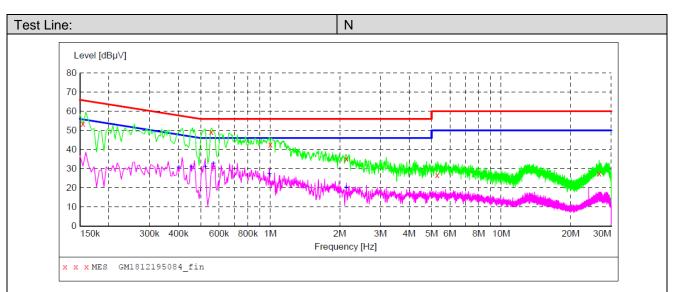
→

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:


Please refer to the clause 3.3


TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Transd=Cable lose+ Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit -Level

MEASUREMENT RESULT: "GM1812195084_fin"

12/19/2018 7:	13PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.154500	53.50	10.1	66	12.3	QP	Ν	GND
0.555000	49.20	10.0	56	6.8	QP	Ν	GND
1.000500	42.80	10.0	56	13.2	ÕP	Ν	GND
2.134500	35.10	10.0	56	20.9	ÕP	Ν	GND
5.280000	26.60	10.0	60	33.4	ÕP	Ν	GND
26.605500	27.60	10.5	60	32.4	ÕP	Ν	GND
20000000	2	20.0			2-		

MEASUREMENT RESULT: "GM1812195084_fin2"

Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
11112	αDμν	ab	αDμν	ab			
0.402000	30.80	10.1	48	17.0	AV	Ν	GND
0.456000	31.10	10.1	47	15.7	AV	Ν	GND
0.523500	31.10	10.0	46	14.9	AV	Ν	GND
0.568500	32.80	10.0	46	13.2	AV	Ν	GND
0.991500	27.10	9.9	46	18.9	AV	Ν	GND
2.134500	20.20	10.0	46	25.8	AV	Ν	GND

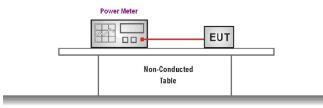
5.3. Maximum Conducted Output Power

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart E Section 15.407(a):

For the 5.15~5.25GHz band:

Outdoor AP


The maximum conducted output power (P_{out}) shall not exceed the lesser of 1W (30dBm). if G_{Tx} >6dBi, then P_{out} =30-(G_{Tx} -6). e.i.r.p. at any elevation angle above 30 degrees \leq 125mW (21dBm)

- Indoor AP The maximum conducted output power (P_{out}) shall not exceed the lesser of 1W (30dBm).
- if G_{Tx}>6dBi, then Pout =30-(G_{Tx}-6).
 Point-to-point AP The maximum conducted output power (P_{out}) shall not exceed the lesser of 1W (30dBm). if G_{Tx}>23dBi, then Pout =30-(G_{Tx}-23).
 Client devices
- Client devices The maximum conducted output power (P_{out}) shall not exceed the lesser of 250W (24dBm). if G_{Tx}>6dBi, then Pout =24-(G_{Tx}-6).

For the 5.725~5.85GHz band:

- Point-to-multipoint systems (P2M)
 The maximum conducted output power (P_{out}) shall not exceed the lesser of 1W (30dBm).
 if G_{Tx}>6dBi, then P_{out} =30-(G_{Tx}-6).
- Point-to-point systems (P2P)
 - The maximum conducted output power (Pout) shall not exceed the lesser of 1W (30dBm).

TEST CONFIGURATION

Ground Reference Plane

TEST PROCEDURE

- 1. The EUT was tested according to KDB789033 Section E-3-b)
- 2. The maximum conducted output power may be measured using a broadband AVG RF power meter.
- 3. Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor.
- 4. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.
- 5. Record the measurement data.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

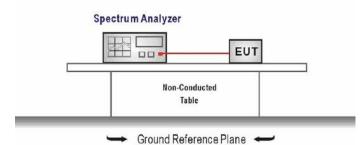
☑ Passed □ Not Applicable

Band	Bandwidth (MHz)	Туре	Channel	Conducted Output Power (dBm)	Limit (dBm)	Result	
			CH∟	18.57			
		802.11n	CH _M	18.32	24.00	Pass	
	20		СН _Н	18.33			
	20		CH_{L}	18.33			
1		802.11a	СН _м	18.22	24.00	Pass	
			СН _н	18.16			
	40	802.11n	CH_{L}	16.39	24.00	Pass	
	40	802.1111	СН _н	16.73	24.00	F 855	
			CH_{L}	17.79			
		802.11n	СН _м	17.24	30.00	Pass	
	20		СН _Н	17.39			
IV	20		CH_{L}	17.39			
IV		802.11a	СН _м	16.72	30.00	Pass	
			СН _Н	17.43			
	40	802.11n	CH_{L}	15.85	30.00	Pass	
	40	002.1111	СН _н	17.03	50.00	F 855	

5.4. Maximum Power Spectral Density

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart E Section 15.407(a):


For the 5.15~5.25GHz band:

- Outdoor AP The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. if G_{Tx}>6dBi, then PSD =17-(G_{Tx}-6).
- Indoor AP
 The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz.
 if G_{Tx}>6dBi, then PSD =17-(G_{Tx}-6).
- Point-to-point AP The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. if G_{T_x} >23dBi, then PSD =17-(G_{T_x} -23).
- Client devices The peak power spectral density (PSD) shall not exceed the lesser of 11dBm/MHz. if G_{Tx} >6dBi, then PSD =11-(G_{Tx} -6).

For the 5.725~5.85GHz band:

- Point-to-multipoint systems (P2M) The peak power spectral density (PSD) shall not exceed the lesser of 30dBm/500kHz. if G_{Tx}>6dBi, then PSD =30-(G_{Tx}-6).
- Point-to-point systems (P2P)
 The peak power spectral density (PSD) shall not exceed the lesser of 30dBm/500kHz.

