Fig.48 Channel 810- LOW BAND EDGE BLOCK ### **EDGE 1900** Fig.49 Channel 512- LOW BAND EDGE BLOCK Fig.50 Channel 810- LOW BAND EDGE BLOCK ### **WCDMA BAND II** Fig.51 Channel 9262- LOW BAND EDGE BLOCK Page Number : 50 of 97 Fig.52 Channel 9538- LOW BAND EDGE BLOCK **Conclusion: PASS** ### **WCDMA BAND IV** Fig.53 Channel 1312- LOW BAND EDGE BLOCK Fig.54 Channel 1513- LOW BAND EDGE BLOCK **Conclusion: PASS** ### WCDMA BAND V Fig.55 Channel 4132- LOW BAND EDGE BLOCK Fig.56 Channel 4233- LOW BAND EDGE BLOCK : 53 of 97 Report Issued Date : Feb.19.2019 **Conclusion: PASS** # RF Test Report #### ANNEX A.6. **FREQUENCY STABILITY** Method of test measurements please refer to KDB971168 D01 v03 clause 9 ### A.5.1.Method of Measurement and test procedures In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER. Report No.: I18D00207-SRD04 - 1. Measure the carrier frequency at room temperature. - 2. Subject the EUT to overnight soak at -30°C. - 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on mid channel of GSM850, PCS1900, WCDMA BANDII and WCDMA BANDV, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements. - 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing. - Subject the EUT to overnight soak at +50℃. - 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 8. Repeat the above measurements at 10 C increments from +50°C to -30°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements. - 9. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure. #### A.5.2. Measurement Limit ### A.5.2.1. For Hand carried battery powered equipment According to the JTC standard the GSM frequency stability of the carrier shall be accurate to within 0.1ppm of the received frequency from the base station. And the WCDMA is 2.5ppm. This accuracy is sufficient to meet Sec.24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.6VDC and 4.35VDC, with a nominal voltage of 3.8VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages was varied from 85% to 115%. East China Institute of Telecommunications Page Number : 54 of 97 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.19.2019 A.5.2.2. For equipment powered by primary supply voltage According to the JTC standard the GSM frequency stability of the carrier shall be accurate to within 0.1ppm of the received frequency from the base station. And the WCDMA is 2.5ppm. This accuracy is sufficient to meet Sec.24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment. Report No.: I18D00207-SRD04 A.5.3 Test results GSM850 Mid Channel/fc(MHz) 189/836.4 Frequency Error VS Temperature | Power Supply (VDc) | Environment
Temperature(℃) | Frequency error(Hz) | Limit
(Hz) | |--------------------|-------------------------------|---------------------|---------------| | 3.8 | -30 | 2.84 | 84 | | 3.8 | -20 | 0.32 | 84 | | 3.8 | -10 | 2.78 | 84 | | 3.8 | 0 | 1.1 | 84 | | 3.8 | 10 | 1.29 | 84 | | 3.8 | 20 | 0.32 | 84 | | 3.8 | 30 | 0.77 | 84 | | 3.8 | 40 | 6.39 | 84 | | 3.8 | 50 | 8.52 | 84 | 8 ### Frequency Error VS Voltage | Power Supply (VDc) | Environment Temperature(°C) | Frequency error(Hz) | Limit
(Hz) | |--------------------|-----------------------------|---------------------|---------------| | 3.6 | 25 | 4.07 | 84 | | 3.8 | 25 | 5.29 | 84 | | 4.35 | 25 | 7.43 | 84 | East China Institute of Telecommunications Page Number : 55 of 97 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.19.2019 # PCS1900 Mid Channel/fc(MHz) 661/1880 # **Frequency Error VS Temperature** | Power Supply (VDc) | Environment
Temperature(℃) | Frequency error(Hz) | Limit
(Hz) | |--------------------|-------------------------------|---------------------|---------------| | 3.8 | -30 | -14.4 | 196 | | 3.8 | -20 | -17.63 | 196 | | 3.8 | -10 | -11.95 | 196 | | 3.8 | 0 | -16.59 | 196 | | 3.8 | 10 | -21.24 | 196 | | 3.8 | 20 | -17.82 | 196 | | 3.8 | 30 | -18.6 | 196 | | 3.8 | 40 | -18.21 | 196 | | 3.8 | 50 | -16.59 | 196 | ### **Frequency Error VS Voltage** | | · · · · · · · · · · · · · · · · · · · | | | |-----------------------|---------------------------------------|---------------------|---------------| | Power Supply
(VDc) | Environment
Temperature(℃) | Frequency error(Hz) | Limit
