

Test report No. : 13324451H-A-R3 Page : 1 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

RADIO TEST REPORT

Test Report No.: 13324451H-A-R3

Applicant : MinebeaMitsumi Inc.

Type of EUT : Parking Sensor

Model Number of EUT: NDPM003 US

FCC ID : 2AWRLNDPM003US

Test regulation : FCC Part 15 Subpart C: 2020

Test Result : Complied (Refer to SECTION 3.2)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report covers Radio technical requirements.

 It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 6. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 7. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.
- 8. The information provided from the customer for this report is identified in SECTION 1.
- 9. This report is a revised version of 13324451H-A-R2. 13324451H-A-R2 is replaced with this report.

Date of test: April 16 to 19, 2020

Representative test engineer:

Yuichiro Yamazaki Engineer

Consumer Technology Division

Approved by:

Tsubasa Takayama Leader

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc_accredited/

This report contains data that are not covered by the NVLAP accreditation.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13324451H-A-R3 Page : 2 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

REVISION HISTORY

Original Test Report No.: 13324451H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	13324451H-A	July 8, 2020	-	-
1	13324451H-A-R1	August 3, 2020	P.7	Correction of erroneous description for Clause 3.1; from May 26, 2020 to June 26, 2020
1	13324451H-A-R1	August 3, 2020	P.7	Change of the FCC Part 15.31 €in Clause 3.2; From; The RF Module has its own regulator. The RF Module is constantly provided voltage through the regulator regardless of input voltage. Therefore, this EUT complies with the requirement. To; This EUT provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.
1	13324451H-A-R1	August 3, 2020	P.13	Addition of the following sentence in SECTION 6; Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.
1	13324451H-A-R1	August 3, 2020	P.13	Addition of the "*1)" to 9 kHz-30 MHz (Detector) in the table, and the following sentence.in SECTION 6; *1) Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788. Also, "1)" was changed to "2)" by above addition.
2	13324451H-A-R2	September 1, 2020	P.6	Correction of Steerable Antenna for Sensor in Clause 2.2; From Electronically to None
2	13324451H-A-R2	September 1, 2020	corresponding page	Deletion of all contents related to Conducted emission test.
3	13324451H-A-R3	September 8, 2020	P.10	Addition of USB Cable in configuration diagram and Cable list of Clause 4.2
3	13324451H-A-R3	September 8, 2020	P.10	Correction of Serial number for EUT of configuration diagram in Clause 4.2; From 201 to 24

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13324451H-A-R3

Page : 3 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

Reference: Abbreviations (Including words undescribed in this report)

A2LA The American Association for Laboratory Accreditation MCS Modulation and Coding Scheme AC Alternating Current MRA Mutual Recognition Arrangement AFH Not Applicable Adaptive Frequency Hopping N/A NIST National Institute of Standards and Technology AM Amplitude Modulation Amp, AMP Amplifier NS No signal detect. ANSI American National Standards Institute NSA Normalized Site Attenuation NVLAP Ant, ANT Antenna National Voluntary Laboratory Accreditation Program AP Access Point OBW Occupied Band Width ASK Amplitude Shift Keying **OFDM** Orthogonal Frequency Division Multiplexing Atten., ATT Attenuator P/M Power meter ΑV Average PCB Printed Circuit Board BPSK Binary Phase-Shift Keying Packet Error Rate BR Bluetooth Basic Rate PHY Physical Layer ВТ Bluetooth PK Peak BT LE Bluetooth Low Energy PN Pseudo random Noise BandWidth BW PRBS Pseudo-Random Bit Sequence Cal Int Calibration Interval Power Spectral Density Complementary Code Keying QAM Quadrature Amplitude Modulation Ch., CH QP Quasi-Peak CISPR Comite International Special des Perturbations Radioelectriques QPSK Quadri-Phase Shift Keying CW Continuous Wave RBW Resolution Band Width DBPSK Differential BPSK RDS Radio Data System DC Direct Current RE Radio Equipment RF Radio Frequency D-factor Distance factor DFS Dynamic Frequency Selection RMS Root Mean Square DOPSK Differential OPSK RSS Radio Standards Specifications DSSS Direct Sequence Spread Spectrum RxReceiving EDR Enhanced Data Rate SA, S/A Spectrum Analyzer EIRP, e.i.r.p. Equivalent Isotropically Radiated Power SG Signal Generator **EMC** ElectroMagnetic Compatibility SVSWR Site-Voltage Standing Wave Ratio **EMI** ElectroMagnetic Interference TR Test Receiver EN European Norm Tx Transmitting ERP, e.r.p. Effective Radiated Power VBW Video BandWidth EU European Union Vert. Vertical EUT Equipment Under Test WLAN Wireless LAN Factor Fac. FCC Federal Communications Commission **FHSS** Frequency Hopping Spread Spectrum

