# **TEST REPORT**

## DT&C Co., Ltd.

| 42, Yurim-ro, | 154Beon-gil, | Cheoin-gu,  | Yongin-si, | Gyeonggi-do, | Korea, | 17042 |
|---------------|--------------|-------------|------------|--------------|--------|-------|
|               | Tel : 031    | 1-321-2664, | Fax : 031- | -321-1664    |        |       |

1. Report No: DRTFCC1912-0307

**Dt&C** 

- 2. Customer
  - Name : HYUNDAI MOBIS CO., LTD.
  - Address : 203, Teheran-ro Gangnam-gu, Seoul, South Korea, 135-977
- 3. Use of Report : FCC Original Grant
- 4. Product Name / Model Name : DIGITAL CAR AUDIO SYSTEM / ADC10SVGG FCC ID : TQ8-ADC10SVGG
- 5. Test Method Used : KDB 558074 D01v05r02, ANSI C63.10-2013 Test Specification : FCC Part 15.247
- 6. Date of Test : 2019.11.05 ~ 2019.11.22
- 7. Testing Environment : See appended test report.
- 8. Test Result : Refer to the attached test result.

| Affirmation | Tested by        | 6.1 | Reviewed by       |             |
|-------------|------------------|-----|-------------------|-------------|
| Ammadon     | Name : InHee Bae | Ch  | Name : JaeJin Lee | (Signature) |

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd.

2019.12.04.

# DT&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

# **Test Report Version**

| Test Report No. | Date          | Description   |
|-----------------|---------------|---------------|
| DRTFCC1912-0307 | Dec. 04, 2019 | Initial issue |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |



## **Table of Contents**

| 1. General Information                                                     |    |
|----------------------------------------------------------------------------|----|
| 1.1 Testing Laboratory                                                     | 4  |
| 1.2 Testing Environment                                                    | 4  |
| 1.3 Measurement Uncertainty                                                | 4  |
| 1.4 Details of Applicant                                                   | 5  |
| 1.5 Description of EUT                                                     | 5  |
| 1.6 Declaration by the applicant / manufacturer                            |    |
| 1.7 Information about the FHSS characteristics                             |    |
| 1.8 Test Equipment List                                                    |    |
| 1.9 Summary of Test Results                                                |    |
| 1.10 Conclusion of worst-case and operation mode                           |    |
| 2. Maximum Peak Output Power Measurement                                   |    |
| 2. Maximum Feak Output Fower Measurement                                   |    |
| 2.1 Test Setup                                                             |    |
|                                                                            |    |
| 2.3 Test Procedure                                                         |    |
| 2.4 Test Results                                                           |    |
| 3. 20 dB BW                                                                |    |
| 3.1 Test Setup                                                             |    |
| 3.2 Limit                                                                  |    |
| 3.3 Test Procedure                                                         | 17 |
| 3.4 Test Results                                                           |    |
| 4. Carrier Frequency Separation                                            | 23 |
| 4.1 Test Setup                                                             | 23 |
| 4.2 Limit                                                                  | 23 |
| 4.3 Procedure                                                              | 23 |
| 4.4 Test Results                                                           | 23 |
| 5. Number of Hopping Frequencies                                           | 28 |
| 5.1 Test Setup                                                             |    |
| 5.2 Limit                                                                  |    |
| 5.3 Procedure                                                              |    |
| 5.4 Test Results                                                           |    |
| 6. Time of Occupancy (Dwell Time)                                          |    |
| 6.1 Test Setup                                                             |    |
|                                                                            |    |
| 6.2 Limit                                                                  |    |
| 6.3 Test Procedure                                                         |    |
| 6.4 Test Results                                                           |    |
| 7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission |    |
| 7.1 Test Setup                                                             |    |
| 7.2 Limit                                                                  |    |
| 7.3. Test Procedures                                                       |    |
| 7.3.1. Test Procedures for Radiated Spurious Emissions                     | 40 |
| 7.3.2. Test Procedures for Conducted Spurious Emissions                    |    |
| 7.4. Test Results                                                          | 42 |
| 7.4.1. Radiated Emissions                                                  | 42 |
| 7.4.2. Conducted Spurious Emissions                                        | 45 |
| 8. Transmitter AC Power Line Conducted Emission                            | 69 |
| 8.1 Test Setup                                                             |    |
| 8.2 Limit                                                                  |    |
| 8.3 Test Procedures                                                        |    |
| 8.4 Test Results                                                           |    |
| 9. Antenna Requirement                                                     |    |
| APPENDIX I                                                                 |    |
| APPENDIX II                                                                |    |
|                                                                            | 12 |

## **1. General Information**

### 1.1 Testing Laboratory

#### DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

#### - FCC MRA Accredited Test Firm No. : KR0034

| www.dtnc.net |   |                  |
|--------------|---|------------------|
| Telephone    | : | + 82-31-321-2664 |
| FAX          | : | + 82-31-321-1664 |

#### **1.2 Testing Environment**

| Ambient Condition               |               |
|---------------------------------|---------------|
| <ul> <li>Temperature</li> </ul> | +21 ℃ ~ +24 ℃ |
| Relative Humidity               | 35 % ~ 43 %   |

#### **1.3 Measurement Uncertainty**

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

| Test items                                     | Measurement uncertainty                               |
|------------------------------------------------|-------------------------------------------------------|
| Transmitter Output Power                       | 0.7 dB (The confidence level is about 95 %, $k = 2$ ) |
| Conducted spurious emission                    | 0.9 dB (The confidence level is about 95 %, $k = 2$ ) |
| Radiated spurious emission<br>(1 GHz Below)    | 5.1 dB (The confidence level is about 95 %, $k = 2$ ) |
| Radiated spurious emission<br>(1 GHz ~ 18 GHz) | 5.4 dB (The confidence level is about 95 %, k = 2)    |
| Radiated spurious emission<br>(18 GHz Above)   | 5.3 dB (The confidence level is about 95 %, $k = 2$ ) |

### **1.4 Details of Applicant**

| Applicant      | : | HYUNDAI MOBIS CO., LTD.                                 |
|----------------|---|---------------------------------------------------------|
| Address        | : | 203, Teheran-ro Gangnam-gu, Seoul, South Korea, 135-977 |
| Contact person | : | Seung Hoon Choe                                         |

### 1.5 Description of EUT

| EUT                                 | DIGITAL CAR AUDIO SYSTEM                                                                  |
|-------------------------------------|-------------------------------------------------------------------------------------------|
| Model Name                          | ADC10SVGG                                                                                 |
| Add Model Name                      | ADC11SVGG, ADC12SVGG, ADC13SVGG, ADC10SVGN,<br>ADC11SVGN, ADC10SVMG, ADC10SVMG, ADC14SVGG |
| Hardware Version                    | 1.0                                                                                       |
| Software Version                    | 1.0                                                                                       |
| Serial Number                       | Identical prototype                                                                       |
| Power Supply                        | DC 14.4 V                                                                                 |
| Frequency Range                     | 2402 MHz ~ 2480 MHz                                                                       |
| Modulation Technique<br>(Data rate) | GFSK (1Mbps),<br>π/4DQPSK (2Mbps),<br>8DPSK (3Mbps)                                       |
| Number of Channels                  | 79                                                                                        |
| Antenna Type                        | PCB Pattern Antenna                                                                       |
| Antenna Gain                        | PK : -0.18 dBi                                                                            |

### **1.6 Declaration by the applicant / manufacturer**

- NA

#### **1.7 Information about the FHSS characteristics**

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following :
  - A) The hopping sequence is pseudorandom
    - Note 1 : Pseudorandom Frequency Hopping Sequence Table as below:
      - Channel: 08, 24, 40, 56, 42, 54, 72, 09, 01, 11, 33, 41, 34, 42, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 41, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 52, 71, 08, 24, 06, 24, 48, 56, 45, 46, 70, 01, 72, 06, 25, 33, 12, 28, 49, 60, 45, 58, 74, 13, 05, 18, 37, 49 etc

The System receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchroniztation with the transmit ted signals.