(Hz) | | 3.6 | 25 | -17.56 | 196 | | 3.8 | 25 | -16.72 | 196 | | 4.35 | 25 | -19.11 | 196 | East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 56 of 97 Report Issued Date : Feb.19.2019 # WCDMA BAND II Mid Channel/fc(MHz) 9400 /1880 ### **Frequency Error VS Temperature** | Power Supply (VDc) | Environment
Temperature(℃) | Frequency error(Hz) | Limit
(Hz) | |--------------------|-------------------------------|---------------------|---------------| | 3.8 | -30 | -0.81 | 4700 | | 3.8 | -20 | -0.66 | 4700 | | 3.8 | -10 | -1.13 | 4700 | | 3.8 | 0 | 0.12 | 4700 | | 3.8 | 10 | -0.46 | 4700 | | 3.8 | 20 | -0.49 | 4700 | | 3.8 | 30 | -1.3 | 4700 | | 3.8 | 40 | -1.88 | 4700 | | 3.8 | 50 | -0.93 | 4700 | ### **Frequency Error VS Voltage** | Power Supply (VDc) | Environment Temperature(°C) | Frequency error(Hz) | Limit
(Hz) | |--------------------|-----------------------------|---------------------|---------------| | 3.6 | 25 | 0.31 | 4700 | | 3.8 | 25 | -1.1 | 4700 | | 4.35 | 25 | -0.37 | 4700 | East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 57 of 97 Report Issued Date : Feb.19.2019 WCDMA BAND IV Mid Channel/fc(MHz) 1413/1732.6 ### **Frequency Error VS Temperature** | Power Supply (VDc) | Environment
Temperature(℃) | Frequency error(Hz) | Limit
(Hz) | |--------------------|-------------------------------|---------------------|---------------| | 3.8 | -30 | -2.11 | 4331.5 | | 3.8 | -20 | -1.68 | 4331.5 | | 3.8 | -10 | -1.27 | 4331.5 | | 3.8 | 0 | -0.98 | 4331.5 | | 3.8 | 10 | 0.21 | 4331.5 | | 3.8 | 20 | -0.27 | 4331.5 | | 3.8 | 30 | -0.46 | 4331.5 | | 3.8 | 40 | -0.55 | 4331.5 | | 3.8 | 50 | -0.21 | 4331.5 | ### **Frequency Error VS Voltage** | 1 7 | <u> </u> | | | |--------------|-----------------|------------------------|--------| | Power Supply | Environment | Frequency error(Hz) | Limit | | (VDc) | Temperature(°C) | 1 requerity error(riz) | (Hz) | | 3.6 | 25 | -1.34 | 4331.5 | | 3.8 | 25 | -1.40 | 4331.5 | | 4.35 | 25 | -0.28 | 4331.5 | East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 58 of 97 Report Issued Date : Feb.19.2019 Report No.: I18D00207-SRD04 # WCDMA BAND V Mid Channel/fc(MHz) 4183/836.6 ### **Frequency Error VS Temperature** | Power Supply (VDc) | Environment
Temperature(℃) | Frequency error(Hz) | Limit
(Hz) | |--------------------|-------------------------------|---------------------|---------------| | 3.8 | -20 | -0.53 | 2091.5 | | 3.8 | -10 | 0.12 | 2091.5 | | 3.8 | 0 | -0.38 | 2091.5 | | 3.8 | 10 | -1.42 | 2091.5 | | 3.8 | 20 | -0.58 | 2091.5 | | 3.8 | 30 | 0.18 | 2091.5 | | 3.8 | 40 | -1.4 | 2091.5 | | 3.8 | 50 | -0.41 | 2091.5 | | 3.8 | 60 | 0.32 | 2091.5 | ### **Frequency Error VS Voltage** | Power Supply
(VDc) | Environment
Temperature(℃) | Frequency error(Hz) | Limit
(Hz) | |-----------------------|-------------------------------|---------------------|---------------| | 3.6 | 25 | -0.61 | 2091.5 | | 3.8 | 25 | -0.79 | 2091.5 | | 4.35 | 25 | 0.09 | 2091.5 | Page Number : 59 of 97 Report Issued Date : Feb.19.2019 **Conclusion: PASS** ### ANNEX A.7. CONDUCTED SPURIOUS EMISSION ### A.7.1. GSM Measurement Method and test procedures The following steps outline the procedure used to measure the conducted emissions from the EUT. - 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For GSM850, data taken from 30 MHz to 10 GHz. - 2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; If the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give a optimal sweep time according the selected span and RBW. - 3. The procedure to get the conducted spurious emission is as follows: The trace mode is set to MaxHold to get the highest signal at each frequency; Wait 25 seconds;Get the result. - 4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing. #### **GSM 850 Transmitter** | Channel | Frequency(MHz) | |---------|----------------| | 128 | 824.2 | | 189 | 836.4 | | 251 | 848.8 | ### **PCS 1900 Transmitter** | Channel | Frequency(MHz) | |---------|----------------| | 512 | 1850.2 | | 661 | 1880.0 | | 810 | 1909.8 | East China Institute of Telecommunications Page Number : 60 of 97 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.19.2019 ### A.7.1.1. Measurement Limit Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. #### A7.1.2. Measurement result Spurious emission limit -13dBm. Note: peak above the limit line is the carrier