FM Frequency Modulation

Freq. Frequency

FSK Frequency Shift Keying
GFSK Gaussian Frequency-Shift Keying
GNSS Global Navigation Satellite System

GPS Global Positioning System

Hori. Horizontal

ICES Interference-Causing Equipment Standard
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers

IF Intermediate Frequency

ILAC International Laboratory Accreditation Conference
ISED Innovation, Science and Economic Development Canada

ISO International Organization for Standardization

JAB Japan Accreditation Board LAN Local Area Network

LIMS Laboratory Information Management System

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.

: 13324451H-A-R3 : 4 of 28

Page Issued date FCC ID

: September 8, 2020 : 2AWRLNDPM003US

CONTENTS	PAGE
SECTION 1: Customer information ······	
SECTION 2: Equipment under test (EUT)	5
SECTION 3: Test specification, procedures & results ······	7
SECTION 4: Operation of EUT during testing	10
SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious 1	Emission)11
SECTION 6: 20 dB Bandwidth, 99 % Occupied Bandwidth and Duty Cycle······	16
APPENDIX 1: Test data······	17
Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)	17
20dB Bandwidth, 99% Occupied Bandwidth	21
Duty Cycle	22
APPENDIX 2: Test Instruments······	
APPENDIX 3: Photographs of test setup ······	25
Radiated Emission (Fundamental emission)	
Radiated Emission (Spurious emission)	26
Worst Case Position	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999 : +81 596 24 8124 Facsimile

Test report No. : 13324451H-A-R3 Page : 5 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

SECTION 1: Customer information

Company Name : MinebeaMitsumi Inc.

Address : 3-9-6 Mita, Minato-ku, Tokyo 108-8330 Japan

Telephone Number : +81-3-6758-6711 Facsimile Number : +81-3-6758-6700 Contact Person : Kosuke Sumi

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : Parking Sensor Model Number : NDPM003 US

Serial Number : Refer to SECTION 4.2

Rating : DC 3.6 V (3 AA-sized batteries)

Receipt Date : April 9, 2020 Country of Mass-production : Thailand

Condition : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab

2.2 Product Description

Model: NDPM003 US (referred to as the EUT in this report) is a Parking Sensor.

General Specification

Clock frequency(ies) in the system : 50 MHz

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13324451H-A-R3

Page : 6 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

Radio Specification

Sub-GHz Radio Interface

Radio Type : Transceiver

Frequency of Operation : 902.42 MHz - 927.58 MHz

Modulation : GFSK

Antenna type : Reverse F Antenna Antenna Gain : 2.3 dBi (max)

TX mode : Frequency Hopping Spread Spectrum

Ch. Spacing : 340 kHz Channels : 75

Sensor *1)

Radio Type : Transceiver
Frequency of Operation : 24.15 GHz
Modulation : Unmodulation
Antenna type : PatchAntenna

Antenna connector : None (Internal Antenna)

Antenna Gain : 4.0 dBi (max)

Steerable Antenna : None

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} This test report applies to Sensor.

Test report No. : 13324451H-A-R3
Page : 7 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on June 26, 2020 and effective July 27, 2020 except 15.258

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.249 Operation within the bands 902-928MHz,

2400-2483.5MHz, 5725-5875MHz and 24.0-24.25GHz

3.2 Procedures and results

No.	Item	Test Procedure	Specification	Deviation	Worst margin	Results
1	Conducted Emission	ANSI C63.10-2013 6. Standard test methods	Section 15.207(a)	N/A	N/A	N/A *1)
2	Electric Field Strength of Fundamental Emission	ANSI C63.10-2013 6. Standard test methods	Section 15.249(a)(c)(e)	N/A	5.3 dB (24135.900 MHz, Horizontal, AV)	Complied# a)
3	Electric Field Strength of Spurious Emission	6. Standard test methods9. Procedures for testing	(/ (/ (/	N/A	4.9 dB (96543.600 MHz, Horizontal, AV)	Complied#
4	20dB Bandwidth	ANSI C63.10-2013 6. Standard test methods	FCC 15.215	N/A	N/A	Complied b)
5	Frequency Tolerance	ANSI C63.10-2013 6. Standard test methods	Section 15.249(b)	N/A	N/A	N/A *2)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

a) Refer to APPENDIX 1 (data of Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission))

b) Refer to APPENDIX 1 (data of 20dB Bandwidth, 99% Occupied Bandwidth)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The revision does not affect the test result conducted before its effective date.