TEST CONFIGURATION

TEST PROCEDURE

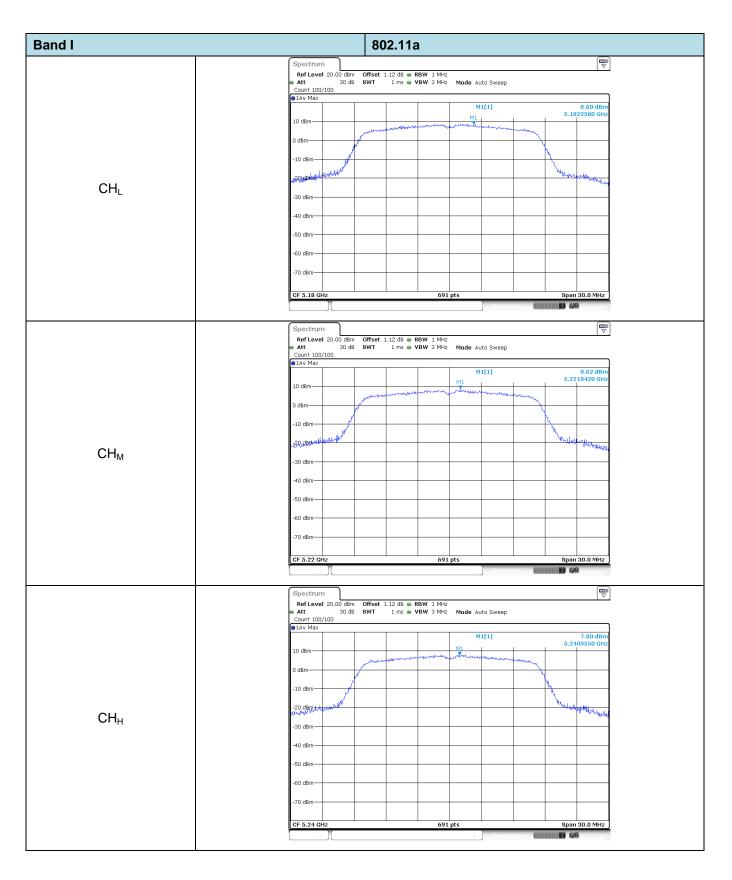
- 1. According KDB 789033 D02 Section F
- 2. Analyzer was setting as follow:
- Center frequency: test channel

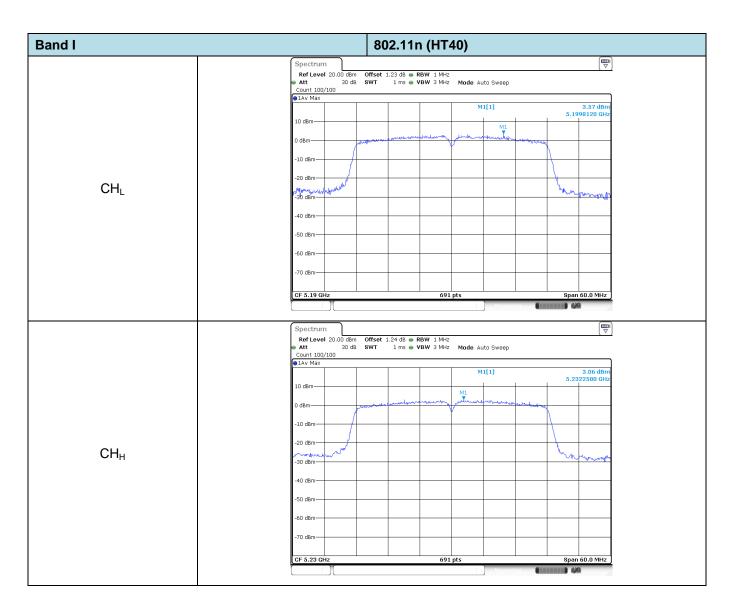
Span was set to encompass the entire emission bandwidth of the signal RBW=1MHz for devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz RBW=500kHz for devices operating in the band 5.725-5.85 GHz VBW \geq 3 RBW Number of sweep points > 2 x (span/RBW) Sweep time = auto Detector = Peak

- Trigger was set to free run for all modes, trace was averaged over 100 sweeps
- 3. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

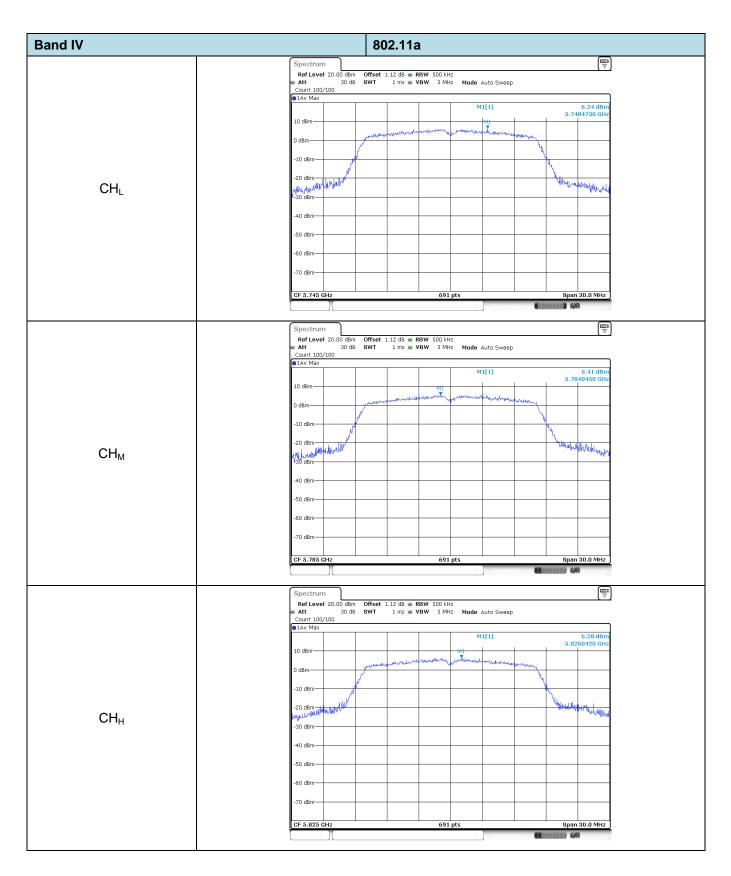
TEST MODE:

Please refer to the clause 3.3


TEST RESULTS

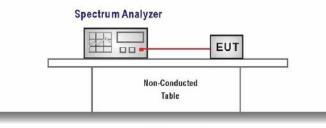

☑ Passed □ Not Applicable

Band	Bandwidth (MHz)	Туре	Channel	Power Spectral Density (dBm/MHz)	Limit (dBm/MHz)	Result
			CH_{L}	8.62		
		802.11n	CH _M	7.79	11.00	Pass
	20		СН _н	8.06		
	20		CH_{L}	8.60		
1		802.11a	CH _M	8.62	11.00	Pass
			СН _н	7.80		
	40	802.11n	CH_{L}	3.57	11.00	Pass
	40	602.TTT	СН _н	3.06	11.00	F 855
Band	Bandwidth (MHz)	Туре	Channel	Power Spectral Density	Limit	Result
	. ,			(dBm/500kHz)	(dBm/500KHz)	rtooun
	. ,		CHL	(dBm/500kHz) 6.67	(dBm/500KHz)	
		802.11n	CH _L CH _M	. ,	(dBm/500KHz) 30.00	Pass
	20	802.11n	_	6.67	· · · · ·	
	20	802.11n	CH _M	6.67 5.67	· · · · ·	
IV	20	802.11n 802.11a	CH _M CH _H	6.67 5.67 6.55	· · · · ·	
IV	20		CH _M CH _H CH _L	6.67 5.67 6.55 6.24	30.00	Pass
IV	20		CH _M CH _H CH _L CH _M	6.67 5.67 6.55 6.24 5.41	30.00	Pass