frequency. #### A7.1.2.1. GSM850 Fig.57 Channel 128: 30MHz~1GHz Fig.58 Channel 128: 1GHz~10GHz Fig.59 Channel 189: 30MHz~1GHz : 62 of 97 Fig.60 Channel 189: 1GHz~10GHz Fig.61 Channel 251: 30MHz~1GHz : 63 of 97 : 64 of 97 Fig.62 Channel 251: 1GHz~10GHz ### A7.1.2.2. GSM1900 Fig.63 Channel 512: 30MHz~1GHz Fig.64 Channel 512: 1GHz~20GHz Fig.65 Channel 661: 30MHz~1GHz : 65 of 97 Fig.66 Channel 661: 1GHz~20GHz Fig.67 Channel 810: 30MHz~1GHz : 66 of 97 Fig.68 Channel 810: 1GHz~20GHz **Conclusion: PASS** ### A7.2. WCDMA Measurement Method and test procedures The following steps outline the procedure used to measure the conducted emissions from the EUT. - 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of WCDMA Band II, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For WCDMA Band V, data taken from 30 MHz to 10GHz. - 2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; If the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give a optimal sweep time according the selected span and RBW. - 3. The procedure to get the conducted spurious emission is as follows: The trace mode is set to MaxHold to get the highest signal at each frequency; Wait 25 seconds: Get the result. 4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing. ### **WCDMA Band II Transmitter** | Channel Frequency (MHz) | |-------------------------| |-------------------------| East China Institute of Telecommunications Page Number : 67 of 97 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.19.2019 # RF Test Report | 9262 | 1852.40 | |------|---------| | 9400 | 1880.00 | | 9538 | 1907.60 | Report No.: I18D00207-SRD04 #### **WCDMA Band IV Transmitter** | Channel | Frequency (MHz) | |---------|-----------------| | 1312 | 1712.40 | | 1413 | 1732.60 | | 1513 | 1752.60 | #### **WCDMA Band V Transmitter** | Channel | Frequency (MHz) | | |---------|-----------------|--| | 4132 | 826.40 | | | 4183 | 836.60 | | | 4233 | 846.60 | | #### A 7.2.1. Measurement Limit Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. #### A 7.2.2. Measurement result Spurious emission limit -13dBm. Note: peak above the limit line is the carrier frequency. A 7.2.2.1. WCDMA Band II Fig.69 Channel 9262: 30MHz~1GHz Fig.70 Channel 9262: 1GHz~20GHz : 69 of 97 Fig.71 Channel 9400: 30MHz~1GHz Fig.72 Channel 9400: 1GHz~20GHz : 70 of 97 Fig.73 Channel 9538: 30MHz~1GHz Fig.74 Channel 9538: 1GHz~20GHz **Conclusion: PASS** A 7.2.2.1. WCDMA Band IV Fig.75 Channel 1312: 30MHz~1GHz Fig.76 Channel 1312: 1GHz~20GHz : 72 of 97 Fig.77 Channel 1413: 30MHz~1GHz Fig.78 Channel 1413: 1GHz~20GHz Page Number : 73 of 97 Fig.79 Channel 1513: 30MHz~1GHz Fig.80 Channel 1513: 1GHz~20GHz **Conclusion: PASS** ### A 7.2.2.3. WCDMA Band V Fig.81 Channel 4132: 30MHz~1GHz Fig.82 Channel 4132: 1GHz~20GHz : 75 of 97 Fig.83 Channel 4183: 30MHz~1GHz Fig.84 Channel 4183: 1GHz~20GHz : 76 of 97 Fig.85 Channel 4233: 30MHz~1GHz Fig.86 Channel 4233: 1GHz~20GHz **Conclusion: PASS** ### ANNEX A.8. RADIATED **A.8.1. EIRP** A.8.1.1. GSM EIRP ### A.8.1.1.1. Description This is the test for the maximum radiated power from the EUT. Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power"and 24.232(c) specifies that "Peak transmit power must be measured over any interval ofcontinuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts." #### A.8.1.1.2. Method of Measurement The measurements procedures in TIA-603E-2016 are used. 1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from thereceive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUTfor emission measurements. The height of receiving antenna is 1.5m. The test setup refers tofigure below. Detected emissions were maximized at each frequency by rotating the EUTthrough 360° and adjusting the receiving antenna polarization. The radiated emissionmeasurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. In the chamber, an substitution antenna for the frequency band of interest is placed at East China Institute of Telecommunications Page Number : 78 of 97 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.19.2019 thereference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interferewith the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of thesubstitution antenna, and adjust the level of the signal generator output until the value of thereceiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. Thetest should be performed by rotating the test item and adjusting the receiving antennapolarization. Report No.: I18D00207-SRD04 4. A amplifier should be connected to the Signal Source output port. And the cable should beconnect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) , the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=PMea+ PAg- PcI+ Ga - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi. ### A.8.1.1.3 GSM 850-ERP 22.913(a) #### A.8.1.1.3.1 Limits | | Power Step | Burst Peak ERP (dBm) | |------|------------|----------------------| | GPRS | 3 | ≤38.45dBm (7W) | | EDGE | 6 | ≤38.45dBm (7W) | ### A.8.1.1.3.2 Measurement result ### GPRS(GMSK) | Frequency
(MHz) | P _{Mea} (dBm) | Pcl(dB) | P _{Ag} (dB) | G _a Antenna
Gain(dBd) | PeakERP(d
Bm) | Polarizati
on | |--------------------|------------------------|---------|----------------------|-------------------------------------|------------------|------------------| | 824.2 | -5.96 | 3.1 | 37 | 3.11 | 31.05 | Н | | 836.6 | -6.55 | 3.1 | 37 | 3.11 | 30.46 | Н | | 848.8 | -7.37 | 3.1 | 37 | 3.11 | 29.64 | Н | ### EDGE(8PSK) | Frequency
(MHz) | P _{Mea} (dBm) | Pcl(dB) | P _{Ag} (dB) | GaAntenna
Gain(dBd) | PeakERP(d
Bm) | Polarizati
on | |--------------------|------------------------|---------|----------------------|------------------------|------------------|------------------| | 824.2 | -13.55 | 3.1 | 37 | 3.11 | 23.46 | Н | | 836.6 | -13.16 | 3.1 | 37 | 3.11 | 23.85 | Н | | 848.8 | -13.39 | 3.1 | 37 | 3.11 | 23.62 | Н | Frequency: 848.8MHz East China Institute of Telecommunications Page Number : 79 of 97 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.19.2019 Peak ERP(dBm)= PMea(-13.39dBm) - Pcl(3.1dB) +PAg(37dB) + Ga(3.11dBd) = 23.62dBm Note: ANALYZER SETTINGS: RBW = VBW = 3MHz ### A.8.1.1.4 PCS 1900-EIRP 24.232(c) #### A.8.1.1.4.1 Limits | | Power Step | Burst Peak EIRP (dBm) | |------|------------|-----------------------| | GPRS | 3 | ≤33dBm (2W) | | EDGE | 6 | ≤33dBm (2W) | Report No.: I18D00207-SRD04 ### A.8.1.1.4.2 Measurement result ### GPRS(GMSK) | Frequency
(MHz) | P _{Mea} (dBm) | Pcl(dB) | P _{Ag} (dB) | GaAntenna
Gain(dBi) | PeakEIRP(
dBm) | Polarizati
on | |--------------------|------------------------|---------|----------------------|------------------------|-------------------|------------------| | 1850.2 | -9.82 | 4.6 | 36 | 4.7 | 26.28 | V | | 1880.0 | -8.7 | 4.6 | 35.6 | 4.7 | 27 | Н | | 1909.8 | -8.54 | 4.7 | 36 | 4.7 | 27.46 | V | ### EDGE(8PSK) | Frequency
(MHz) | P _{Mea} (dBm) | Pcl(dB) | P _{Ag} (dB) | G _a Antenna
Gain(dBi) | PeakEIRP(
dBm) | Polarizati
on | |--------------------|------------------------|---------|----------------------|-------------------------------------|-------------------|------------------| | 1850.2 | -15 | 4.6 | 36 | 4.7 | 21.1 | V | | 1880.0 | -15.23 | 4.6 | 35.6 | 4.7 | 20.47 | Н | | 1909.8 | -15.27 | 4.7 | 36 | 4.7 | 20.73 | V | Frequency: 1909.8MHz Peak EIRP(dBm)= PMea(-15.27dBm) - PcI(4.7dB)+ PAg(36dB) +Ga(4.7dB)=20.73dBm ANALYZER SETTINGS: RBW = VBW = 3MHz #### A.8.1.2. WCDMA EIRP ### A.8.1.2.1. Description This is the test for the maximum radiated power from the EUT. Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power"and 24.232(c) specifies that "Peak transmit power must be measured over any interval ofcontinuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test East China Institute of Telecommunications Page Number : 80 of 97 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.19.2019 transmitters must not exceed 7 Watts." #### A.8.1.2.2. Method of Measurement The measurements procedures in TIA-603E-2016 are used. 1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from thereceive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUTfor emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUTthrough 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_{r}). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. 4. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) , the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 81 of 97 Report Issued Date : Feb.19.2019 # RF Test Report Report No.: I18D00207-SRD04 Power(EIRP)=PMea+ PAg-PcI+ Ga - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi. #### A.8.1.2.3 WCDMA Band II-ERP ### A.8.1.2.3.1 Limits | | Burst Peak EIRP (dBm) | | |---------------|-----------------------|--| | WCDMA Band II | ≤33dBm (2W) | | ### A.8.1.2.3.1.1Measurement result | Frequency
(MHz) | P _{Mea} (dBm) | Pcl(dB) | P _{Ag} (dB) | G _a Antenna
Gain(dBi) | PeakEIRP(
dBm) | Polarizati
on | |--------------------|------------------------|---------|----------------------|-------------------------------------|-------------------|------------------| | 1852.4 | -22.35 | 3.54 | 43.8 | 2.9 | 20.81 | V | | 1880.0 | -21.89 | 3.54 | 43.8 | 2.9 | 21.27 | Н | | 1907.6 | -21.7 | 3.54 | 43.8 | 2.9 | 21.46 | V | Frequency: 1907.6MHz Peak EIRP(dBm)= PMea(-21.7dBm)- Pci(3.54dB)+ PAg(43.8dB)+Ga(2.9dBi) =21.46dBm ANALYZER SETTINGS: RBW = VBW = 5MHz ### A.8.1.2.4 Limits | | Burst Peak EIRP (dBm) | | |---------------|-----------------------|--| | WCDMA Band IV | ≤33dBm (2W) | | ### A.8.1.2.4.1 Measurement result | Frequency | P _{Mea} (dBm) | Pcl(dB) | P _{Ag} (dB) | GaAntenna | PeakERP(d | Polarizati | |-----------|------------------------|---------|----------------------|-----------|-----------|------------| | (MHz) | , | , | , , , , , | Gain(dBd) | Bm) | on | | 1712.4 | -11.74 | 4.6 | 36 | 2.9 | 22.56 | Н | | 1732.6 | -12.61 | 4.6 | 36 | 2.9 | 21.69 | Н | | 1752.6 | -12.27 | 4.6 | 36 | 2.9 | 22.03 | Н | Frequency: 1752.6MHz Peak ERP(dBm)= PMea(-12.27dBm)- PcI(4.6dB)+PAg(36dB)+Ga(2.9dBd)=22.03dBm ANALYZER SETTINGS: RBW = VBW = 5MHz #### A.8.1.2.5Limits | Burst Peak ERP (dBm) | |----------------------| East China Institute of Telecommunications Page Number : 82 of 97 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.19.2019 ## RF Test Report | WCDMA Band V | ≤38.45dBm (7W) | |--------------|----------------| |--------------|----------------| Report No.: I18D00207-SRD04 #### A.8.1.2.5.1 Measurement result | Frequency (MHz) | P _{Mea} (dBm) | Pcl(dB) | P _{Ag} (dB) | G _a Antenna
Gain(dBd) | PeakERP(d
Bm) | Polarizati
on | |-----------------|------------------------|---------|----------------------|-------------------------------------|------------------|------------------| | 826.4 | -15.21 | 3.1 | 37 | 2.9 | 21.59 | Н | | 836.6 | -15.86 | 3.1 | 37 | 2.9 | 20.94 | Н | | 846.6 | -16.06 | 3.1 | 37 | 2.9 | 20.74 | Н | Frequency: 846.6 MHz Peak ERP(dBm)= PMea(-16.06dBm)- Pci(3.1dB)+PAg(37dB)+Ga(2.9dBd)=20.74dBm ANALYZER SETTINGS: RBW = VBW = 5MHz Note: the EUT was displayed in several different direction, the worst cases were shown. ### A.8.2 EMISSION LIMIT (§2.1051/§22.917§24.238) ### A.8.2.1 GSM Measurement Method The measurement procedures in TIA-603E-2016are used. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. The resolution bandwidth is set as outlined in Part 24.238 and Part 22.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of PCS1900 and GSM850. ### A.8.2.2 The procedure of radiated spurious emissions is as follows: 1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10thharmonic were measured with peak detector. East China Institute of Telecommunications Page Number : 83 of 97 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.19.2019 - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. 4. The Path loss (Ppl) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (Ga) should be recorded after test. A amplifier should be connected in for the test. The Path loss (Ppl) is the summation of the cable loss. The measurement results are obtained as described below: Power(EIRP)=PMea- PpI+ Ga - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi #### A.8.2.3 Measurement Limit Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 Page Number : 84 of 97 Report Issued Date : Feb.19.2019 East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. #### A.8.2.4 Measurement Results Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS1900 band (1850.2 MHz, 1880 MHz and 1909.8 MHz) and GSM850 band (824.2MHz, 836.6MHz, 848.8MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the PCS1900 ,GSM850 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this. ## A.8.2.5 Measurement Results #### Measurements results: | Frequency | Channel | Frequency Range | Result | |-----------|---------|-----------------|--------| | | Low | 30MHz~10GHz | Р | | GSM850 | Middle | 30MHz~10GHz | Р | | | High | 30MHz~10GHz | Р | | | Low | 30MHz~20GHz | Р | | GSM1900 | Middle | 30MHz~20GHz | Р | | | High | 30MHz~20GHz | Р | #### **GSM850** #### **GPRS Mode Channel 128** #### Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 1853.6 | -41.54 | 4.6 | 2.9 | -43.24 | -13 | Н | | 2473.9 | -34.43 | 5.3 | 3.7 | -36.03 | -13 | V | | 3161.5 | -47.93 | 6.0 | 4.7 | -49.23 | -13 | V | East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 85 of 97 Report Issued Date : Feb.19.2019 3578.1 4.7 -46.9 6.5 -48.7 -13 Н V 4551.9 -48.18 7.4 7.3 -48.28 -13 5493.5 -49.37 8.2 9.5 -48.07 -13 V Note: **GPRS 850, CH128** Power(ERP)= Pmea-PcI+Ga=-49.37-8.2+9.5=-48.07dbm This method Applicable to the following table. #### **GPRS Mode Channel 189** #### Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 1815.0 | -41.12 | 4.5 | 2.9 | -42.72 | -13 | V | | 2510.4 | -34.83 | 5.4 | 3.7 | -36.53 | -13 | V | | 3195.0 | -47.86 | 6.1 | 4.7 | -49.26 | -13 | Н | | 4183.8 | -49.34 | 7.0 | 7.7 | -48.64 | -13 | V | | 4939.6 | -49.39 | 7.7 | 9.0 | -48.09 | -13 | V | | 5942.3 | -50.16 | 8.5 | 10.4 | -48.26 | -13 | V | ## **GPRS Mode Channel 251** #### Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 1882.5 | -40.75 | 4.6 | 2.8 | -42.55 | -13 | Н | | 2726.8 | -35.44 | 5.7 | 4.1 | -37.04 | -13 | V | | 3574.6 | -47.19 | 6.4 | 4.7 | -48.89 | -13 | Н | East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 86 of 97 Report Issued Date : Feb.19.2019 Report No.: I18D00207-SRD04 | 4243.8 | -46.85 | 7.1 | 7.7 | -46.25 | -13 | V | |--------|--------|-----|------|--------|-----|---| | 4968.5 | -49.11 | 7.7 | 9.0 | -47.81 | -13 | Н | | 5680.4 | -50.58 | 8.5 | 10.5 | -48.58 | -13 | V | Report No.: I18D00207-SRD04 ### **EGPRS Mode Channel 128** #### Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 1465.6 | -43.32 | 4.1 | 3.4 | -44.02 | -13 | Н | | 2558.6 | -35.54 | 5.4 | 3.7 | -37.24 | -13 | V | | 3205.4 | -47.7 | 6.1 | 4.7 | -49.1 | -13 | V | | 3976.2 | -49.71 | 6.9 | 7.7 | -48.91 | -13 | Н | | 4950.0 | -49.72 | 7.7 | 9.0 | -48.42 | -13 | V | | 5785.4 | -50.89 | 8.4 | 10.5 | -48.79 | -13 | V | Note: **EGPRS 850, CH128** Power(ERP)= Pmea-PcI+Ga=-50.89-8.4+10.5=-48.79dbm This method Applicable to the following table. #### **EGPRS Mode Channel 189** #### Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 2268.2 | -38.1 | 5.1 | 3.3 | -39.9 | -13 | п | | 3575.8 | -47.07 | 6.5 | 4.7 | -48.87 | -13 | Н | | 4568.1 | -48.23 | 7.4 | 7.3 | -48.33 | -13 | Н | Page Number : 87 of 97 Report Issued Date : Feb.19.2019 East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 | 5966.5 | -49.65 | 8.5 | 10.4 | -47.75 | -13 | V | |--------|--------|------|------|--------|-----|---| | 7166.2 | -50.35 | 9.4 | 13.7 | -46.05 | -13 | Н | | 8249.2 | -52.48 | 10.1 | 17.3 | -45.28 | -13 | Н | Report No.: I18D00207-SRD04 ## **EGPRS Mode Channel 251** #### Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 1826.8 | -41.33 | 4.6 | 2.9 | -43.03 | -13 | Н | | 2694.6 | -34.97 | 5.6 | 4.1 | -36.47 | -13 | V | | 3175.4 | -48.07 | 6.1 | 4.7 | -49.47 | -13 | Н | | 3973.8 | -49.84 | 6.8 | 7.7 | -48.94 | -13 | V | | 4587.7 | -47.59 | 7.4 | 7.3 | -47.69 | -13 | V | | 5244.2 | -49.04 | 8.0 | 8.7 | -48.34 | -13 | V | ## **GSM1900** ## **GPRS Mode Channel 512** ## Final result: | i illai lesuit. | | | | | | | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | | 3581.4 | -50.6 | 6.5 | 4.7 | -52.4 | -13 | V | | 4255.2 | -52.99 | 7.1 | 7.7 | -52.39 | -13 | Н | | 5148.6 | -52.32 | 7.9 | 8.7 | -51.52 | -13 | Ι | | 6379.2 | -52.75 | 8.9 | 11.5 | -50.15 | -13 | Н | | 9229.2 | -54.13 | 10.6 | 18.5 | -46.23 | -13 | Н | East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 88 of 97 Report Issued Date : Feb.19.2019 | 11630.4 | -48.13 | 12.2 | 17.6 | -42.73 | -13 | V | |---------|--------|------|------|--------|-----|---| | | | | | | | | Report No.: I18D00207-SRD04 #### **GPRS Mode Channel 661** #### Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 3585.0 | -49.63 | 6.5 | 4.7 | -51.43 | -13 | Н | | 4557.6 | -51.01 | 7.4 | 7.3 | -51.11 | -13 | V | | 6404.4 | -52.09 | 8.9 | 11.5 | -49.49 | -13 | V | | 7867.2 | -54.01 | 9.9 | 15.3 | -48.61 | -13 | V | | 10176.0 | -52.25 | 11.3 | 17.4 | -46.15 | -13 | V | | 12988.8 | -47.67 | 13.2 | 20.2 | -40.67 | -13 | Н | #### **GPRS Mode Channel 810** ## Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 3578.4 | -50.14 | 6.5 | 4.7 | -51.94 | -13 | V | | 4543.8 | -50.75 | 7.4 | 7.3 | -50.85 | -13 | V | | 6007.2 | -52.98 | 8.6 | 10.4 | -51.18 | -13 | V | | 7872.0 | -53.36 | 9.9 | 15.3 | -47.96 | -13 | V | | 9835.2 | -53.38 | 11.0 | 18.3 | -46.08 | -13 | Н | | 12847.2 | -46.77 | 12.5 | 19.2 | -40.07 | -13 | V | **Conclusion: PASS** Note: the EUT was displayed in several different direction, the worst cases were shown. Page Number : 89 of 97 Report Issued Date : Feb.19.2019 East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 #### **EGPRS Mode Channel 512** ## Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 3700.2 | -48.29 | 6.6 | 7.7 | -47.19 | -13 | V | | 5551.2 | -43.44 | 8.2 | 9.5 | -42.14 | -13 | Н | | 7400.4 | -43.42 | 9.7 | 14.6 | -38.52 | -13 | V | | 9663.6 | -54.11 | 10.9 | 18.3 | -46.71 | -13 | V | | 11613.6 | -49.08 | 12.2 | 18.1 | -43.18 | -13 | V | | 12938.4 | -47.62 | 13.0 | 20.2 | -40.42 | -13 | Н | ## **EGPRS Mode Channel 661** #### Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 3760.2 | -50.46 | 6.6 | 7.7 | -49.36 | -13 | Н | | 5640.6 | -46.83 | 8.3 | 10.5 | -44.63 | -13 | V | | 7519.2 | -41.18 | 9.7 | 14.6 | -36.28 | -13 | V | | 9712.8 | -53.3 | 10.9 | 18.3 | -45.9 | -13 | V | | 10797.6 | -48.75 | 11.7 | 17.3 | -43.15 | -13 | V | | 14292.0 | -48.48 | 13.6 | 23.5 | -38.58 | -13 | Н | #### **EGPRS Mode Channel 810** Final result: East China Institute of Telecommunications Page Number : 90 of 97 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.19.2019 | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 3580.2 | -50.07 | 6.5 | 4.7 | -51.87 | -13 | V | | 5729.4 | -46.49 | 8.5 | 10.5 | -44.49 | -13 | Н | | 7639.2 | -53.71 | 9.7 | 15.3 | -48.11 | -13 | Н | | 9234.0 | -53.78 | 10.6 | 18.5 | -45.88 | -13 | V | | 10809.6 | -49.67 | 11.7 | 17.3 | -44.07 | -13 | V | | 12894.0 | -47.93 | 13.0 | 20.2 | -40.73 | -13 | Н | **Conclusion: PASS** #### A.7.2.2. WCDMA Measurement Method The measurements procedures in TIA-603E-2016 are used. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set as outlined in Part 24.238 and Part 24.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA Band V. The procedure of radiated spurious emissions is the same like GSM. #### A.7.2.2.1. Measurement Limit Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. #### A.7.2.2.2. Measurement Results Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the WCDMA Band V (826.4MHz, 836.6MHz and 846.6MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the WCDMA Band V into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 91 of 97 Report Issued Date : Feb.19.2019 Report No.: I18D00207-SRD04 this. A.7.2.2.3. Measurement Results Table N05 | Frequency | Channel | Frequency Range | Result | |---------------|---------|-----------------|--------| | | Low | 30MHz~20GHz | Р | | WCDMA Band II | Middle | 30MHz~20GHz | Р | | | High | 30MHz~20GHz | Р | | | Low | 30MHz~20GHz | Р | | WCDMA Band IV | Middle | 30MHz~20GHz | Р | | | High | 30MHz~20GHz | Р | | | Low | 30MHz~20GHz | Р | | WCDMA Band V | Middle | 30MHz~20GHz | Р | | | High | 30MHz~20GHz | Р | ## **WCDMA BAND II Mode Channel 9262** ## Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 3857.6 | -60.88 | 6.7 | 7.7 | -59.88 | -13 | V | | 4910.8 | -59.26 | 7.7 | 9.0 | -57.96 | -13 | V | | 6922.4 | -60.43 | 9.3 | 12.9 | -56.83 | -13 | Н | | 9194.0 | -62.11 | 10.5 | 18.5 | -54.11 | -13 | Н | | 12604.0 | -55.25 | 12.8 | 18.7 | -49.35 | -13 | Н | | 16823.0 | -49.16 | 15.8 | 20.0 | -44.96 | -13 | V | ## WCDMA BAND II Mode Channel 9400 Final result: East China Institute of Telecommunications Page Number : 92 of 97 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.19.2019 | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 4073.2 | -60.8 | 6.9 | 7.7 | -60 | -13 | V | | 5364.4 | -58.23 | 8.1 | 8.7 | -57.63 | -13 | Н | | 6419.6 | -60.91 | 8.9 | 11.5 | -58.31 | -13 | V | | 8616.0 | -63.58 | 10.3 | 18.1 | -55.78 | -13 | Н | | 10437.6 | -57.94 | 11.6 | 17.1 | -52.44 | -13 | V | | 13780.0 | -58.58 | 13.8 | 24.8 | -47.58 | -13 | Н | #### **WCDMA BAND II Mode Channel 9538** ## Final result: | Frequenc
y
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |------------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 3950.4 | -60.45 | 6.8 | 7.7 | -59.55 | -13 | V | | 5417.2 | -60.61 | 8.1 | 9.5 | -59.21 | -13 | V | | 7741.2 | -61.46 | 9.8 | 15.3 | -55.96 | -13 | V | | 9169.2 | -61.65 | 10.5 | 18.5 | -53.65 | -13 | V | | 11036.8 | -57.57 | 12.0 | 18.1 | -51.47 | -13 | V | | 14461.5 | -57.32 | 14.2 | 22.7 | -48.82 | -13 | V | ## **WCDMA BAND IV Mode Channel 1312** ## Final result: | Frequency (MHz) PMea (dBm) Pcl (dBm) Ga (dBd) | Peak ERP | Limit | Polarizatio | |---|----------|-------|-------------| | | (dBm) | (dBm) | n | Page Number : 93 of 97 Report Issued Date : Feb.19.2019 | 4794.0 | -58.57 | 7.6 | 7.9 | -58.27 | -13 | Н | |---------|--------|------|------|--------|-----|---| | 6396.8 | -58.92 | 8.9 | 11.5 | -56.32 | -13 | Н | | 9533.6 | -60.1 | 10.7 | 18.6 | -52.2 | -13 | V | | 12404.6 | -56.51 | 12.5 | 18.7 | -50.31 | -13 | V | | 14301.9 | -57.68 | 13.6 | 23.5 | -47.78 | -13 | V | | 16797.8 | -49.54 | 15.8 | 20.0 | -45.34 | -13 | V | : 94 of 97 Report Issued Date : Feb.19.2019 Page Number ## WCDMA BAND IV Mode Channel 1413 ### Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBd) | Peak ERP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|-------------------|----------------|------------------| | 4539.2 | -58.46 | 7.4 | 7.3 | -58.56 | -13 | V | | 6668.4 | -60.39 | 9.1 | 12.3 | -57.19 | -13 | Н | | 8776.8 | -62.26 | 10.4 | 18.5 | -54.16 | -13 | V | | 11932.8 | -54.67 | 12.5 | 17.1 | -50.07 | -13 | V | | 14339.7 | -57.67 | 13.6 | 23.5 | -47.77 | -13 | Н | | 16837.6 | -49.63 | 15.8 | 20.0 | -45.43 | -13 | V | ## **WCDMA BAND IV Mode Channel 1513** ## Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBd) | Peak ERP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|-------------------|----------------|------------------| | 5260.4 | -58.51 | 8.0 | 8.7 | -57.81 | -13 | V | | 6899.2 | -60.47 | 9.3 | 12.9 | -56.87 | -13 | V | |---------|--------|------|------|--------|-----|----------| | 8916.4 | -63.7 | 10.4 | 18.3 | -55.8 | -13 | V | | 10819.6 | -55.92 | 11.7 | 17.3 | -50.32 | -13 | Н | | 12860.2 | -56.03 | 13.0 | 19.2 | -49.83 | -13 | Н | | 14297.7 | -56.57 | 13.6 | 23.5 | -46.67 | -13 | V | ## WCDMA BAND V Mode Channel 4132 #### Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 1651.1 | -56.91 | 4.3 | 2.9 | -58.31 | -13 | Н | | 2481.9 | -48.46 | 5.3 | 3.7 | -50.06 | -13 | ٧ | | 3864.0 | -60.95 | 6.7 | 7.7 | -59.95 | -13 | Н | | 4784.0 | -59.17 | 7.6 | 7.9 | -58.87 | -13 | ٧ | | 6408.8 | -60.44 | 8.9 | 11.5 | -57.84 | -13 | Н | | 8326.0 | -63.14 | 10.1 | 17.3 | -55.94 | -13 | Н | ## **WCDMA BAND V Mode Channel 4183** ## Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 1671.8 | -56.54 | 4.3 | 2.9 | -57.94 | -13 | Н | | 2562.7 | -50.68 | 5.4 | 3.7 | -52.38 | -13 | V | East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 95 of 97 Report Issued Date : Feb.19.2019 Report No.: I18D00207-SRD04 | 3677.2 | -60.82 | 6.6 | 7.7 | -59.72 | -13 | Н | |--------|--------|-----|------|--------|-----|---| | 4534.8 | -59 | 7.4 | 7.3 | -59.1 | -13 | V | | 5810.0 | -60.51 | 8.4 | 10.5 | -58.41 | -13 | Н | | 6885.2 | -60.99 | 9.3 | 12.9 | -57.39 | -13 | V | ## WCDMA BAND V Mode Channel 4233 ## Final result: | Frequency
(MHz) | PMea
(dBm) | Pcl (dBm) | Ga (dBi) | Peak EIRP
(dBm) | Limit
(dBm) | Polarizatio
n | |--------------------|---------------|-----------|----------|--------------------|----------------|------------------| | 1695.0 | -56.63 | 4.4 | 2.9 | -58.13 | -13 | Н | | 2633.8 | -50.1 | 5.5 | 4.1 | -51.5 | -13 | Н | | 3684.0 | -59.51 | 6.6 | 7.7 | -58.41 | -13 | V | | 4540.8 | -58.51 | 7.4 | 7.3 | -58.61 | -13 | V | | 5965.2 | -59.85 | 8.5 | 10.4 | -57.95 | -13 | V | | 7178.2 | -61.86 | 9.5 | 13.7 | -57.66 | -13 | Н | Page Number : 96 of 97 Report Issued Date : Feb.19.2019 **Conclusion: PASS** ## **ANNEX B.** Deviations from Prescribed Test Methods | No deviation from Prescribed Te | est Methods. | |---------------------------------|-------------------------------| | | *********End Of Report******* | East China Institute of Telecommunications Page Number : 97 of 97 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.19.2019