^{*} Also the EUT complies with FCC Part 15 Subpart B.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

^{*2)} The test is not required since this EUT does not operate with 24.05 GHz to 24.25 GHz.

Test report No. : 13324451H-A-R3 Page : 8 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks		
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted		
Bandwidth							
Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.							

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Ise EMC Lab

ISE LIVI C Lau.				
	Radiated emission			
Test distance	(+/-)			
	9 kHz - 30 MHz			
3 m	3.3 dB			
10 m	3.2 dB			

	Radiated emission (Below 1 GHz)					
Polarity	(3 m*) ((+/-)	(10 m*) (+/-)			
1 Olarity	30 MHz - 200 MHz	200 MHz -	30 MHz -	200 MHz -		
		1000 MHz	200 MHz	1000 MHz		
Horizontal	4.8 dB	5.2 dB	4.8 dB	5.0 dB		
Vertical	5.0 dB	6.3 dB	4.8 dB	5.0 dB		

Radiated emission (Above 1 GHz)							
(3 m*) (+/-) $(1 m*) (+/-)$ $(0.5 m*) (+/-)$ $(10 m*) (+/-)$							
1 GHz -	6 GHz -	10 GHz - 26.5 GHz -		26.5 GHz -	1 GHz -		
6 GHz	18 GHz	26.5 GHz	40 GHz	40 GHz	18 GHz		
4.9 dB	5.2 dB	5.5 dB	5.5 dB	5.5 dB	5.2 dB		

^{*}Measurement distance

Radiated emiss	Distance	
40 GHz - 50 GHz	3.9 dB	>=0.5 m
50 GHz - 75 GHz	5.3 dB	>=0.5 m
75 GHz - 110 GHz	5.6 dB	>=0.5 m

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13324451H-A-R3

Page : 9 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967 / ISED Lab Company Number: 2973C

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measuremen t distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test) : $2.0 \times 2.0 \text{ m}$ for No.1, No.2,

No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13324451H-A-R3 Page : 10 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

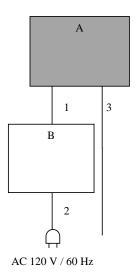
SECTION 4: Operation of EUT during testing

4.1 Operating Modes

Test Item	Mode	Tested frequency
Electric Field Strength of Fundamental Emission	Transmitting mode (Tx)	24135.900 MHz
Electric Field Strength of Spurious Emission		
20 dB Bandwidth, 99 % Occupied Bandwidth		

The system was configured in typical fashion (as a customer would normally use it) for testing.

*EUT has the power settings by the software as follows;


Power Settings: 13dBm

Software: PKKGUICS.exe Version 3.13.1

(Date: April 16, 2020, Storage location: Driven by connected PC)

Any conditions under the normal use do not exceed the condition of setting. In addition, end users cannot change the settings of the output power of the product.

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Parking Sensor	NDPM003 US	24	MinebeaMitsumi Inc.	EUT
В	DC Power Supply	PW16-5ADP	GJQ810118	TEXIO	-

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	1.8	Unshielded	Unshielded	-
2	AC Cable	2.5	Unshielded	Unshielded	-
3	USB Cable	1.8	Shielded	Shielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}This setting of software is the worst case.

Test report No. : 13324451H-A-R3 Page : 11 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

<u>SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)</u>

Test Procedure and conditions

[For below 30 MHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane.

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., and 135 deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz, up to 40 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m (frequency range 9 kHz - 30 MHz: loop antenna was fixed height at 1.0 m) and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear voltage average mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

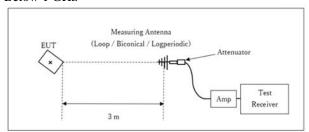
Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

Frequency	9 kHz -	150 kHz -	30 MHz -	1 GHz - 40 GHz	Z
	150 kHz	30 MHz	1 GHz		
Instrument used	Test Receiver	Test Receiver	Test Receiver	Spectrum Analy	zer
Detector	QP, Average *1)	QP, Average *1)	QP	Peak	Average *2)
IF Bandwidth	BW 200 Hz	BW 9 kHz	BW 120 kHz	RBW: 1 MHz	RBW: 1 MHz
				VBW: 3 MHz	VBW: 10 Hz

^{*1)} Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

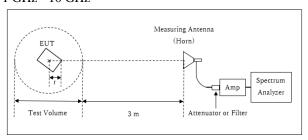
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

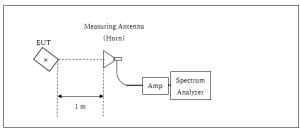

^{*2)} VBW was set to 10 Hz and linear voltage average mode was used.