- B) All channels are used equally on average
- C) The receiver input bandwidth equals the transmit bandwidth
- D) The receiver hops in sequenc e with the transmit signal
- 15.247(g) : In accordance with the Bluetooth Industry Standard, the system is designed to comply with all
  of the regulations in Section 15.247 when the transmitter is presented with a continuous data
  (or information) system.
- 15.247(h) : In accordance with the Bluetooth Industry Standard, the system does not coordinate its channels selection / hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.
- 15.247(h) : The EUT employs Adaptive Frequency Hopping (AFH) which identifies sources of interference namely devices operating in 802.11 WLAN and excludes them from the list of available channels. The process of re-mapping reduces the number of test channels from 79 channels to a minimum number of 20 channels.

### **1.8 Test Equipment List**

| Туре                                   | Manufacturer           | Model                           | Cal.Date<br>(yy/mm/dd) | Next.Cal.Date<br>(yy/mm/dd) | S/N                |
|----------------------------------------|------------------------|---------------------------------|------------------------|-----------------------------|--------------------|
| Spectrum Analyzer                      | Agilent Technologies   | N9020A                          | 18/12/19               | 19/12/19                    | MY49060056         |
| Spectrum Analyzer                      | Agilent Technologies   | N9020A                          | 18/12/19               | 19/12/19                    | MY48011700         |
| Spectrum Analyzer                      | Agilent Technologies   | N9020A                          | 19/06/26               | 20/06/26                    | MY46471251         |
| DC Power Supply                        | Agilent Technologies   | 66332A                          | 19/06/25               | 20/06/25                    | MY43001173         |
| DC Power Supply                        | SM techno              | SDP30-5D                        | 19/06/25               | 20/06/25                    | 305DMG304          |
| Multimeter                             | FLUKE                  | 17B                             | 18/12/18               | 19/12/18                    | 26030065WS         |
| Signal Generator                       | Rohde Schwarz          | SMBV100A                        | 18/12/19               | 19/12/19                    | 255571             |
| Signal Generator                       | ANRITSU                | MG3695C                         | 18/12/10               | 19/12/10                    | 173501             |
| Thermohygrometer                       | BODYCOM                | BJ5478                          | 18/12/27               | 19/12/27                    | 120612-1           |
| Thermohygrometer                       | BODYCOM                | BJ5478                          | 18/12/27               | 19/12/27                    | 120612-2           |
| Thermohygrometer                       | BODYCOM                | BJ5478                          | 19/07/03               | 20/07/03                    | N/A                |
| Loop Antenna                           | ETS                    | 6502                            | 19/09/18               | 21/09/18                    | 00226186           |
| BILOG ANTENNA                          | Schwarzbeck            | VULB 9160                       | 19/04/23               | 21/04/23                    | 9160-3362          |
| Horn Antenna                           | ETS-Lindgren           | 3115                            | 18/01/30               | 20/01/30                    | 6419               |
| Horn Antenna                           | Schwarzbeck            | BBHA 9120C                      | 17/12/04               | 19/12/04                    | 9120C-561          |
| Horn Antenna                           | A.H.Systems Inc.       | SAS-574                         | 19/07/03               | 21/07/03                    | 155                |
| PreAmplifier                           | tsj                    | MLA-0118-J01-45                 | 18/12/19               | 19/12/19                    | 17138              |
| PreAmplifier                           | tsj                    | MLA-1840-J02-45                 | 19/06/27               | 20/06/27                    | 16966-10728        |
| PreAmplifier                           | H.P                    | 8447D                           | 18/12/18               | 19/12/18                    | 2944A07774         |
| Power Divider                          | Weinschel              | WA1574                          | 19/06/25               | 20/06/25                    | WA1574-4           |
| Bluetooth Tester                       | Tescom                 | TC-3000C                        | 19/06/24               | 20/06/24                    | 3000C000563        |
| High Pass Filter                       | Wainwright Instruments | WHKX12-935-<br>1000-15000-40SS  | 19/06/26               | 20/06/26                    | 8                  |
| High Pass Filter                       | Wainwright Instruments | WHKX10-2838-<br>3300-18000-60SS | 19/06/26               | 20/06/26                    | 1                  |
| High Pass Filter                       | Wainwright Instruments | WHNX8.0/26.5-<br>6SS            | 19/06/27               | 20/06/27                    | 3                  |
| Attenuator(10dB)                       | Hefei Shunze           | SS5T2.92-10-40                  | 19/06/27               | 20/06/27                    | 16012202           |
| Attenuator(6dB)                        | SRTechnology           | F01-B0606-01                    | 19/06/27               | 20/06/27                    | 13092403           |
| Attenuator(3dB)                        | Aeroflex/Weinschel     | 20515                           | 19/06/27               | 20/06/27                    | Y2370              |
| Attenuator(3dB)                        | SMAJK                  | SMAJK-2-3                       | 19/06/27               | 20/06/27                    | 2                  |
| Attenuator(3dB)                        | Cernexwave             | CFADC2603U5                     | 19/06/27               | 20/06/27                    | C11729             |
| Power Meter & Wide<br>Bandwidth Sensor | Anritsu                | ML2495A<br>MA2490A              | 19/06/27               | 20/06/27                    | 1338003<br>1249304 |
| EMI Receiver                           | ROHDE&SCHWARZ          | ESW44                           | 19/07/30               | 20/07/30                    | 101645             |
| Cable                                  | Junkosha               | MWX241                          | 19/01/14               | 20/01/14                    | G-04               |
| Cable                                  | Junkosha               | MWX241                          | 19/01/14               | 20/01/14                    | G-07               |
| Cable                                  | DT&C                   | Cable                           | 19/01/14               | 20/01/14                    | G-13               |
| Cable                                  | DT&C                   | Cable                           | 19/01/14               | 20/01/14                    | G-14               |
| Cable                                  | HUBER+SUHNER           | SUCOFLEX 104                    | 19/01/14               | 20/01/14                    | G-15               |
| Cable                                  | Radiall                | TESTPRO3                        | 19/01/16               | 20/01/16                    | M-01               |
| Cable                                  | Junkosha               | MWX315                          | 19/01/16               | 20/01/16                    | M-05               |
| Cable                                  | Junkosha               | MWX221                          | 19/01/16               | 20/01/16                    | M-06               |
| Cable                                  | DT&C                   | Cable                           | 19/01/14               | 20/01/14                    | RF-10              |

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017. Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