Test plot as follows:

Band I 802.11n (HT20) Spectrum RefLevel 20.00 dBm Offset 1.12 dB
RBW 1 MHz
Att 30 dB SWT 1 ms VBW 3 MHz Mode Auto Sweep Count 100/100 M1[1] 8.62 dB 5.1789580 GF M1 10 dBmwh 0 dBm-10 dBm Happin Millioniality eq.damille CH_{L} 30 dBm 40 dBm -50 dBm -60 dBm 70 dBm Span 30.0 MH: CF 5.18 (691 p Spectrum Ref Level 20.00 dBm Att 30 dB Count 100/100 1Av Max Mode Auto Sweep M1[1] 7.79 dB 5.2192620 GH 10 dBm-June 0 dBm-10 dBm -20 dB CH_M -30 dBm 40 dBm -50 dBm -60 dBm 70 dBm-691 pt CF 5.22 0 30.0 MHz **1** Spectrum Count 100/100 M1[1] 8.06 dB 5.2391320 G 10 dBm-M1 0 dBm -10 dBm فملبطك uhu 10.00,05; hteren. CH_{H} -30 dBm 40 dBm -50 dBm -60 dBm -70 dBm CF 5.24 GH 691 pts Span 30.0 MHz **()**

Band IV 802.11n (HT20) ₿ Spectrum RefLevel 20.00 dBm Offset 1.12 dB
RBW 500 kHz
Att 30 dB SWT 1 ms VBW 3 MHz Mode Auto Sweep Count 100/100 M1[1] 6.67 dB 5.7435240 GF 10 dBmalworther mapor 0 dBm--10 dBm www. CH_{L} -30 dBm-40 dBm -50 dBm -60 dBm 70 dBm Span 30.0 MH: CF 5.745 G 691 p □ Spectrum Ref Level 20.00 dBm Att 30 dB Count 100/100 1Av Max Offset 1.12 dB ● RBW 500 kHz SWT 1 ms ● VBW 3 MHz Mode Auto Sweep M1[1] 5.67 dB 5.7842620 GH 10 dBm-T 0 dBm -10 dBm--20 dBm h h h h h h h h h h ίh. North Las CH_M -30 dBm--40 dBm -50 dBm--60 dBm 70 dBm-691 pt CF 5.785 30.0 MHz **1** ₽ Spectrum RefLevel 20.00 dBm Offset 1.12 dB
RBW 500 kHz
Att 30 dB SWT 1 ms VBW 3 MHz Mode Auto Sweep Count 100/100 6.55 dB 5.8263890 GF M1[1] 10 dBmwhen . Suge 0 dBm -10 dBm hhab -20 dBm tr www. CH_{H} -30 dBm 40 dBm -50 dBm -60 dBm -70 dBm CF 5.825 GHz 691 pts Span 30.0 MHz


Band IV	802.11n (HT40)
	Spectrum Image: Spectrum Ref Level 20.00 dBm Offset 1.24 dB RBW 500 kHz Att 30 dB SWT 1 ms VBW 3 MHz Mode Auto Sweep Count 100/100 SWT 1 ms VBW 3 MHz Mode Auto Sweep
	Av Max M1[1] 0.79 dBm 5.7478800 GHz
	10 dBm
	-10 d8m
CH∟	
	-40 d8m
	-50 dBm
	-70 dBm
	CF 5.755 GHz 691 pts Span 60.0 MHz
	Spectrum (Ref Level 20.00 dBm Offset 1.24 dB ● RBW 500 kHz
	■ Att 30 dB SWT 1 ms ● VBW 3 MHz Mode Auto Sweep Count 100/100 ●1Av Max
	10 dBm M1[1] 2.33 dBm 5.7983860 GHz
	O dBm
CH _H	1-30 dBh
	-40 dBm
	-60 dBm
	-70 dBm G91 pts Span 60.0 MHz

5.5. 26dB bandwidth and 99% Occupy bandwidth

<u>LIMIT</u>

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

TEST CONFIGURATION

Ground Reference Plane

TEST PROCEDURE

- 1. According KDB 789033 D02 Section C
- 2. Connect the antenna port(s) to the spectrum analyzer input.
- 3. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =Channel center frequency Span=2 x emission bandwidth RBW = 1% to 5% of the emission bandwidth VBW>3 x RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 5. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission, and use the 99 % power bandwidth function of the instrument

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

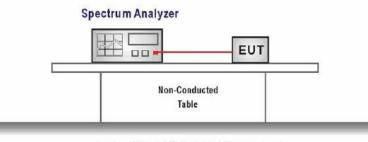
Shenzhen Huatongwei International Inspection Co., Ltd.

Band	Bandwidth (MHz)	Туре	Channel	99% Occupy bandwith (MHz)	26dB bandwidth (MHz)	Result					
			CH∟	17.56	19.80						
		802.11n	CH _M	17.59	19.92	Pass					
	20		СН _н	17.56	19.68						
	20		CH∟	16.51	20.04						
I I							802.11a	СН _м	16.45	20.16	Pass
			CH _H	16.39	19.32						
	40	000 11n	CH∟	36.08	40.26	Deee					
	40	802.11n	СН _н	36.20	40.26	Pass					

Band I	802.11n (HT20)
Band I CH _L	Spectrum Image: Spectrum Ref Level 20:50 dBm Offset 1:00 dB RBW 200 kHz Att 30 dB SWT 37.8 µS VBW 1 MHz Mode Auto FFT Count 500/500 ID dBm ID dBm
	Marker Y-value Function Function Result M1 1 5.17004 6Hz -21.12 dBm T1 1 5.171208 6Hz -22.69 dBm Occ Bw T2 1 5.1887812 0Hz -2.95 dBm Occ Bw M2 1 5.17074 6Hz -2.95 dBm Occ Bw D3 M1 1 9.8 MHz -0.43 dB Occ Bw
CH _M	Spectrum Image: Constraint of the sector of th
	10 dBm 1.592407399 MHz 0 dBm 2.27 dBm -10 dBm 5.2187400 GHz -20 dBm 01, -22.750 dBm -30 dBm -40 dBm
	-60 dBm -70 dBm <t< td=""></t<>
	M2 1 5.21674 GHz 3.27 GBm D3 M1 1 19.92 MHz -0.61 dB Spectrum Image: Construction of the second s
СН _н	Att 30 dB SWT 37.8 µs ● VBW 1 MHz Mode Auto FFT Count 500/500 DIPk View 10 dBm 10
	-10 dBm 5.2387400 GHz
	-60 dBm -60 dBm -70 dBm <t< td=""></t<>
	T2 1 5.2498112 GHz -3.75 dBm M2 1 5.23934 GHz 4.25 dBm D3 M1 1 19.68 MHz 0.34 dB