Test report No. : 13324451H-A-R3 Page : 12 of 28

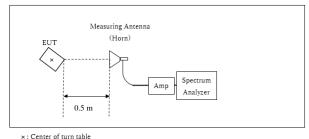
Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US


[Test setup]

Below 1 GHz


× : Center of turn table

1 GHz - 10 GHz


- r : Radius of an outer periphery of EUT
- ×: Center of turn table

10 GHz - 26.5 GHz

×: Center of turn table

26.5 GHz - 40 GHz

Test Distance: 3 m

Distance Factor: $20 \times \log (3.75 \text{ m}^*/3.0 \text{ m}) = 1.9 \text{ dB}$ * Test Distance: (3 + Test Volume /2) - r = 3.75 m

Test Volume: 1.5 m

(Test Volume has been calibrated based on CISPR 16-1-4.) $\ensuremath{r}=0\ m$

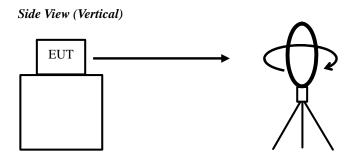
* The test was performed with $r=0.0\ m$ since EUT is small and it was the rather conservative condition.

Distance Factor: $20 \times \log (1.0 \text{ m}^* / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

Distance Factor: $20 \times \log (0.5 \text{ m}^* / 3.0 \text{ m}) = -15.6 \text{ dB}$

*Test Distance: 0.5 m


UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13324451H-A-R3 Page : 13 of 28

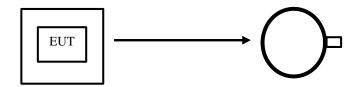
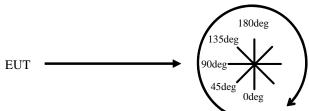

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

Figure 1: Direction of the Loop Antenna

.....


Top View (Horizontal)

Antenna was not rotated.

.....

Top View (Vertical)

Front side: 0 deg.

Forward direction: clockwise

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13324451H-A-R3 Page : 14 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

[About fundamental measurement]

The carrier levels were confirmed at maximum direction of transmission. The maximum direction was searched under carefully since beam-widths are narrow.

The carrier levels were measured in the far field. The distance of the far field was calculated from follow equation.

$$r = \frac{2D^2}{\lambda}$$

where

r is the distance from the radiating element of the EUT to the edge of the far field, in m D is the largest dimension of both the radiating element and the test antenna (horn), in m (The antenna aperture size of test antenna was used for this caluculation.)

Lambda is the wavelength of the emission under investigation [300 / f (MHz) * 10^3], in millimeter

Frequency	Wavelength		Maximum Dimention					
		EUT Test Antenna		Maximum	Boundary			
	Lambda		Local ID	D	r			
			MHA-02					
[GHz]	[mm]	[m]	[m]	[m]	[m]			
24.250	12.4	0.009	0.038	0.038	0.238			

[Above 40 GHz]

The test was performed based on "Procedures for testing millimeter-wave systems" of ANSI C63.10-2013. The EUT was placed on an urethane platform, raised 1.5 m above the conducting ground plane. The measurements were performed on handheld method.

Set spectrum analyzer RBW, VBW, span, etc., to the proper values. Note these values. Enable two traces—one set to "clear write," and the other set to "max hold." Begin hand-held measurements with the test antenna (horn) at a distance of 1 m from the EUT in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 m from the EUT. Observation of the two active traces on the spectrum analyzer will allow refined horn positioning at the point(s) of maximum field intensity. Repeat with the horn in a vertically polarized position. If the emission cannot be detected at 1 m, reduce the RBW to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.

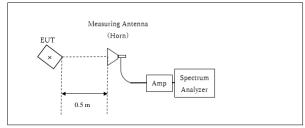
Note the maximum level indicated on the spectrum analyzer. Adjust this level, if necessary, by the antenna gain, conversion loss of the external mixer and gain of LNA used, at the frequency under investigation. Calculate the field strength of the emission at the measurement distance from the Friis' transmission equation.

Frequency	40 GHz - 50 GHz	50 GHz - 75 GHz	75 GHz - 100 GHz
Final measurement distance	0.5 m	0.75 m	0.5 m
with 1 MHz Peak detector			

Detector	Peak	Average *1)
IF Bandwidth	RBW: 1 MHz	RBW: 1 MHz
	VBW: 3 MHz	VBW: 10 Hz

^{*1)} VBW was set to 10 Hz and linear voltage average mode was used.