### 1.9 Summary of Test Results

| FCC Part<br>RSS Std.                                                 | Parameter                     | <b>Limit</b><br>(Using in 2400~ 2483.5 MHz)                                                                                                                                                                           | Test<br>Condition    | Status<br>Note 1 |
|----------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|
|                                                                      | Carrier Frequency Separation  | >= 25 kHz or<br>>= Two thirds of the 20 dB BW,<br>whichever is greater.                                                                                                                                               |                      | С                |
| 15.247(a)<br>RSS-247(5.1)                                            | Number of Hopping Frequencies | >= 15 hops                                                                                                                                                                                                            |                      | С                |
|                                                                      | 20 dB Bandwidth               | N/A                                                                                                                                                                                                                   |                      | С                |
|                                                                      | Dwell Time                    | =< 0.4 seconds                                                                                                                                                                                                        |                      | С                |
| 15.247(b)<br>RSS-247(5.4)                                            | Transmitter Output Power      | For FCC<br>=< 1 Watt , if CHs >= 75<br>Others =< 0.125 W<br>For IC<br>if CHs >= 75<br>=< 1 Watt For Conducted Power<br>=< 4 Watt For e.i.r.p,<br>Others<br>=< 0.125 W For Conducted Power.<br>=< 0.5 Watt For e.i.r.p | Conducted            | С                |
| 15.247(d)<br>RSS-247(5.5)                                            | Conducted Spurious Emissions  | The radiated emission to any<br>100 kHz of out-band shall be at<br>least 20 dB below the highest<br>in-band spectral density.                                                                                         |                      | С                |
| RSS Gen(6.7)                                                         | Occupied Bandwidth (99 %)     | N/A                                                                                                                                                                                                                   |                      | NA               |
| 15.247(d)<br>15.205 & 209<br>RSS-247(5.5)<br>RSS-Gen<br>(8.9 & 8.10) | Radiated Spurious Emissions   | FCC 15.209 Limits                                                                                                                                                                                                     | Radiated             | С                |
| 15.207<br>RSS-Gen(8.8)                                               | AC Conducted Emissions        | FCC 15.207 Limits                                                                                                                                                                                                     | AC Line<br>Conducted | NA Note3         |
| 15.203                                                               | Antenna Requirements          | FCC 15.203                                                                                                                                                                                                            | -                    | с                |

Note 3 : This device is installed in a car. Therefore the power source is a battery of car.



#### 1.10 Conclusion of worst-case and operation mode

The EUT has three types of modulation (GFSK,  $\pi$ /4DQPSK and 8DPSK). Therefore all applicable requirements were tested with all the modulations.

And packet type was tested at the worst case(DH5).

#### Tested frequency information,

- Hopping Function : Enable

|              | TX Frequency (MHz) | RX Frequency (MHz) |
|--------------|--------------------|--------------------|
| Hopping Band | 2402 ~ 2480        | 2402 ~ 2480        |

- Hopping Function : Disable

|                 | TX Frequency (MHz) | RX Frequency (MHz) |
|-----------------|--------------------|--------------------|
| Lowest Channel  | 2402               | 2402               |
| Middle Channel  | 2441               | 2441               |
| Highest Channel | 2480               | 2480               |



### 2. Maximum Peak Output Power Measurement

#### 2.1 Test Setup

Refer to the APPENDIX I.

### 2.2 Limit

#### FCC Requirements

The maximum peak output power of the intentional radiator shall not exceed the following :

- 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- 2. §15.247(b)(1), For frequency hopping systems operating in the 2400 2483.5 MHz employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725 5805 MHz band : 1 Watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

#### IC Requirements

1. RSS-247(5.4) (b), For FHSS operating in the band 2400 - 2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels, the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p shall not exceed 4 W, except as provided in section 5.4(e)

### 2.3 Test Procedure

- 1. The RF output power was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The peak output power of the fundamental frequency was measured with the spectrum analyzer using ;

Span = approximately 5 times of the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 20 dB BW VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold

#### 2.4 Test Results

| Modulation      | Tested Channel  |       | Average<br>Power | Peak Output Power |      |  |
|-----------------|-----------------|-------|------------------|-------------------|------|--|
| Woddiation      | rested Chainter | dBm   | mW               | dBm               | mW   |  |
|                 | Lowest          | 0.15  | 1.04             | 1.77              | 1.50 |  |
| <u>GFSK</u>     | Middle          | 0.80  | 1.20             | 1.69              | 1.48 |  |
|                 | Highest         | 0.43  | 1.10             | 1.55              | 1.43 |  |
|                 | Lowest          | -4.58 | 0.35             | -1.15             | 0.77 |  |
| <u>π/4DQPSK</u> | Middle          | -3.69 | 0.43             | -0.85             | 0.82 |  |
|                 | Highest         | -4.04 | 0.39             | -1.09             | 0.78 |  |
|                 | Lowest          | -4.55 | 0.35             | -0.70             | 0.85 |  |
| <u>8DPSK</u>    | Middle          | -3.67 | 0.43             | -0.59             | 0.87 |  |
|                 | Highest         | -3.93 | 0.40             | -0.69             | 0.85 |  |

Note 1: The Frame average output power was tested using an average power meter for reference only. Note 2: See next pages for actual measured spectrum plots.



### Lowest Channel & Modulation : GFSK



#### **Peak Output Power**

#### Middle Channel & Modulation : GFSK





Highest Channel & Modulation : GFSK



#### **Peak Output Power**

#### Lowest Channel & Modulation : π/4DQPSK






### Middle Channel & Modulation : π/4DQPSK



#### **Peak Output Power**

#### Highest Channel & Modulation : π/4DQPSK









#### Peak Output Power

#### Middle Channel & Modulation : 8DPSK





### Highest Channel & Modulation : 8DPSK



### 3. 20 dB BW

### 3.1 Test Setup

Refer to the APPENDIX I.

### 3.2 Limit

Limit : Not Applicable

#### 3.3 Test Procedure

- 1. The 20 dB bandwidth & Occupied bandwidth were measured with a spectrum analyzer connected to RF antenna Connector(conducted measurement) while EUT was operating in transmit mode. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using below setting:
  - RBW = 1% to 5% of the 20 dB BW & Occupied BW
  - $VBW \ge 3 \times RBW$

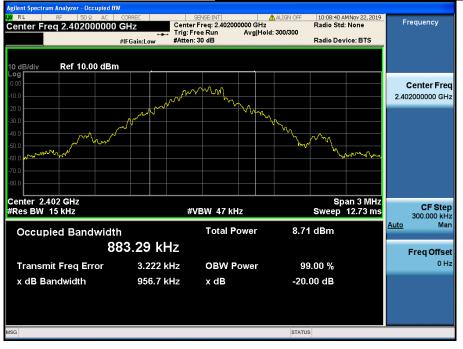
Span = between two times and five times the 20 dB bandwidth & Occupied BW

Sweep = auto

Detector function = peak

Trace = max hold

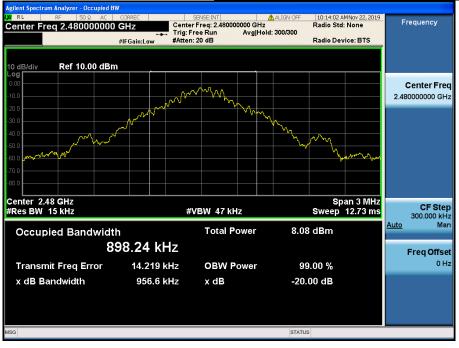
#### 3.4 Test Results


| Modulation      | Tested Channel | 20 dB BW (MHz) |
|-----------------|----------------|----------------|
|                 | Lowest         | 0.957          |
| <u>GFSK</u>     | Middle         | 0.957          |
|                 | Highest        | 0.957          |
|                 | Lowest         | 1.344          |
| <u>π/4DQPSK</u> | Middle         | 1.344          |
|                 | Highest        | 1.351          |
|                 | Lowest         | 1.344          |
| <u>8DPSK</u>    | Middle         | 1.344          |
|                 | Highest        | 1.345          |



# **Dt&C**

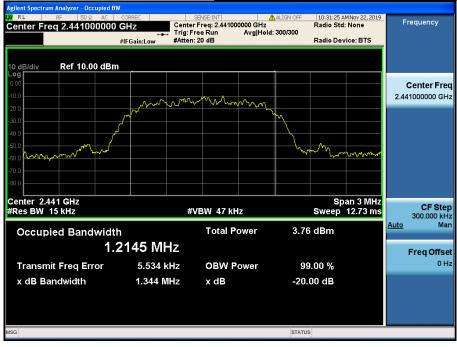
#### 20 dB BW


### Lowest Channel & Modulation : GFSK



#### 20 dB BW

#### Middle Channel & Modulation : GFSK Occupied BW Lenvel:INT ALIGN OF Center Freq: 2.441000000 GHz Trig: Free Run Avg|Hold: 300/300 #Atten: 20 dB 10:11:21 AM Nov 22, 2019 Radio Std: None Center Freq 2.441000000 GHz Frequency #IFGain:Low Radio Device: BTS Ref 10.00 dBm **Center Freq** $\Lambda \Lambda$ 2.441000000 GHz Center 2.441 GHz #Res BW 15 kHz Span 3 MHz Sweep 12.73 ms CF Step 300.000 kHz #VBW 47 kHz Auto Mar Occupied Bandwidth Total Power 8.20 dBm 897.28 kHz Freq Offset 0 Hz 99.00 % Transmit Freq Error 9.307 kHz **OBW Power** x dB Bandwidth 957.1 kHz x dB -20.00 dB STATUS


### Highest Channel & Modulation : GFSK

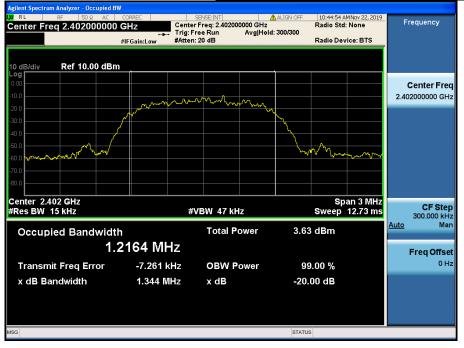


#### 20 dB BW

#### Lowest Channel & Modulation : π/4DQPSK Occupied BW Lenvel:INT ALIGN OF Center Freq: 2.402000000 GHz Trig: Free Run Avg|Hold: 300/300 #Atten: 20 dB 10:28:47 AM Nov 22, 2019 Radio Std: None Center Freq 2.402000000 GHz Frequency #IFGain:Low Radio Device: BTS Ref 10.00 dBm **Center Freq** 2.402000000 GHz ~~~ Mamm Center 2.402 GHz #Res BW 15 kHz Span 3 MHz Sweep 12.73 ms CF Step 300.000 kHz #VBW 47 kHz Auto Mar Occupied Bandwidth Total Power 3.67 dBm 1.2122 MHz Freq Offset **OBW Power** 0 Hz 1.936 kHz 99.00 % Transmit Freq Error x dB Bandwidth 1.344 MHz x dB -20.00 dB STATUS

### Middle Channel & Modulation : π/4DQPSK

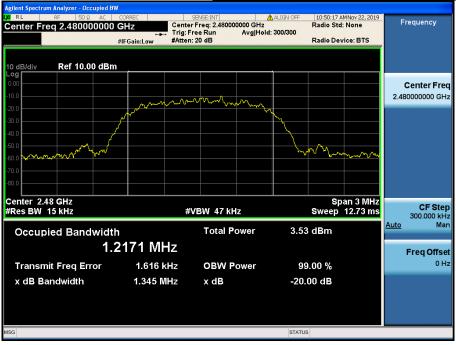



#### 20 dB BW

#### Highest Channel & Modulation : π/4DQPSK Occupied BW Lenvel:INT ALIGN OF Center Freq: 2.48000000 GHz Trig: Free Run Avg|Hold: 300/300 #Atten: 20 dB 10:34:08 AM Nov 22, 2019 Radio Std: None Center Freq 2.480000000 GHz Frequency #IFGain:Low Radio Device: BTS Ref 10.00 dBm **Center Freq** 2.48000000 GHz ኒስፈላ Mum mm Center 2.48 GHz #Res BW 15 kHz Span 3 MHz Sweep 12.73 ms CF Step 300.000 kHz #VBW 47 kHz Auto Mar Occupied Bandwidth Total Power 3.61 dBm 1.2140 MHz Freq Offset **OBW Power** 0 Hz 10.107 kHz 99.00 % Transmit Freq Error x dB Bandwidth 1.351 MHz x dB -20.00 dB STATUS



🛈 Dt&C


### Lowest Channel & Modulation : 8DPSK



#### 20 dB BW

#### Middle Channel & Modulation : 8DPSK Occupied BW Lenvel:INT ALIGN OF Center Freq: 2.441000000 GHz Trig: Free Run Avg|Hold: 300/300 #Atten: 20 dB 10:47:35 AM Nov 22, 2019 Radio Std: None Center Freq 2.441000000 GHz Frequency #IFGain:Low Radio Device: BTS Ref 10.00 dBm **Center Freq** 2.441000000 GHz Center 2.441 GHz #Res BW 15 kHz Span 3 MHz Sweep 12.73 ms CF Step 300.000 kHz #VBW 47 kHz Auto Mar Occupied Bandwidth Total Power 3.68 dBm 1.2180 MHz Freq Offset **OBW Power** 0 Hz -2.620 kHz 99.00 % Transmit Freq Error x dB Bandwidth 1.344 MHz x dB -20.00 dB STATUS

### Highest Channel & Modulation : 8DPSK





### 4. Carrier Frequency Separation

#### 4.1 Test Setup

Refer to the APPENDIX I.

### 4.2 Limit

Limit : ≥ 25 kHz or ≥ Two-Thirds of the 20 dB BW whichever is greater.

### 4.3 Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the markerdelta function was recorded as the measurement results.

The spectrum analyzer is set to :

Span = wide enough to capture the peaks of two adjacent channels

RBW = Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

 $VBW \ge RBW$  Sweep = auto Detector function = peak Trace = max hold

#### 4.4 Test Results

#### FH mode

| Hopping<br>Mode | Modulation | Peak of reference<br>channel<br>(MHz) | Peak of adjacent<br>Channel<br>(MHz) | Test Result<br>(MHz) |
|-----------------|------------|---------------------------------------|--------------------------------------|----------------------|
|                 | GFSK       | 2441.006                              | 2442.012                             | 1.006                |
| Enable          | π/4DQPSK   | 2441.014                              | 2442.012                             | 0.998                |
|                 | 8DPSK      | 2441.010                              | 2442.012                             | 1.002                |

#### AFH mode

| Hopping<br>Mode | Modulation | Peak of reference<br>channel<br>(MHz) | Peak of adjacent<br>Channel<br>(MHz) | Test Result<br>(MHz) |
|-----------------|------------|---------------------------------------|--------------------------------------|----------------------|
|                 | GFSK       | 2441.017                              | 2442.015                             | 0.998                |
| Enable          | π/4DQPSK   | 2441.013                              | 2442.012                             | 0.999                |
|                 | 8DPSK      | 2441.012                              | 2442.007                             | 0.995                |

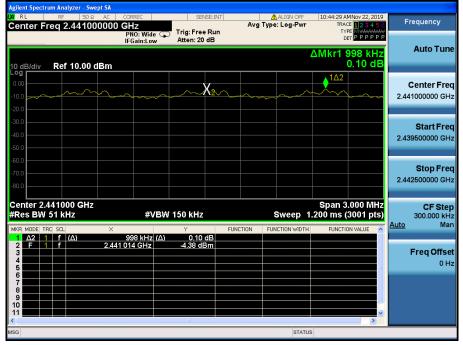
Note 1 : See next pages for actual measured spectrum

#### - Minimum Standard :

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400 - 2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW




### Carrier Frequency Separation (FH)

#### Hopping mode : Enable & GFSK



#### **Carrier Frequency Separation (FH)**

#### <u>Hopping mode : Enable & π/4DQPSK</u>





### **Carrier Frequency Separation (FH)**

### Hopping mode : Enable & 8DPSK

| Agilent Spectrum Analyzer - Swept SA<br>W RL RF 50Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CORREC            | SENSE:INT      | ALIGN OFF     | 11:00:13 AM Nov 22, 2019                              | _                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|---------------|-------------------------------------------------------|--------------------------------------|
| Center Freq 2.44100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 GHz             |                | Type: Log-Pwr | TRACE 2 3 4 5 6<br>TYPE M 4444444                     | Frequency                            |
| 10 dB/div Ref 10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IFGain:Low Atten: | 20 dB          | ΔN            | DET P P P P P P<br>Ikr1 1.002 MHz<br>0.00 dB          | Auto Tune                            |
| Log<br>0.00<br>-10.0<br>-20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | X2~            | ~~~~          |                                                       | Center Freq<br>2.441000000 GHz       |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                |               |                                                       | <b>Start Freq</b><br>2.439500000 GHz |
| -60.0<br>-70.0<br>-80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                |               |                                                       | <b>Stop Freq</b><br>2.442500000 GHz  |
| Center 2.441000 GHz<br>#Res BW 51 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #VBW 150 ki       | Hz<br>FUNCTION | Sweep 1.      | Span 3.000 MHz<br>200 ms (3001 pts)<br>FUNCTION VALUE | CF Step<br>300.000 kHz<br>Auto Man   |
| 1         Δ2         1         f         (Δ)           2         F         1         f         2.4           3         -         -         -         2.4           4         -         -         -         -         2.4           5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""><td>1.002 MHz (Δ) 0.0</td><td>00 dB<br/>dBm</td><td>FORCHOR WIDTH</td><td></td><td>Freq Offset<br/>0 Hz</td></td<> | 1.002 MHz (Δ) 0.0 | 00 dB<br>dBm   | FORCHOR WIDTH |                                                       | Freq Offset<br>0 Hz                  |
| 6 7<br>7 8<br>9 9<br>10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                |               | ~                                                     |                                      |
| <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                | STATUS        | <u>&gt;</u>                                           |                                      |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                | STATUS        |                                                       |                                      |



#### Carrier Frequency Separation (AFH)

### Hopping mode : Enable & GFSK



### **Carrier Frequency Separation (AFH)**

#### <u>Hopping mode : Enable & π/4DQPSK</u>





### Carrier Frequency Separation (AFH)

## Hopping mode : Enable & 8DPSK

| enter Fr                        | RF 50 G   | 00000 GI       | RREC<br><b>12</b><br>NO: Wide 🗔         | SENSE:IN              | Avg      | ALIGN OFF | TRACI                            | 1Nov 22, 2019<br>E 1 2 3 4 5 6<br>E M MMMMM | Frequency                              |
|---------------------------------|-----------|----------------|-----------------------------------------|-----------------------|----------|-----------|----------------------------------|---------------------------------------------|----------------------------------------|
| 0 dB/div                        | Ref 10.00 | , IF           | Gain:Low                                | Atten: 20 dB          |          |           | ΔMkr1 9                          | TPPPPP                                      | Auto Tun                               |
|                                 |           |                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | X2                    | <u>^</u> | ~~~~      |                                  | ~~~~                                        | <b>Center Fre</b><br>2.441000000 GH    |
| 30.0<br>10.0<br>50.0            |           |                |                                         |                       |          |           |                                  |                                             | <b>Start Fre</b><br>2.439500000 G⊦     |
| 0.0<br>0.0<br>0.0               |           |                |                                         |                       |          |           |                                  |                                             | <b>Stop Fre</b><br>2.442500000 GH      |
| Res BW                          | RC SCL    | ×              |                                         | 150 kHz<br>Y          | FUNCTION | Sweep 1   | Span 3.<br>.200 ms (3<br>FUNCTIO |                                             | CF Ste<br>300.000 kł<br><u>Auto</u> Ma |
| 1 Δ2 1<br>2 F 1<br>3            |           | 99<br>2.441 01 | 95 kHz (∆)<br>2 GHz                     | -0.08 dB<br>-4.40 dBm |          |           |                                  |                                             | Freq Offs<br>0 ⊦                       |
| 6 6<br>7 6<br>8 6<br>9 6<br>0 6 |           |                |                                         |                       |          |           |                                  |                                             |                                        |
| 1                               |           |                |                                         |                       |          | STATUS    |                                  | >                                           |                                        |



### 5. Number of Hopping Frequencies

#### 5.1 Test Setup

Refer to the APPENDIX I.

#### 5.2 Limit

Limit : >= 15 hops

### 5.3 Procedure

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, two frequency ranges for FH mode within the 2400 ~ 2483.5 MHz were examined.

The spectrum analyzer is set to :

| Span for FH mode = 50 MHz         | Start Frequency = 2391.5 MHz,    | Stop Frequency = 2441.5 MHz          |
|-----------------------------------|----------------------------------|--------------------------------------|
|                                   | Start Frequency = 2441.5 MHz,    | Stop Frequency = 2491.5 MHz          |
| Span for AFH mode = 30 MHz        | Start Frequency = 2426.0 MHz,    | Stop Frequency = 2456.0 MHz          |
| RBW = To identify clearly the ind | ividual channels, set the RBW to | less than 30% of the channel spacing |
| or the 20 dB bandwidth, w         | vhichever is smaller.            |                                      |
| VBW ≥ RBW                         | Sweep = auto                     |                                      |
| Detector function = peak          | Trace = max hold                 |                                      |

#### 5.4 Test Results

#### FH mode

| Hopping mode | Modulation | Test Result (Total Hops) |
|--------------|------------|--------------------------|
|              | GFSK       | 79                       |
| Enable       | π/4DQPSK   | 79                       |
|              | 8DPSK      | 79                       |

#### AFH mode

| Hopping mode | Modulation | Test Result (Total Hops) |
|--------------|------------|--------------------------|
|              | GFSK       | 20                       |
| Enable       | π/4DQPSK   | 20                       |
|              | 8DPSK      | 20                       |

Note 1 : See next pages for actual measured spectrum plots.

#### - Minimum Standard :

At least 15 hopes



### Number of Hopping Frequencies 1(FH)

### Hopping mode : Enable & GFSK

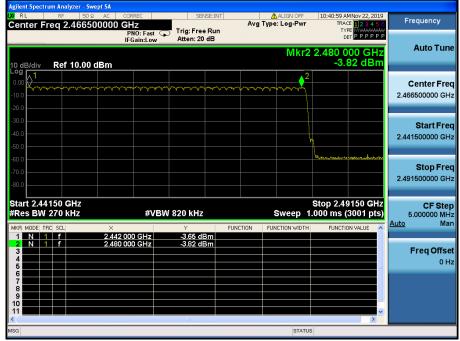
| Agilent Spectru                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    |               |      |
|------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|------------------|------|---------|---------|-------|----------------|-------|--------|----------|-------|------|------------------|-----------|-------|----|---------------|------|
| LXI RL                             | RF           | 50 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | CORF |                  |      | _       | SENS    | E:INT |                |       |        | ALIGN    |       | 10   |                  | MNov 22   |       |    | Frequency     |      |
| Center Fr                          | eq 2.4       | 1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000       |      |                  | _    | Tria    | Free    | Dun   |                | AV    | д Туре | e: Log-  | PWr   |      | TY<br>T          | .CE 12    | 456   |    |               |      |
|                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | - PN | 0: Fas<br>ain:Lo | t (→ |         | n: 20 ( |       |                |       |        |          |       |      | , i              | DET P P F | PPP   |    |               |      |
| -                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | IFG  | am.co            | ~    | Thee    |         |       |                |       |        |          |       |      |                  |           | _     |    | Auto Tu       | ine  |
|                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        | M        | kr2   | 2.4  |                  | 000 0     |       |    | Autorit       | anc  |
| 10 dB/div                          | Ref 1        | 0.00 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iBm        |      |                  |      |         |         |       |                |       |        |          |       |      | 1.               | 44 d      | Bm    |    |               | _    |
| Log                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01         |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           | - 🗸   |    |               |      |
| 0.00                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ann.       | nn   | nлr              | ιnn  | nnn     | nn      | ጉጠጠ   | <del>n</del> n | nn    | nne    | In Ar    | ٦Æ    | ۱nn  | nn               | har       | InA   |    | Center F      | rea  |
|                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1444       | VV   | γV               | ΥV   | 1 7 7 1 | { Y Y Y | ΥΥ    | γγ             | [ ] ] | {      | γvv      | ΥV    | VV   | 1 V V            | W V V     | V V I |    |               |      |
| -10.0                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [ + + + +  | -í-ł | 11               | + +  |         |         | 1.1   | ŤŤ             |       |        | * * *    | ŤŤ    | 11   | 1 <del>1</del> 1 | 1 + +     | t t   |    | 2.416500000 0 | GHZ  |
| -20.0                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    |               |      |
| -30.0                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    |               |      |
| -30.0                              |              | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    | Start F       | reg  |
| -40.0                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    | 2.391500000 0 | GH7  |
| -50.0                              |              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    | 2.0010000000  |      |
|                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    |               |      |
| -60.0 <b>m<sup>2</sup>-005-0</b> 0 | la harristan | Contraction of the local division of the loc |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    |               |      |
| -70.0                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    | Stop F        | req  |
|                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    | 2.441500000 0 | GHz  |
| -80.0                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    |               | _    |
|                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    |               |      |
| Start 2.39                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       | Sto  | p 2.4            | 4150      | GHz   |    | CF St         | tep  |
| #Res BW 🛛                          | 270 kH       | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |      | #\               | /BW  | 820     | кНz     |       |                |       | -      | Swee     | ep 1  | .000 | l ms             | (3001     | pts)  |    | 5.000000 N    |      |
|                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         | _     |                |       |        |          |       |      |                  | ON VALUE  |       | Αι |               | Man  |
| MKR MODE TRI                       | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×<br>2.402 | 000  | 011-             |      | Ý       | 67 dB   |       | FUNC           | TIUN  | FUP    | NCTION V | WIDTH |      | FUNCT            | IUN VALUE |       |    |               | _    |
| 1 N 1<br>2 N 1                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.402      |      | GHZ              |      |         | 14 dB   |       |                |       | _      |          |       |      |                  |           |       |    |               |      |
| 3                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.44       | 000  | GHZ              |      | 1.5     | ++ uD   |       |                |       |        |          |       |      |                  |           |       |    | Freq Off      | fset |
| 4                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    |               | ) Hz |
| 5                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           | =     |    |               | 112  |
| 6                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    |               |      |
| 8                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    |               |      |
| 9                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    |               |      |
| 10                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           |       |    |               |      |
| 11                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           | ~     |    |               |      |
| <                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        |          |       |      |                  |           | >     |    |               |      |
| MSG                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                  |      |         |         |       |                |       |        | :        | STATU | s    |                  |           |       |    |               |      |
|                                    | _            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _          | -    | _                | -    | _       | -       | -     | -              | -     | _      | _        | -     | -    | -                | _         | -     | -  |               | -    |

### Number of Hopping Frequencies 2(FH)

### Hopping mode : Enable & GFSK

| ilent Spectrum Analyzer - Swept SA<br>RL RF 50Ω AC | CORREC     | SENSE:INT      |             | ALIGN OFF      | 10:20:53 AM Nov 22, 2019                   |                                    |
|----------------------------------------------------|------------|----------------|-------------|----------------|--------------------------------------------|------------------------------------|
| enter Freq 2.466500000                             |            | Trig: Free Run |             | e: Log-Pwr     | TRACE 2345                                 | Frequency                          |
| ) dB/div Ref 10.00 dBm                             | IFGain:Low | Atten: 20 dB   |             | Mkr2           | оет Р Р Р Р Р<br>2.480 000 GHz<br>1.24 dBm | Auto Tun                           |
|                                                    |            |                |             | 2 <sup>2</sup> |                                            | Center Fre<br>2.466500000 G⊦       |
| 0.0<br>0.0<br>0.0                                  |            |                |             |                |                                            | <b>Start Fre</b><br>2.441500000 Gi |
| 0.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0            |            |                |             |                | Maran ha walan di shi kashti ng Pa         | <b>Stop Fre</b><br>2.491500000 GH  |
| tart 2.44150 GHz<br>Res BW 270 kHz                 | #VBW       | 820 kHz        |             | Sweep 1        | Stop 2.49150 GHz<br>.000 ms (3001 pts      | 5.000000 MI                        |
| KR MODE TRC SCL X                                  | 2 000 GHz  | ⊻<br>1.40 dBm  | FUNCTION FU | NCTION WIDTH   | FUNCTION VALUE                             |                                    |
| 2 N 1 f 2.480<br>3 4 5 6 6                         | 0000 GHz   | 1.24 dBm       |             |                |                                            | Freq Offs<br>0 F                   |
| 8<br>8<br>9<br>9<br>0                              |            |                |             |                |                                            |                                    |
| 1                                                  |            | Ш              |             |                | ~                                          |                                    |
| 3                                                  |            |                |             | STATUS         |                                            |                                    |




### Number of Hopping Frequencies 1(FH)

### Hopping mode : Enable & π/4DQPSK

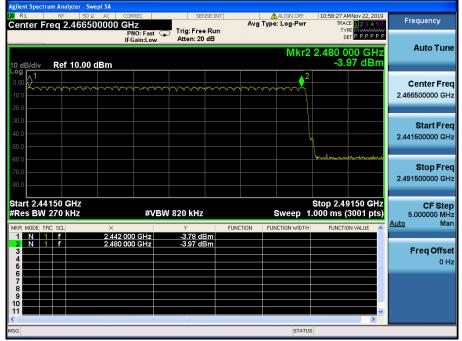
| gilent Spectrum Analyzer - Sv<br>RL RF 50:    |                              | SENSE:INT                               | ALIGN OFF                               | 10:39:47 AMNov 22, 2019                 |                                            |
|-----------------------------------------------|------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|
| Center Freq 2.4165                            | 00000 GHz                    |                                         | Avg Type: Log-Pwr                       |                                         | Frequency                                  |
| 10 dB/div Ref 10.00                           | PNO: Fa<br>IFGain:L          | ast 😱 Trig: Free Run<br>aw Atten: 20 dB | Mkr                                     | 2 2.441 000 GHz<br>-3.72 dBm            | Auto Tune                                  |
| 0.00<br>-10.0                                 |                              |                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                         | Center Freq<br>2.416500000 GHz             |
| -30.0                                         |                              |                                         |                                         |                                         | <b>Start Freq</b><br>2.391500000 GHz       |
| -60.0                                         |                              |                                         |                                         |                                         | <b>Stop Freq</b><br>2.441500000 GHz        |
| Start 2.39150 GHz<br>#Res BW 270 kHz          | X                            | * <b>VBW 820 kHz</b>                    | Sweep                                   | Stop 2.44150 GHz<br>1.000 ms (3001 pts) | CF Step<br>5.000000 MHz<br><u>Auto</u> Man |
| 1 N 1 f<br>2 N 1 f<br>3 4 5<br>6 6 6 7<br>7 8 | 2.402 000 GH<br>2.441 000 GH |                                         |                                         |                                         | Freq Offset<br>0 Hz                        |
| 9<br>10<br>11<br>*                            |                              |                                         | STATI                                   | ×                                       |                                            |

### Number of Hopping Frequencies 2(FH)

### Hopping mode : Enable & π/4DQPSK

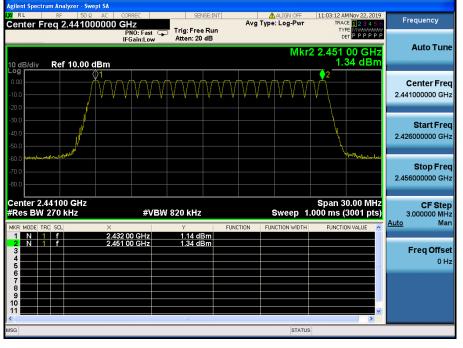





### Number of Hopping Frequencies 1(FH)

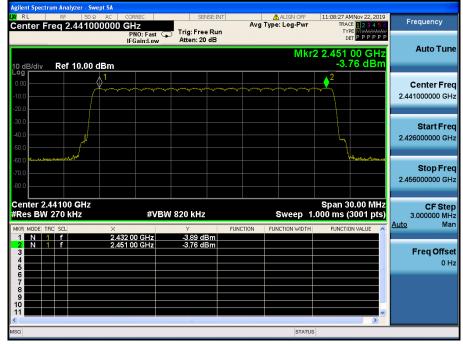
### Hopping mode : Enable & 8DPSK

| Center Freq 2.416500000 GHz       Trig: Free Run       Avg Type: Log-Pwr       Trig: Frequency       Auto Tune         Mkr2 2.441 000 GHz       3.58 dBm         Odd Briter Science       Center Frequency         Mkr2 2.441 000 GHz       Center Frequency         Mkr2 2.441 000 GHz       Center Frequency         Odd Briter Science       Center Frequency         Mkr2 2.441 000 GHz       Center Frequency         Odd Briter Science       Science         Science       Science       Center Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Agilent Spectrum An                                |             |             |           |                                                                                                                |                                        |               |           |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------|-------------|-----------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------|-----------|--------------|
| Atten: 20 dB<br>Mkr2 2.441 000 GHz<br>3.58 dBm<br>Atten: 20 dB<br>Mkr2 2.441 000 GHz<br>3.58 dBm<br>Atten: 20 dB<br>Atten: 20 dB |                                                    |             |             |           | Avg Type                                                                                                       |                                        | TRAC          | E 123456  | Frequency    |
| Log       1       Center Freq         0.00       2.00       2.00         3.00       3.00       3.00         4.0       3.00       3.00         5.00       4.00       3.00         5.00       4.00       3.00         5.00       4.00       3.00         5.00       4.00       3.00         5.00       4.00       3.00         5.00       4.00       3.00         5.00       4.00       3.00         5.00       4.00       3.00         5.00       4.00       4.00         5.00       4.00       4.00         5.00       4.00       4.00         5.00       5.00       5.00         6.00       4.00       4.00         7.00       4.00       5.00         8.00       7.00       8.00         9.00       1       1       1         1       N       1       1       1         1       N       1       1       1         1       N       1       1       1       1         2       4.00       4.00       4.00       4.00 </th <th>10 dB/div Re</th> <th>f 10.00 dBm</th> <th>PNO: Fast G</th> <th></th> <th></th> <th>Mkr2</th> <th>DI<br/>2.441 0</th> <th>00 GHz</th> <th>Auto Tune</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 dB/div Re                                       | f 10.00 dBm | PNO: Fast G |           |                                                                                                                | Mkr2                                   | DI<br>2.441 0 | 00 GHz    | Auto Tune    |
| 400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Log                                                |             |             |           | le le de la constant | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~         |           |              |
| 700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -50.0                                              |             |             |           |                                                                                                                |                                        |               |           |              |
| #Res BW 270 kHz         #VBW 820 kHz         Sweep 1.000 ms (3001 pts)         5.00000 MHz           MKR MODE TRC SCL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE         Auto         Man           1         N         1         f         2.402 000 GHz         -3.55 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -60.0 <b>*************</b><br>-70.0                |             |             |           |                                                                                                                |                                        |               |           |              |
| 2         N         1         f         2.441000 GHz         3.59 dBm         Freq Offset           3         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #Res BW 270                                        | kHz ×       |             | Y         |                                                                                                                | Sweep 1                                | .000 ms (     | 3001 pts) | 5.000000 MHz |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 N 1 f<br>3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2.40        | 1 000 GHz   | -3.58 dBm |                                                                                                                |                                        |               |           |              |
| ISG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8<br>9<br>10                                       |             |             |           |                                                                                                                |                                        |               |           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MSG                                                |             |             |           |                                                                                                                | STATUS                                 | 5             |           |              |


### Number of Hopping Frequencies 2(FH)

### Hopping mode : Enable & 8DPSK




### Number of Hopping Frequencies 1(AFH)

### Hopping mode : Enable & GFSK



#### Number of Hopping Frequencies 1(AFH)

#### Hopping mode : Enable & π/4DQPSK



### Number of Hopping Frequencies 1(AFH)

## Hopping mode : Enable & 8DPSK

| ilent Spectrum Analyzer - Swept         |                              |                                |                                         |           |                                           |                                    |
|-----------------------------------------|------------------------------|--------------------------------|-----------------------------------------|-----------|-------------------------------------------|------------------------------------|
| RL RF 50 Ω A<br>enter Freq 2.441000     |                              | SENSE:INT                      | Avg T                                   | ALIGN OFF | 11:11:58 AMNov<br>TRACE                   | Frequency                          |
| ) dB/div Ref 10.00 dB                   | PNO: Fast<br>IFGain:Low      | Trig: Free Run<br>Atten: 20 dB |                                         | Mkr       | 2 2.451 00<br>-3.33                       | GHZ Auto Tun                       |
|                                         | ~~~~~~                       | ~~~~~~                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~      | 2                                         | Center Fre<br>2.441000000 GF       |
| 0.0                                     |                              |                                |                                         |           |                                           | <b>Start Fre</b><br>2.426000000 GH |
| 0.0                                     |                              |                                |                                         |           | <u> </u>                                  | 2.456000000 GH                     |
| enter 2.44100 GHz<br>Res BW 270 kHz     | X                            | 3W 820 kHz                     | FUNCTION                                | Sweep 1.  | Span 30.00<br>000 ms (300<br>FUNCTION VAL | 1 pts) 3.000000 Mi                 |
| 1 N 1 f<br>2 N 1 f<br>3 4 4<br>5 6      | 2.432 00 GHz<br>2.451 00 GHz | -3.70 dBm<br>-3.33 dBm         |                                         |           |                                           | Freq Offs                          |
| 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 |                              |                                |                                         |           |                                           | ×                                  |
| 3                                       |                              |                                |                                         | STATUS    | ,<br>1                                    |                                    |

## 6. Time of Occupancy (Dwell Time)

#### 6.1 Test Setup

Refer to the APPENDIX I.

### 6.2 Limit

The maximum permissible time of occupancy is 400 ms within a period of 400 ms multiplied by the number of hopping channels employed.

### 6.3 Test Procedure

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :

Center frequency = 2441 MHz

Span = zero

RBW = 1 MHz (RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel)

VBW ≥ RBW Trace = max hold Detector function = peak

## 6.4 Test Results

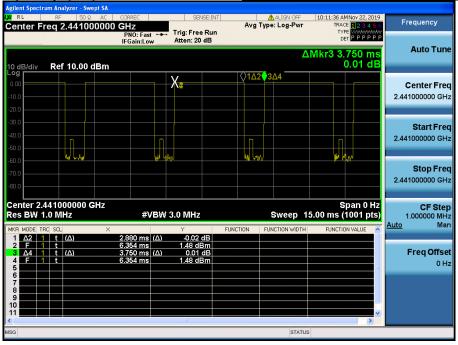
#### FH mode

| Hopping<br>mode | Packet<br>Type | Number of hopping<br>Channels | Burst<br>On Time (ms) | Period<br>(ms) | Test Result<br>(sec) |
|-----------------|----------------|-------------------------------|-----------------------|----------------|----------------------|
| Enable          | DH 5           | 79                            | 2.880                 | 3.750          | 0.299                |
|                 | 2 DH 5         | 79                            | 2.880                 | 3.750          | 0.307                |
|                 | 3 DH 5         | 79                            | 2.880                 | 3.750          | 0.307                |

AFH mode

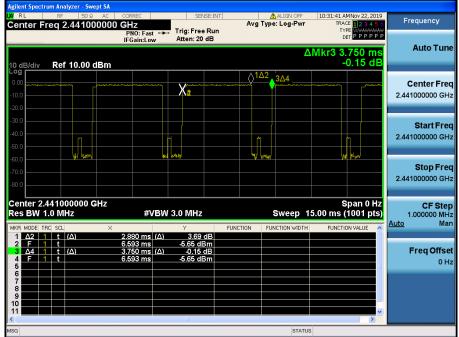
| Hopping<br>mode | Packet<br>Type | Number of hopping<br>Channels | Burst<br>On Time (ms) | Period<br>(ms) | Test Result<br>(sec) |
|-----------------|----------------|-------------------------------|-----------------------|----------------|----------------------|
| Enable          | DH 5           | 20                            | 2.880                 | 3.750          | 0.154                |
|                 | 2 DH 5         | 20                            | 2.880                 | 3.750          | 0.154                |
|                 | 3 DH 5         | 20                            | 2.880                 | 3.750          | 0.154                |

Note 1 : Dwell Time =  $0.4 \times$  Hopping channel × Burst ON time ×


((Hopping rate ÷ Time slots) ÷ Hopping channel)

- Time slots for DH5 = 6 slots (TX = 5 slot / RX = 1 slot)
- Hopping Rate = 1600 for FH mode & 800 for AFH mode

Note 2 : See next pages for actual measured spectrum plots.

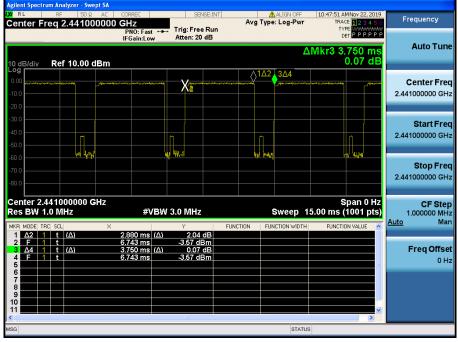



### Time of Occupancy (FH)



#### Time of Occupancy (FH)

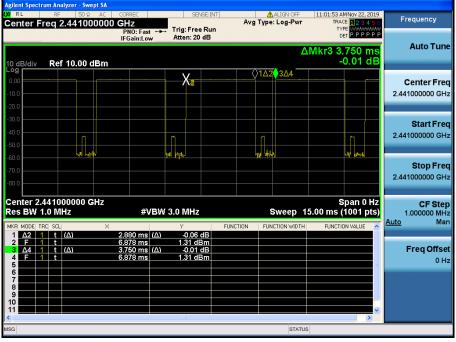
### Hopping mode : Enable & 2-DH5




### Hopping mode : Enable & DH5

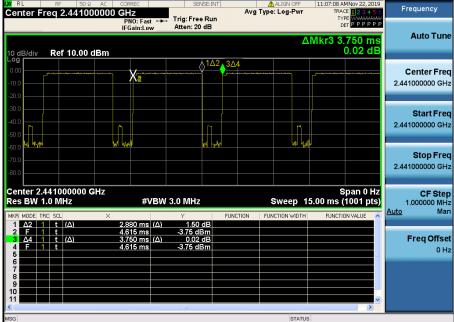


### Hopping mode : Enable & 3-DH5


### Time of Occupancy (FH)



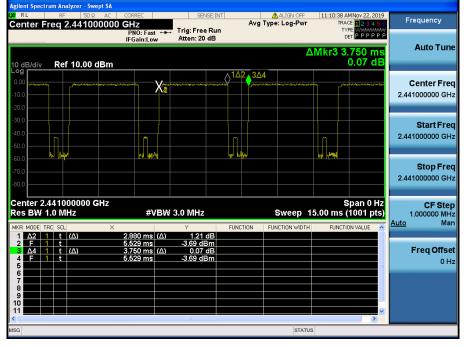



### Hopping mode : Enable & DH5

### Time of Occupancy (AFH)



#### Time of Occupancy (AFH)


# Hopping mode : Enable & 2-DH5 SENSE:INT ALIGN OFF 11107:09 AMINV 22, 2019 Frequency Avg Type: Log Pwr TRACE DEGREE Frequency





### Time of Occupancy (AFH)

### Hopping mode : Enable & 3-DH5