Band I	802.11a
	Spectrum [] Ref Level 20.50 dBm Offset 1.00 dB ● RBW 200 kHz
	● Att 30 dB SWT 37.8 μs ● VBW 1 MHz Mode Auto FFT Count 500/500 ●1Pk View
	M1[1] -22.98 dBm 10 dBm 5.1700400 GHz 0 dBm 0 cc Bw 10 dBm 5.3130400 GHz 0 dBm 0 cc Bw 10 dBm 3.90 dBm
	-10 dBm
	-40 dam
CHL	-50 dBm
	-70 dBm
	Marker Type Ref Trc X-value Y-value Function Function Result M1 1 5.17004 GHz -22.98 dBm T1 1 5.17004 GHz -3.89 dBm Occ Bw 16.513486513 MHz T2 1 5.1883017 GHz -4.85 dBm M2 1 5.17871 GHz 3.90 dBm
	Min A Output Gitt
	Spectrum [] Ref Level 20.50 dBm Offset 1.00 dB ● RBW 200 kHz
	Att 30 dB SWT 37.8 µs
	10 dBm 71 1 5.2096200 GHz 0 dBm 71 1 5.2096200 GHz 0 dBm 71 1 5.2212600 GHz -10 dBm 71 1 5.2212600 GHz
	-20.dBm 01 30.958 dBm 03 -30.dBm 01 30.958 dBm
CH _M	-40 dBm
	-60 dBm
	CF 5.22 GHz 1001 pts Span 30.0 MHz Marker
	T1 1 S.2117582 GHz -4.58 dBm Occ Bw 16.453546454 MHz T2 1 S.2282118 GHz -3.72 dBm M2 1 S.222126 GHz S.04 dBm M1 1.01.6 MHz 0.49 dB
	Spectrum Image: Spectrum RefLevel 20.50 dBm Offset 1.00 dB ● RBW 200 kHz Att 30 dB SWT 37.8 μs VBW 1 MHz Mode Auto FFT Count 500/500 Count 500/500 1 MHz Mode Auto FFT
	0 dBm T1 10 mm 1 mm 1 mm 1 mm 1 mm 1 mm 1 mm
	-20.d8m 01 -21.8E0 d8m 02 -21.8E0 d8
CH _H	-40 dBm
	-70 dBm
	Marker Yuge Ref Trc X-value Yunit Function Function Result M1 1 5.23043 GHz -22.31 dBm - </td
	Mizz 1 3367 GHz 4.16 GBH D3 M1 19.32 MHz 0.35 dB Messaring

		802.11	n (HT40))		
	Spectrum					[Ţ
	Ref Level 20.50 dB					(v
	Att 30 c Count 500/500	iB SWT 1 ms 🖷	VBW 2 MHz	Mode Auto Sweep)	
	1Pk View					
				M1[1]		23.14 dBn
	10 dBm		M2	Occ Bw	5.10	598400 GH: 16084 MH:
	0 dBm	Terrent alerran	man production of the	mun M2 1 marine	summer T2	2.99 dBn
	-10 dBm	Å	T		5.18	380200 GH:
		`				
	-20 dBm	3 dBm			los Annora	10
	-30 dBm				- WY	11 mar
	-40 dBm					
CHL	-50 dBm					
- L	-60 dBm					
	-70 dBm					
	CF 5.19 GHz		1001 pt	s	Spar	1 60.0 MHz
	Marker					
	Type Ref Trc M1 1	X-value 5.16984 GHz	-23.14 dBm	Function	Function Resul	t
	T1 1	5.171958 GHz	-4.21 dBm	Occ Bw	36.0839	16084 MHz
	T2 1 M2 1	5.208042 GHz 5.18802 GHz	-3.51 dBm 2.99 dBm			
	D3 M1 1	40.26 MHz	-1.25 dB			
				Measur		0
	Spectrum Ref Level 20.50 dB					
	Att 30 c Count 500/500	iB SWT 1 ms 🖷	VBW 2 MHz	Mode Auto Sweep)	
	IPk View					
				M1[1]		-22.97 dBn
	10 dBm		M2	Occ Bw	36.2037)99600 GH: /96204 MH:
	0 dBm	The manual and the second	month and	man hand a start and a start and a start a sta	T2	3.92 dBn
	-10 dBm	A	- I		5.2	241200 GH:
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9 dBm			Anun	nn
	-30 dBm					
	-40 dBm					
CH _H	-50 dBm	+				
	-60 dBm					
	-70 dBm					
	CF 5.23 GHz		1001 pt	s	Spar	1 60.0 MHz
	Marker	Muslus I	V	Counting 1	Function D - 1	
	Type Ref Trc M1 1	X-value 5.20996 GHz	-22.97 dBm	Function	Function Resul	
	T1 1	5.211958 GHz	-4.20 dBm	Occ Bw	36.2037	96204 MHz
	T2 1 M2 1	5.2481618 GHz 5.22412 GHz	-2.93 dBm 3.92 dBm			
	T2 1	5.2481618 GHz	-2.93 dBm 3.92 dBm 0.03 dB		ina	


# 5.6. 6dB Bandwidth

#### <u>LIMIT</u>

#### FCC CFR Title 47 Part 15 Subpart E Section 15.407(e)

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz

#### **TEST CONFIGURATION**



Ground Reference Plane

#### TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =test channel center frequency Span=2 x emission bandwidth RBW = 100 kHz, VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

#### TEST MODE:

Please refer to the clause 3.3

#### TEST RESULTS

☑ Passed □ Not Applicable

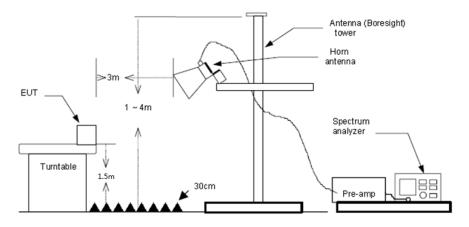
Band	Bandwidth (MHz)	Туре	Channel	6dB bandwith (MHz)	99% Occupy bandwith (MHz)	Result
	20 IV	802.11n 20 802.11a	CH∟	15.15	17.56	Pass Pass
			CH _M	15.15	17.56	
			CH _н	15.84	17.53	
N/			CH∟	15.09	16.39	
IV			CH _M	15.12	16.39	
			СН _н	15.12	16.42	
	40	902.115	CH∟	35.30	35.77	Deee
40	802.11n	СН _н	35.30	35.86	Pass	