UL Japan, Inc. Ise EMC Lab.

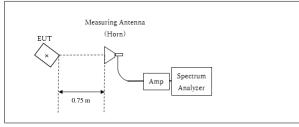

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13324451H-A-R3 Page : 15 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

[Test setup]

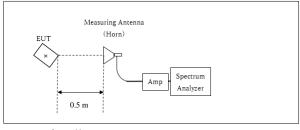
40 GHz - 50 GHz



Distance Factor: 20 x log (0.5 m* / 3.0 m) = -15.6 dB

*Test Distance: 0.5 m

×: Center of turn table


50 GHz - 75 GHz

Distance Factor: $20 \times \log (0.75 \text{ m}^* / 3.0 \text{ m}) = -12.0 \text{ dB}$ *Test Distance: 0.75 m

×: Center of turn table

75 GHz - 100 GHz

Distance Factor: $20 \times \log (0.5 \text{ m}^* / 3.0 \text{ m}) = -15.6 \text{ dB}$ *Test Distance: 0.5 m

×: Center of turn table

- The carrier level and noise levels were confirmed at each position of X, Y and Z axies of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 9 kHz - 100 GHz Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13324451H-A-R3 Page : 16 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

SECTION 6: 20 dB Bandwidth, 99 % Occupied Bandwidth and Duty Cycle

Test Procedure

The measurement was performed in the antenna height to gain the maximum of Electric field strength.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	20 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
		1 % to 5 %	Three times				
		of OBW	of RBW				
99 % Occupied	20 MHz,	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Bandwidth	Enough width to display	1 % to 5 %	Three times		*1)		
	emission skirts	of OBW	of RBW				
Duty Cycle	-	-	-	100 msec	-	Single	Spectrum Analyzer
*1) Peak detector wa	as applied as Worst-case mea	surement.	•	•			

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13324451H-A-R3 Page : 17 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

APPENDIX 1: Test data

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13324451H

Test place Ise EMC Lab. No. 2 Semi Anechoic Chamber

Date April 16, 2020
Temperature / Humidity 21 deg. C / 32 % RH
Engineer Yuichiro Yamazaki
Mode Transmitting mode (Tx)

[Fundamental]

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	24135.900	PK	97.3	40.3	-1.2	32.6	103.7	127.9	24.2	
Hori	24135.900	AV	96.0	40.3	-1.2	32.6	102.5	107.9	5.5	VBW:10Hz Voltage Avg
Vert	24135.900	PK	97.5	40.3	-1.2	32.6	103.9	127.9	24.0	
Vert	24135.900	AV	96.2	40.3	-1.2	32.6	102.6	107.9	5.3	VBW:10Hz Voltage Avg

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Mixer(above 50 GHz)+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: $18 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

[Band-edge]

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	M argin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	24000.000	PK	46.6	40.3	-1.2	32.4	53.2	73.9	20.7	NS
Hori	24250.000	PK	48.2	40.3	-1.1	32.8	54.4	73.9	19.5	NS
Hori	24000.000	AV	33.2	40.3	-1.2	32.4	39.8	53.9	14.1	NS VBW:10Hz Voltage Avg
Hori	24250.000	AV	34.4	40.3	-1.1	32.8	40.7	53.9	13.3	NS VBW:10Hz Voltage Avg
Vert	24000.000	PK	46.5	40.3	-1.2	32.4	53.1	73.9	20.8	NS
Vert	24250.000	PK	48.0	40.3	-1.1	32.8	54.3	73.9	19.6	NS
Vert	24000.000	AV	32.9	40.3	-1.2	32.4	39.5	53.9	14.4	NS VBW:10Hz Voltage Avg
Vert	24250.000	AV	36.9	40.3	-1.1	32.8	43.2	53.9	10.7	NS VBW:10Hz Voltage Avg

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Mixer(above 50 GHz)+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: $18 \text{ GHz} - 26.5 \text{ GHz} \quad 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}NS: No signal detected.

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}NS: No signal detected.

Test report No. : 13324451H-A-R3 Page : 18 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13324451H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2 No.2 No.2 No.4

April 16, 2020 April 17, 2020 April 19, 2020 April 19, 2020 Temperature /Humidity 22 deg. C / 44 % RH 22 deg. C / 42 % RH 21 deg. C / 32 % RH 20 deg. C / 46 % RH Yuichiro Yamazaki Yuichiro Yamazaki Yuichiro Yamazaki Yuichiro Yamazaki Engineer (10 GHz - 50 GHz) (Above 50 GHz) (9 kHz - 30 MHz) (30 MHz - 1 GHz)

(1 GHz - 10 GHz)

Mode Transmitting mode (Tx)

[Spurious emissions other than above]

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	79.999	QP	34.8	6.9	7.9	32.0	17.6	40.0	22.4	
Hori.	103.117	QP	26.6	10.7	8.1	31.9	13.5	43.5	30.0	
Hori.	117.849	QP	27.0	12.6	8.3	31.9	16.0	43.5	27.5	
Hori.	309.357	QP	30.2	13.7	9.8	31.8	22.0	46.0	24.0	
Hori.	356.495	QP	36.3	15.1	10.1	31.8	29.7	46.0	16.3	
Hori.	450.774	QP	26.8	16.7	10.7	31.8	22.3	46.0	23.7	
Hori.	48271.800	PK	64.6	41.7	-6.7	33.0	66.7	87.9	21.2	
Hori.	72407.700	PK	40.4	43.1	6.1	21.0	68.5	87.9	19.4	
Hori.	96543.600	PK	47.1	45.6	-3.3	28.8	60.7	73.9	13.2	
Hori.	48271.800	AV	57.7	41.7	-6.7	33.0	59.7	67.9	8.2	VBW:10Hz Voltage Avg
Hori.	72407.700	AV	28.4	43.1	6.1	21.0	56.6	67.9	11.3	VBW:10Hz Voltage Avg
Hori.	96543.600	AV	35.4	45.6	-3.3	28.8	49.0	53.9	4.9	VBW:10Hz Voltage Avg
Vert.	79.999	QP	36.4	6.9	7.9	32.0	19.2	40.0	20.8	
Vert.	103.117	QP	38.0	10.7	8.1	31.9	24.9	43.5	18.6	
Vert.	117.849	QP	33.5	12.6	8.3	31.9	22.5	43.5	21.0	
Vert.	309.357	QP	31.5	13.7	9.8	31.8	23.3	46.0	22.7	
Vert.	356.495	QP	31.6	15.1	10.1	31.8	25.0	46.0	21.0	
Vert.	450.774	QP	26.6	16.7	10.7	31.8	22.1	46.0	23.9	
Vert.	48271.800	PK	64.4	41.7	-6.7	33.0	66.5	87.9	21.4	
Vert.	72407.700	PK	39.6	43.1	6.1	21.0	67.8	87.9	20.1	
Vert.	96543.600	PK	46.9	45.6	-3.3	28.8	60.5	73.9	13.4	
Vert.	48271.800	AV	57.2	41.7	-6.7	33.0	59.2	67.9	8.7	VBW:10Hz Voltage Avg
Vert.	72407.700	AV	27.5	43.1	6.1	21.0	55.6	67.9	12.3	VBW:10Hz Voltage Avg
Vert.	96543.600	AV	34.6	45.6	-3.3	28.8	48.2	53.9	5.7	VBW:10Hz Voltage Avg

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Mixer (above\ 50\ GHz) + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier)$

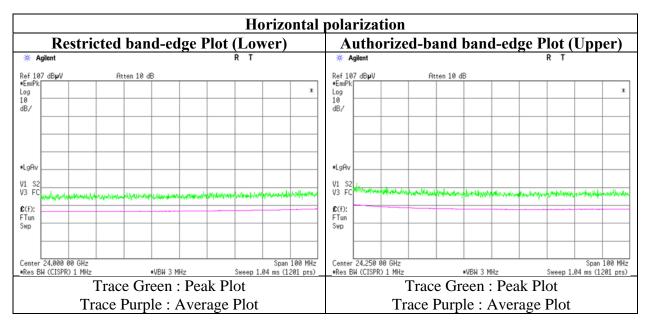
Distance factor: 1 GHz - 10 GHz $20 \log (3.75 \text{ m} / 3.0 \text{ m}) = 1.9 \text{ dB}$

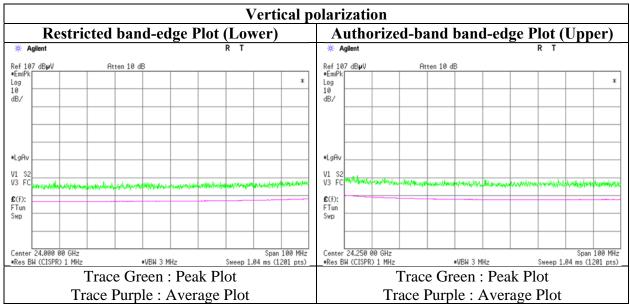
 $\begin{array}{ll} 10~GHz - 26.5~GHz & 20 \log{(1.0~m \, / \, 3.0~m)} = -9.5~dB \\ 26.5~GHz - 50~GHz & 20 \log{(0.5~m \, / \, 3.0~m)} = -15.6~dB \\ 50~GHz - 75~GHz & 20 \log{(0.75~m \, / \, 3.0~m)} = -12.0~dB \\ 75~GHz - 100~GHz & 20 \log{(0.5~m \, / \, 3.0~m)} = -15.6~dB \end{array}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 13324451H-A-R3 Page : 19 of 28


Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 13324451H

Test place Ise EMC Lab. No. 2 Semi Anechoic Chamber

Date April 16, 2020
Temperature / Humidity 21 deg. C / 32 % RH
Engineer Yuichiro Yamazaki
Mode Transmitting mode (Tx)

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

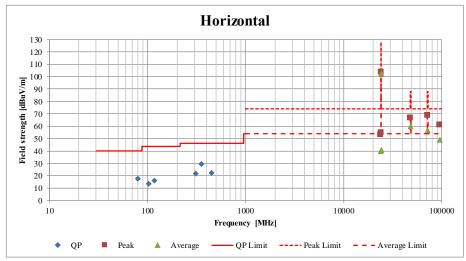
Test report No. : 13324451H-A-R3 Page : 20 of 28

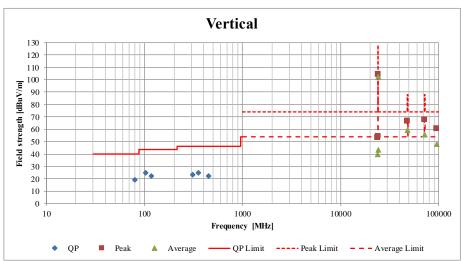
Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13324451H Test place Ise EMC Lab.

No.2 No.2 No.4 April 17, 2020 April 19, 2020 April 19, 2020


Semi Anechoic Chamber No.2


April 16, 2020 Temperature /Humidity 21 deg. C / 32 % RH Yuichiro Yamazaki Engineer

22 deg. C / 44 % RH 20 deg. C / 46 % RH 22 deg. C / 42 % RH Yuichiro Yamazaki Yuichiro Yamazaki Yuichiro Yamazaki (10 GHz - 50 GHz) (Above 50 GHz) (9 kHz - 30 MHz) (30 MHz - 1 GHz)

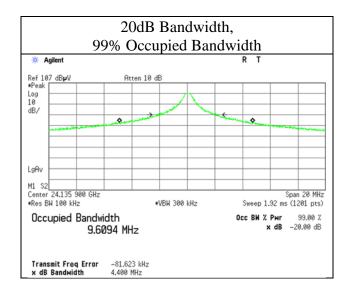
(1 GHz - 10 GHz)

Mode Transmitting mode (Tx)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13324451H-A-R3 Page : 21 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US


20dB Bandwidth, 99% Occupied Bandwidth

Report No. 13324451H

Test place Ise EMC Lab. No. 2 Semi Anechoic Chamber

Date April 16, 2020
Temperature / Humidity 21 deg. C / 32 % RH
Engineer Yuichiro Yamazaki
Mode Transmitting mode (Tx)

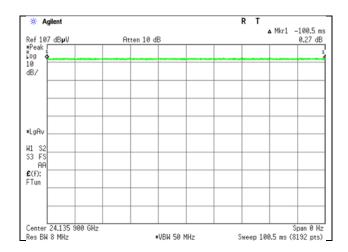
Frequency	20 dB	99% Occupied
	Bandwidth	Bandwidth
[GHz]	[MHz]	[MHz]
24.1359	4.400	9.609

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13324451H-A-R3 Page : 22 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

Duty Cycle


Report No. 13324451H

Test place Ise EMC Lab. No. 2 Semi Anechoic Chamber

Date April 16, 2020
Temperature / Humidity 21 deg. C / 32 % RH
Engineer Yuichiro Yamazaki
Mode Transmitting mode (Tx)

Tx On	Tx On + Off	Duty factor
time	time	
[ms]	[ms]	[dB]
100.500	100.500	0.00

Duty factor = 20 * log (Tx On time / Tx On + Off time)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13324451H-A-R3 Page : 23 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