est channel	802.11n (HT20)			
	Spectrum         Image: Constraint of the sector of t			
CHL	M2         Occ Bw         17.562437552 MHz           0 dBm         01 -9.207 ddmphoneth with with with with with with with wi			
	Observe         Span 30.0 MHz           -60 dBm         -70 dBm           -70 dBm         -70 dBm			
	M2         1         5.74374 GHz         2.79 dBm           D3         M1         1         15.15 MHz         -0.54 dB           M2         M3         M4         M4           Spectrum         Image: Spectrum         Image: Spectrum			
CH _M	Ref Level 20.50 dBm       Offset 1.00 dB ● RBW 100 Hz         Att       30 dB SWT       75.9 μs ● VBW 300 Hz       Mode Auto FFT         Count 500/500       Image: SWT       75.9 μs ● VBW 300 Hz       Mode Auto FFT         0 dBm       Image: SWT       Mode Auto FFT       Image: SWT       SWT         10 dBm       0 dBm       M2       Occ Bw       17.562437562 MHz       2.20 dBm         -10 dBm       01 - 3.797 dBmggggggdH       Image: SWT       S.7862600 GHz       2.20 dBm         -20 dBm       -4.04 Bmgggggggggggggggggggggggggggggggggggg			
	-30 dBp			
	CF 5.785 GHz         Span 30.0 MHz           Marker         Y-value         Function         Function Result           M1         1         5.7774 GHz         -4.73 dBm         Function         Function Result           T1         1         5.7762489 GHz         -5.25 dBm         Occc Bw         17.562437562 MHz           T2         1         5.77842 GHz         -6.24 dBm         Occ Bw         17.562437562 MHz           M2         1         5.76826 GHz         2.20 dBm         Occ Bw         17.562437562 MHz           D3         M1         115.15 MHz         -0.38 dB         M         M			
	Spectrum         Image: Constraint of the sector of t			
СН _н	10 dBm         M1[1]         -4.7.1 dBm           10 dBm         M2         Occ Bw         17.532467592 MHz           0 dBm         17.532467592 MHz         2.32 dBm           -10 dBm         D1 - 3.680 dBmstry         5.827407 dBmstry         5.827407 dBmstry           -20 dBm         -0         -0         -0         -0           -3,680 dBmstry         -0         -0         -0         -0           -20 dBm         -0         -0         -0         -0           -30,dBm         -0         -0         -0         -0			
	40 d8m			
	M1         1         S.81708 GHz         -4.71 dBm           T1         1         S.852848 GHz         -4.94 dBm         Occ Bw         17.532467532 MHz           T2         1         S.8337812 GHz         -5.06 dBm         M         M           M2         1         S.82374 GHz         2.32 dBm         M         M           D3         M1         15:84 MHz         1.00 dB         M         M			

Test channel	802.11a				
	Spectrum V				
	Ref Level 20.50 dBm Offset 1.00 dB 🖷 RBW 100 kHz				
	● Att 30 dB SWT 75.9 μs ● VBW 300 kHz Mode Auto FFT Count 500/500				
	●1Pk View M1[1] -4.02 dBm				
CHL	10 dBm 5.7374700 GHz M2 Occ Bw 16.393606394 MHz 0 cm M1 cm M2 M2[1] cm 2.2 4 dBm				
	0 dBm				
	-10 dBm				
	-30 dbm www. Warman www. 40 dbm -				
	-50 dBm				
	-70 dBm				
	CF 5.745 GHz         1001 pts         Span 30.0 MHz				
	Marker				
	Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         5.73747 GHz         -4.02 dBm         -4.02 dBm         -4.02 dBm				
	T1         1         S.7367882 GHz         -6.87 dBm         Occ Bw         16.393606394 MHz           T2         1         S.7531818 GHz         -6.16 dBm				
	M2         1         S.74374 GHz         2.23 dBm           D3         M1         1         15.09 MHz         -0.08 dB				
	Measuring				
	Spectrum         Imp           Ref Level 20.50 dBm         Offset 1.00 dB ● RBW 100 kHz				
	■ Att 30 dB SWT 75.9 µs ■ VBW 300 kHz Mode Auto FFT Count 500/500				
	●1Pk View M1[1] -5.29 dBm				
	10 dpm 5.7774400 GHz				
	D dbm         M2         Occ. Bw         16.393606394 MHz           D dbm				
	-10 dBm				
	-20 dBm				
	-30 dBm				
CH _M	-50 dBm				
	-60 d8m				
	-70 dBm				
	CF 5.785 GHz 1001 pts Span 30.0 MHz Marker				
	Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         5.77744 GHz         -5.29 dBm				
	T1         1         5.7768182 GHz         -7.10 dBm         Occ Bw         16.393606394 MHz           T2         1         5.7932118 GHz         -7.56 dBm         -         -         -				
	M2         1         5.78374 GHz         1.66 dBm           D3         M1         1         15.12 MHz         0.67 dB				
	Spectrum         Imp           Ref Level 20.50 dBm         Offset 1.00 dB ● RBW 100 kHz				
	Att 30 dB SWT 75.9 μs  VBW 300 kHz Mode Auto FFT Count 500/500				
	1Pk View				
	10 dBm M1[1] -4.38 dBm 5.8174400 GHz				
	0 dBm 01 -3.612 dBm 01 -3.62 dBm 01 -3.612 dBm 01 - 3.612 dBm 01 -				
	-20 dBm				
	138,48, Martin Martin Carl				
	-40 d8m				
CH _H	-50 dBm				
	-60 dBm				
	-70 dBm				
	CF 5.825 GHz 1001 pts Span 30.0 MHz Marker				
	Type Ref Trc X-value Y-value Function Function Result				
	M1         1         5.81744 GHz         -4.38 dBm           T1         1         5.8167882 GHz         -6.97 dBm         Occ Bw         16.423576424 MHz				
	M1         1         5.81744 GHz         -4.38 dBm         -           T1         1         5.8167882 GHz         -6.97 dBm         Occ Bw         16.423576424 MHz           T2         1         5.8332118 GHz         -7.02 dBm         Occ Bw         16.423576424 MHz           M2         1         5.82374 GHz         2.39 dBm         -				
	M1         1         5.81744 GHz         -4.38 dBm           T1         1         S.8167882 GHz         -6.97 dBm         Occ Bw         16.423576424 MHz           T2         1         S.8332116 GHz         -7.02 dBm				

Fest channel	802.11n (HT40)			
CHL	Spectrum         (0)           Ref Level 20.50 dbm         Offset 1.00 db ≤ RBW 100 kHz           Att         30 db SWT 132.7 µs ≤ VBW 300 kHz           Count 500/500         (0)			
	●1Pk View M1[1] -10.70 dBm 10 dBm 0 dBm M2 M2[1] -3.22 dBm M2[1] -3.22 dBm M2[1] -3.22 dBm			
	-10 dBm 01 -9.224 dBm 01 -9.224 dBm			
	160 dBm			
	-70 dBm -70 dBm CF 5.755 GHz Marker Marker			
	Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         5.7373476 GHz         -10.70 dBm         0         1         1         5.7371429 GHz         -10.70 dBm         0         0         35.774240232 MHz         1         1         5.7728871 GHz         -10.82 dBm         0         35.774240232 MHz         1         3.77499565 GHz         -3.22 dBm         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0			
	D3 M1 1 35.3043 MHz 0.69 dB			
	Spectrum RefLevel 20.50 dBm Offset 1.00 dB ⊕ RBW 100 kHz			
	Spectrum         ♥           Ref Level 20.50 dBm Offset 1.00 dB ● RBW 100 kHz         Mode Auto FFT           Att 30 dB SWT 132.7 µs ● VBW 300 kHz         Mode Auto FFT           Count 500/500         ●1Pk Max           10.48m         \$,7773478 GHz			
	Spectrum         (T)           Ref Level 20.50 dbm         Offset 1.00 db = RBW 100 kHz           Att         30 db SWT 132.7 µs = VBW 300 kHz           Mode Auto FFT         Count 500/500           @ JPk Max         M1[1]           0 dbm         9.773478 GHz           10 dbm         9.60 BW           10 dbm         9.60 BW           10 dbm         9.1 -7.485 Ban Jule Auto Human Auto Human Jule Auto Human Jule Jule Jule 25.58000435 GHz			
	Spectrum         The sector of the secto			
CH _H	Spectrum         The sector of the secto			
СН _Н	Spectrum         Image: Const 500 SWT			
СНн	Spectrum         The sector of the secto			

# 5.7. Band edge


FCC CFR Title 47	Part 15 Subpart E	E Section 15.407(b)

Un-restricted band emissions above 1GHz					
Operating Band	Frequency	EIRP Limit	Value		
5150-5250MHz	Above 1GHz	-27dBm/MHz(68.2dBuV/m)@3m	Peak		
5250-5350MHz	Above 1GHz	-27dBm/MHz(68.2dBuV/m)@3m	Peak		
5470-5725MHz	Above 1GHz	-27dBm/MHz(68.2dBuV/m)@3m	Peak		
	1GHz-5.65GHz	-27 dBm/MHz(68.2dBuV/m)@3m	Peak		
	5.65GHz-5.7GHz	-27*dBm/MHz to 10dBm/MHz (68.2* dBuV/m to 105.6dBuV/m)	Peak		
	5.7GHz-5.72GHz	10*dBm/MHz to 15.6dBm/MHz (105.6*dBuV/m to 110.8dBuV/m)	Peak		
	5.72GHz-5.725GHz	15.6*dBm/MHz to 27dBm/MHz (110.8dBuV/m to* 122.2dBuV/m)	Peak		
5725-5850 MHz	5.85GHz-5.855GHz	27dBm/MHz to 15.6*dBm/MHz (122.2dBuV/m to110.8* dBuV/m)	Peak		
	5.855GHz-5.875GHz	15.6dBm/MHz to 10*dBm/MHz (110.8dBuV/m to 105.6* dBuV/m	Peak		
	5.875GHz-5.925GHz	10dBm/MHz to -27*dBm/MHz (105.6dBuV/m to 68.2* dBuV/m)	Peak		
	Above 5.925GHz	-27 dBm/MHz(68.2dBuV/m)@3m	Peak		

* Increase/Decreases with the linearly of the frequency.

For emission above 1GHz and in restricted band, according to FCC KDB 789033 D02 General UNII Test Procedure, all emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz peak emission limit.  $E[dB\mu V/m] = EIRP[dBm] + 95.2$ , for d = 3 meters.

#### **TEST CONFIGURATION**



#### TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

#### TEST MODE:

Please refer to the clause 3.3

#### TEST RESULTS

☑ Passed □ Not Applicable

Band: I				Worst mo	ode: 802.11a	a	Test cha	annel: CH _L	
Frequency (MHz)	Read Level (dBuV)	Antenn a Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
5149.67	17.48	31.70	9.79	0.00	58.97	68.20	-15.03	Vertical	Peak
5250.63	16.91	31.40	9.91	0.00	58.22	68.20	-15.78	Vertical	Peak
5149.67	15.54	31.70	9.79	0.00	57.03	68.20	-16.97	Horizontal	Peak
5250.63	17.26	31.40	9.91	0.00	58.57	68.20	-15.43	Horizontal	Peak
5149.67	6.76	31.70	9.79	0.00	48.25	54.00	-5.75	Vertical	Average
5250.63	7.76	31.40	9.91	0.00	49.07	54.00	-4.93	Vertical	Average
5149.67	6.95	31.70	9.79	0.00	48.44	54.00	-5.56	Horizontal	Average
5250.63	6.88	31.40	9.91	0.00	48.19	54.00	-5.81	Horizontal	Average

Band: I				Worst mo	ode: 802.11a	a	Test cha	annel: CH _H	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
5149.67	17.27	31.70	9.79	0.00	58.76	68.20	-15.24	Vertical	Peak
5250.63	16.81	31.40	9.91	0.00	58.12	68.20	-15.88	Vertical	Peak
5149.67	18.38	31.70	9.79	0.00	59.87	68.20	-14.13	Horizontal	Peak
5250.63	18.02	31.40	9.91	0.00	59.33	68.20	-14.67	Horizontal	Peak
5149.67	5.18	31.70	9.79	0.00	46.67	54.00	-7.33	Vertical	Average
5250.63	4.83	31.40	9.91	0.00	46.14	54.00	-7.86	Vertical	Average
5149.67	5.37	31.70	9.79	0.00	46.86	54.00	-7.14	Horizontal	Average
5250.63	5.35	31.40	9.91	0.00	46.66	54.00	-7.34	Horizontal	Average

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band: IV				Worst mo	ode: 802.11a	a	Test cha	annel: CH _L	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
5725.49	15.76	31.73	10.47	0.00	57.96	74.00	-16.04	Vertical	Peak
5850.00	17.69	32.20	10.61	0.00	60.50	74.00	-13.50	Vertical	Peak
5725.49	14.68	31.73	10.47	0.00	56.88	74.00	-17.12	Horizontal	Peak
5850.00	15.79	32.20	10.61	0.00	58.60	74.00	-15.40	Horizontal	Peak
5725.49	4.43	31.73	10.47	0.00	46.63	54.00	-7.37	Vertical	Average
5850.00	8.71	32.20	10.61	0.00	51.52	54.00	-2.48	Vertical	Average
5725.49	3.98	31.73	10.47	0.00	46.18	54.00	-7.82	Horizontal	Average
5850.00	8.46	32.20	10.61	0.00	51.27	54.00	-2.73	Horizontal	Average

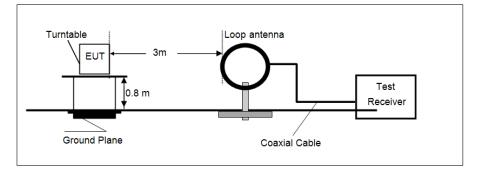
Band: IV				Worst mo	ode: 802.11a	a	Test cha	annel: CH _H	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
5725.49	17.60	31.73	10.47	0.00	59.80	74.00	-14.20	Vertical	Peak
5850.00	16.86	32.20	10.61	0.00	59.67	74.00	-14.33	Vertical	Peak
5718.40	15.30	31.69	10.46	0.00	57.45	74.00	-16.55	Horizontal	Peak
5850.92	16.12	32.20	10.61	0.00	58.93	74.00	-15.07	Horizontal	Peak
5725.49	5.97	31.73	10.47	0.00	48.17	54.00	-5.83	Vertical	Average
5850.00	9.15	32.20	10.61	0.00	51.96	54.00	-2.04	Vertical	Average
5725.49	5.73	31.73	10.47	0.00	47.93	54.00	-6.07	Horizontal	Average
5850.00	9.36	32.20	10.61	0.00	52.17	54.00	-1.83	Horizontal	Average

Remark:

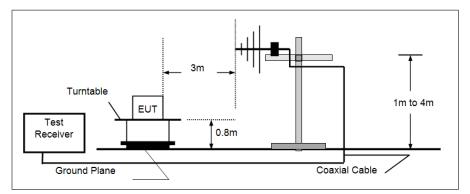
1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

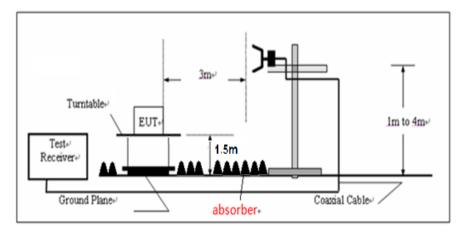
# 5.8. Radiated Spurious Emissions


## <u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209 and Part 15 Subpart E Section 15.407


Unwanted emissions below	v 1GHz and Restricted band emissions	above 1GHz
Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak

### **TEST CONFIGURATION**


• 9KHz ~30MHz



• 30MHz ~ 1GHz



• Above 1GHz



### TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
  - (1) Span shall wide enough to fully capture the emission being measured;
  - (2) Below 1 GHz:

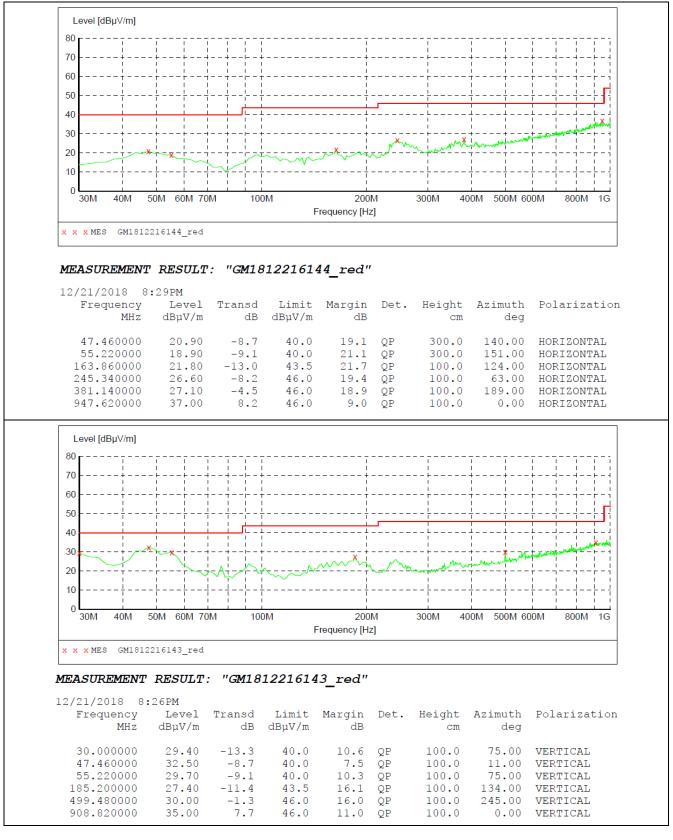
RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

 (3) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

### TEST MODE:

Please refer to the clause 3.3

### TEST RESULTS


☑ Passed □ Not Applicable

### Measurement data:

### 9kHz ~ 30MHz

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

### ■ 30MHz ~ 1GHz



Remark:

Transd=Cable lose+ Antenna factor- Pre-amplifier; Margin=Limit -Level

### Above 1GHz

Band: I				Worst mo	ode: 802.11a	a	Test cha	annel: CH _L	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1856.26	34.47	25.34	6.05	37.46	28.40	68.20	-45.60	Vertical	Peak
3690.85	35.16	29.30	8.37	36.99	35.84	68.20	-38.16	Vertical	Peak
5325.01	31.89	31.35	10.02	34.75	38.51	68.20	-35.49	Vertical	Peak
6764.54	32.49	34.07	11.56	33.76	44.36	68.20	-29.64	Vertical	Peak
1904.12	35.01	25.34	6.12	37.51	28.96	68.20	-45.04	Horizontal	Peak
3662.78	35.59	29.30	8.34	37.01	36.22	68.20	-37.78	Horizontal	Peak
5177.97	31.97	31.59	9.81	35.03	38.34	68.20	-35.66	Horizontal	Peak
7624.25	30.52	36.18	12.79	33.03	46.46	68.20	-27.54	Horizontal	Peak

Band: I				Worst mo	ode: 802.11a	a	Test cha	annel: CH _M	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1823.48	37.49	25.38	6.00	37.43	31.44	74.00	-42.56	Vertical	Peak
3953.44	34.15	29.70	8.71	36.79	35.77	74.00	-38.23	Vertical	Peak
5806.41	31.86	32.11	10.59	34.25	40.31	74.00	-33.69	Vertical	Peak
7702.28	31.29	36.10	13.00	33.04	47.35	74.00	-26.65	Vertical	Peak
1894.45	34.50	25.31	6.11	37.50	28.42	74.00	-45.58	Horizontal	Peak
3534.54	34.76	29.10	8.17	37.11	34.92	74.00	-39.08	Horizontal	Peak
6125.24	31.29	32.60	10.88	34.01	40.76	74.00	-33.24	Horizontal	Peak
9636.16	31.96	39.08	13.72	33.95	50.81	74.00	-23.19	Horizontal	Peak

#### Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. Measuring frequencies from 1 GHz to 40GHz.

Band: I				Worst mo	ode: 802.11a	a	Test cha	annel: CH _H	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1741.81	36.01	25.29	5.85	37.35	29.80	68.20	-44.20	Vertical	Peak
4267.18	34.63	30.13	9.00	36.50	37.26	68.20	-36.74	Vertical	Peak
5617.41	31.77	31.76	10.30	34.35	39.48	68.20	-34.52	Vertical	Peak
7527.83	31.42	36.13	12.49	33.02	47.02	68.20	-26.98	Vertical	Peak
1860.99	34.93	25.34	6.05	37.47	28.85	68.20	-45.15	Horizontal	Peak
3143.98	35.62	28.80	7.65	37.45	34.62	68.20	-39.38	Horizontal	Peak
6032.40	31.73	32.50	10.73	34.11	40.85	68.20	-33.15	Horizontal	Peak
8549.59	32.84	37.10	12.88	32.92	49.90	68.20	-24.10	Horizontal	Peak

Band: IV				Worst mo	ode: 802.11a	ì	Test cha	annel: CH _L	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
2298.80	34.27	28.09	6.60	37.59	31.37	74.00	-42.63	Vertical	Peak
4014.29	33.62	29.73	8.79	36.75	35.39	74.00	-38.61	Vertical	Peak
6747.34	31.83	34.10	11.54	33.75	43.72	74.00	-30.28	Vertical	Peak
10036.73	32.38	39.10	13.54	34.41	50.61	74.00	-23.39	Vertical	Peak
3316.62	34.53	28.20	7.86	37.29	33.30	74.00	-40.70	Horizontal	Peak
5125.52	32.85	31.80	9.77	35.13	39.29	74.00	-34.71	Horizontal	Peak
7941.19	31.07	36.87	12.58	33.06	47.46	74.00	-26.54	Horizontal	Peak
9809.40	32.59	39.10	13.64	34.08	51.25	74.00	-22.75	Horizontal	Peak

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. Measuring frequencies from 1 GHz to 40GHz.

### Report No: CHTEW19010033

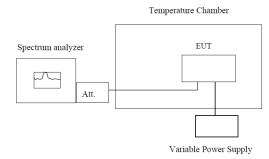
Band: IV				Worst mo	ode: 802.11a	a	Test cha	annel: CH _M	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
2292.96	34.56	28.06	6.59	37.59	31.62	74.00	-42.38	Vertical	Peak
3010.83	35.42	28.62	7.49	37.57	33.96	74.00	-40.04	Vertical	Peak
4524.47	33.84	30.75	9.34	36.24	37.69	74.00	-36.31	Vertical	Peak
6921.30	30.90	34.83	11.75	33.84	43.64	74.00	-30.36	Vertical	Peak
1621.99	35.54	24.97	5.61	37.21	28.91	74.00	-45.09	Horizontal	Peak
4202.50	33.41	30.01	8.94	36.56	35.80	74.00	-38.20	Horizontal	Peak
6527.71	31.96	34.06	11.23	33.63	43.62	74.00	-30.38	Horizontal	Peak
7941.19	31.07	36.87	12.58	33.06	47.46	74.00	-26.54	Horizontal	Peak

Band: IV				Worst mo	ode: 802.11a	a	Test cha	annel: CH _H		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value	
1865.74	35.02	25.33	6.06	37.47	28.94	74.00	-45.06	Vertical	Peak	
4366.07	33.55	30.40	9.10	36.41	36.64	74.00	-37.36	Vertical	Peak	
7045.74	31.19	35.44	11.85	33.80	44.68	74.00	-29.32	Vertical	Peak	
9251.58	32.52	38.91	13.55	33.44	51.54	74.00	-22.46	Vertical	Peak	
2060.46	35.03	26.54	6.32	37.60	30.29	74.00	-43.71	Horizontal	Peak	
3834.51	35.11	29.63	8.55	36.88	36.41	74.00	-37.59	Horizontal	Peak	
6203.70	31.71	32.91	11.01	33.93	41.70	74.00	-32.30	Horizontal	Peak	
7860.74	31.13	36.47	12.97	33.06	47.51	74.00	-26.49	Horizontal	Peak	

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.


3. Measuring frequencies from 1 GHz to 40GHz.

# 5.9. Frequency stability

### <u>LIMIT</u>

Within Operation Band

# TEST CONFIGURATION



Note: Measurement setup for testing on Antenna connector

### TEST PROCEDURE

- 1. The equipment under test was connected to an external power supply.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25℃ operating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 6. Repeat step measure with 10℃ increased per stage until the highest temperature of +50℃ reached.

### TEST MODE:

Transmitting with unmodulation

### TEST RESULTS

☑ Passed □ Not

Not Applicable

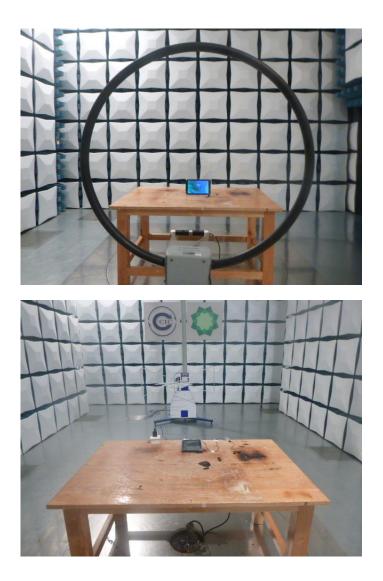
# Voltage VS Frequency stability

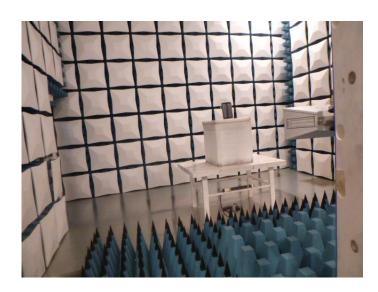
Band: I			Test Frequency: 5180.00MHz			
Temperature (℃)	Voltage (V)	Frequency Deviation (Hz)	Frequency Deviation (ppm)	Result		
25	3.2	4000.00	0.77220	Pass		
25	3.7	4000.00	0.77220	Pass		
25	4.2	4000.00	0.77220	Pass		

Band: IV			Test Frequency: 5745.00MHz	
Temperature (℃)	Voltage (V)	Frequency Deviation (Hz)	Frequency Deviation (ppm)	Result
25	3.2	5000.00	0.87032	Pass
25	3.7	5000.00	0.87032	Pass
25	4.2	5000.00	0.87032	Pass

## Temperature VS Frequency stability

Band: I			Test Frequency: 5180.00MHz	
Voltage (V)	Temperature (℃)	Frequency Deviation (Hz)	Frequency Deviation (ppm)	Result
3.7	-20	4000.00	0.77220	Pass
3.7	-10	4000.00	0.77220	Pass
3.7	0	4000.00	0.77220	Pass
3.7	10	4000.00	0.77220	Pass
3.7	20	4000.00	0.77220	Pass
3.7	30	4000.00	0.77220	Pass
3.7	40	4000.00	0.77220	Pass
3.7	50	4000.00	0.77220	Pass


Band: IV			Test Frequency: 5745.00MHz	
Voltage (V)	Temperature (℃)	Frequency Deviation (Hz)	Frequency Deviation (ppm)	Result
3.7	-20	5000.00	0.87032	Pass
3.7	-10	5000.00	0.87032	Pass
3.7	0	5000.00	0.87032	Pass
3.7	10	5000.00	0.87032	Pass
3.7	20	5000.00	0.87032	Pass
3.7	30	5000.00	0.87032	Pass
3.7	40	5000.00	0.87032	Pass
3.7	50	5000.00	0.87032	Pass


# 6. Test Setup Photos of the EUT

Conducted Emissions (AC Mains)



**Radiated Emissions** 





# 7. External and Internal Photos of the EUT

Reference to the test report No.: CHTEW19010030.

-----End of Report-----