APPENDIX 2: Test Instruments

Test equipment (1/2)

rest equ	ipment (1	1/ <i>2)</i>					Last	
Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Calibration Date	Cal Int
RE	MAEC-02	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	06/29/2018	24
RE	MOS-41	192300	Thermo-Hygrometer	CUSTOM	CTH-201	0013	12/19/2019	12
RE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/20/2019	12
RE	MJM-27	142228	Measure	KOMELON	KMC-36	-	-	-
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ	TEPTO-DV	-	-	-
RE	MAEC-02- SVSWR		AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/01/2019	24
RE	MHA-06	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess - Elektronik	BBHA9120D	254	09/03/2019	12
RE	MCC-216	141392	Microwave Cable	Junkosha	MWX221	1604S253(1 m) / 537073/126E(5 m)	02/18/2020	12
RE	MPA-10	141579	Pre Amplifier	Keysight Technologies Inc	8449B	3008A02142	01/07/2020	12
RE	MHA-02	141503	Horn Antenna 18- 26.5GHz	EMCO	3160-09	1265	10/08/2019	12
RE	MHA-04	141505	Horn Antenna 26.5- 40GHz	EMCO	3160-10	1140	09/19/2019	12
RE	MCC-220	151897	Microwave Cable	Huber+Suhner	SF101EA/11PC24/11 PC24/2.5M	SN MY1726/1EA	04/13/2020	12
RE	MPA-03	141577	Microwave System Power Amplifier	Keysight Technologies Inc	83050A	MY39500610	10/01/2019	12
RE	MPA-25	159919	Power Amplifier	SAGE Millimeter, Inc.	SBP-4035033018- 2F2F-S1	12559-01	06/19/2019	12
RE	MHA-31	142041	Horn Antenna	Oshima Prototype Engineering Co.	A16-187	1	09/27/2019	12
RE	MSA-10	141899	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180655	08/07/2019	12
RE	MHA-33	180634	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-15-S1	17343-01	06/25/2019	12
RE	MPA-23	142055	Power Amplifier	SAGE Millimeter, Inc.	SBP-5037532015- 1515-N1	11599-01	12/19/2019	12
RE	MMX-01	142047	Preselected Millimeter Mixer	Keysight Technologies Inc	11974V-E01	3001A00412	06/14/2019	12
RE	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	02/18/2020	12
RE	MCC-178	141227	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502S305	03/18/2020	12
RE	MCC-135	142032	Microwave Cable	Huber+Suhner	SUCOFLEX102	37511/2	09/11/2019	12
RE	MCC-136	142033	Microwave Cable	Huber+Suhner	SUCOFLEX102	37512/2	09/11/2019	12
RE	MHA-35	180544	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-10-S1	17343-01	06/25/2019	12
RE RE	MPA-18 MMX-02	142054 142048	Pre Amplifier Harmonic Mixer	AmTechs Corporation Keysight Technologies	LNA-7511025 11970W	9601 2521 A01909	06/17/2019 06/14/2019	12 12
RE	MCC-13	141222	Coaxial Cable	Inc Fujikura,HP,Mini- Circits,Fujikura	3D-2W(12m)/ 5D-2W(5m)/ 5D-2W(0.8m)/ 5D-2W(1m)	-	02/25/2020	12
RE	MLPA-01	141254	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	10/04/2019	12
RE	MCC-143	141413	Coaxial Cable	UL Japan	-	-	06/07/2019	12
RE	MAT-07	141203	Attenuator(6dB)	Weinschel Corp	2	BK7970	11/07/2019	12
RE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	08/08/2019	12
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01	-	02/05/2020	12
RE	MBA-05	141425		Schwarzbeck Mess - Elektronik	VHA9103+BBA9106	1302	08/24/2019	12
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	03/24/2020	12
RE	MLA-23	141267	Logperiodic Antenna(200- 1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-192	08/24/2019	12

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13324451H-A-R3 Page : 24 of 28

Issued date : September 8, 2020 FCC ID : 2AWRLNDPM003US

Test equipment (2/2)

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAEC-04	142011	AC4_Semi Anechoic	TDK	Semi Anechoic	DA-10005	06/28/2018	24
			Chamber(NSA)		Chamber 3m			
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM	CTH-201	0010	01/07/2020	12
RE	MMM-10	141545	DIGITAL HITESTER	Hioki	3805	51201148	01/06/2020	12
RE	MJM-26	142227	Measure	KOMELON	KMC-36	_	-	-
	COTS- MEMI-02		EMI measurement program	TSJ	TEPTO-DV	-	-	-
RE	MAT-07	141203	Attenuator(6dB)	Weinschel Corp	2	BK7970	11/07/2019	12
RE	MSA-10	141899	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180655	08/07/2019	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated emission, 20 dB bandwidth, Automatically deactivate and Duty cycle tests

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN