

TEST REPORT

No.24T04N001383-004-RF GSM

for

HMD Global Oy

Mobile Phone

Model Name: TA-1659

FCC ID: 2AJOTTA-1659

with

Hardware Version: FF646-MB-V0.2

Software Version: 0.2422.11.01

Issued Date: 2024-08-12

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000.

Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
24T04N001383-004-RF GSM	Rev.0	1st edition	2024-08-12

CONTENTS

1. SUMMARY OF TEST REPORT	4
1.1. TEST ITEMS	4
1.2. TEST STANDARDS	4
1.3. TEST RESULT	4
1.4. TESTING LOCATION	4
1.5. PROJECT DATA	
1.6. SIGNATURE	4
2. CLIENT INFORMATION	
2.1. APPLICANT INFORMATION	
2.2. MANUFACTURER INFORMATION	
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMEN	
3.1. ABOUT EUT	
3.2. INTERNAL IDENTIFICATION OF EUT	
3.3. INTERNAL IDENTIFICATION OF AE	
3.4. GENERAL DESCRIPTION	
4. REFERENCE DOCUMENTS	
5. LABORATORY ENVIRONMENT	
6. SUMMARY OF TEST RESULTS	
7. STATEMENT	
8. TEST EQUIPMENTS UTILIZED	
ANNEX A: MEASUREMENT RESULTS	
A.1 OUTPUT POWER	
A.3 FREQUENCY STABILITY	
A.4 OCCUPIED BANDWIDTH	
A.5 EMISSION BANDWIDTH	
A.6 BAND EDGE COMPLIANCE	
A.7 CONDUCTED SPURIOUS EMISSION	48
A.8 PEAK-TO-AVERAGE POWER RATIO	54
ANNEX B: ACCREDITATION CERTIFICATE	62
ANNEY C: CERTIFICATE OF BRAND ALITHORIZATION	63

1. SUMMARY OF TEST REPORT

1.1. Test Items

Description Mobile Phone
Model Name TA-1659
Brand Name Nokia

Applicant's name HMD Global Oy Manufacturer's Name HMD Global Oy

1.2. Test Standards

FCC Part 2/22/24 10-1-23 Edition ANSI C63.26 2015 KDB971168 D01 v03r01

1.3. Test Result

All test items are passed. Please refer to "6 Summary of Test Results" for detail.

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000

1.5. Project Data

Testing Start Date: 2024-06-27 Testing End Date: 2024-07-20

1.6. Signature

Wang Ping

(Prepared this test report)

Huang Qiuqin

(Reviewed this test report)

Zhang Hao

(Approved this test report)

2. CLIENT INFORMATION

2.1. Applicant Information

Company Name: HMD Global Oy

Address /Post: Bertel Jungin aukio 9,02600 Espoo, Finland

Contact Person: reza.serafat

Contact Email reza.serafat@hmdglobal.com

Telephone: +491735287964

Fax: /

2.2. Manufacturer Information

Company Name: HMD Global Oy

Address /Post: Bertel Jungin aukio 9,02600 Espoo, Finland

Contact Person: reza.serafat

Contact Email reza.serafat@hmdglobal.com

Telephone: +491735287964

Fax: /

3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT

<u>(AE)</u>

3.1. About EUT

Description Mobile Phone Model Name TA-1659

FCC ID 2AJOTTA-1659 Frequency Bands GSM 850/PCS 1900

Antenna Integrated

Extreme vol. Limits 3.60V to 4.20V (nominal: 3.70V)
Condition of EUT as received No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of SAICT.

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
UT09aa	351368850001351	FF646-MB-V0.2	0.2422.11.01	2024-06-27
UT04aa	351368850001575	FF646-MB-V0.2	0.2422.11.01	2024-06-27

^{*}EUT ID: is used to identify the test sample in the lab internally.

UT09aa are used for conduction test, UT04aa is used for radiation test.

3.3. Internal Identification of AE

AE ID* Description

AE1 Battery

AE1-1

Model BA-L4M

Manufacturer Guangdong Fenghua New Energy Co.,Ltd

Capacity 1450mAh Nominal Voltage 3.7V

AE1-2

Model BA-L4M

Manufacturer SHENZHEN UTILITY ENERGYCO.,LTD.

Capacity 1450mAh Nominal Voltage 3.7V

AE: ancillary equipment

3.4. General Description

The Equipment Under Test (EUT) is a model TA-1659 with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the Client.

^{*}AE ID: is used to identify the test sample in the lab internally.

4. REFERENCE DOCUMENTS

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 22	PUBLIC MOBILE SERVICES	10-1-23 Edition
FCC Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS	10-1-23 Edition
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	10-1-23 Edition
ANSI C63.26	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services	2015
KDB971168 D01	Power Meas License Digital Systems	v03r01

5. LABORATORY ENVIRONMENT

Shielded room did not exceed following limits along the RF testing:

	<u> </u>
Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz>60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	>2 MΩ
Ground system resistance	<4 Ω

Fully-anechoic chamber did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

6. SUMMARY OF TEST RESULTS

Abbreviations used in this clause:		
	Р	Pass
\/!: -4 O -1	F	Fail
Verdict Column	NA	Not applicable
	NM	Not measured

GSM850

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Output Power	2.1046/22.913	A.1	Р
2	Field Strength of Spurious Radiation	2.1053/22.917	A.2	Р
3	Frequency Stability	2.1055/22.355	A.3	Р
4	Occupied Bandwidth	2.1049/22.917	A.4	Р
5	Emission Bandwidth	2.1049/22.917	A.5	Р
6	Band Edge Compliance	2.1051/22.917	A.6	Р
7	Conducted Spurious Emission	2.1051/22.917	A.7	Р
8	Peak-to-Average Power Ratio	KDB971168 D01	A.8	Р

PCS1900

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Output Power	2.1046/24.232	A.1	Р
2	Field Strength of Spurious Radiation	2.1053/24.238	A.2	Р
3	Frequency Stability	2.1055/24.235	A.3	Р
4	Occupied Bandwidth	2.1049/24.238	A.4	Р
5	Emission Bandwidth	2.1049/24.238	A.5	Р
6	Band Edge Compliance	2.1051/24.238	A.6	Р
7	Conducted Spurious Emission	2.1051/24.238	A.7	Р
8	Peak-to-Average Power Ratio	24.232/KDB971168 D01	A.8	Р

7. STATEMENT

The Mobile Phone, TA-1659, HMD Global Oy is a variant of TA-1667 for testing. The differences between them do not affect the following test cases. Each test item has been spot check and the test results have not deteriorated.

According to the declaration, reused all other data from No.24T04N001372-004-RF GSM. For detail information please check the declaration provided by the manufacturer.

Since the information of samples in this report is provided by the client, the laboratory is not responsible for the authenticity of sample information.

This report takes measured values as criterion of test conclusion. The test conclusion meets the limit requirements.

8. TEST EQUIPMENTS UTILIZED

No.	Description	Туре	Manufacture	Series Number	Cal Due Date
1	Test Receiver	ESR7	R&S	101676	2024-11-22
2	Hybrid antenna	VULB 9163	Schwarzbeck	330	2027-04-21
3	Horn Antenna	3117	ETS-Lindgren	00066577	2025-04-17
4	Horn Antenna	QSH-SL-18- 26-S-20	Q-par	17013	2026-02-01
5	Antenna	BBHA 9120D	Schwarzbeck	1593	2025-10-24
6	Antenna	QWH-SL-18- 40-K-SG	Q-par	15979	2026-01-30
7	preamplifier	83017A	Agilent	MY39501110	/
8	Signal Generator	SMB100A	R&S	179725	2024-11-22
9	Fully Anechoic Chamber	FACT3-2.0	ETS-Lindgren	1285	2025-05-28
10	Spectrum Analyzer	FSV40	R&S	101192	2025-01-10
11	Universal Radio Communication Tester	CMU200	R&S	114545	2025-01-10
12	Universal Radio Communication Tester	CMW500	R&S	168719	2025-03-22
13	Power Supply	HMC8042	R&S	103284	2025-05-07
14	Universal Radio Communication Tester	CMW500	R&S	129146	2025-04-10
15	Spectrum Analyzer	FSW26	R&S	102197	2025-05-07
16	Temperature Chamber	SH-241	ESPEC	92007516	2024-10-15

Test software

Item	Name	Version
Radiated	EMC32	V10.50.40

ANNEX A: MEASUREMENT RESULTS

A.1 OUTPUT POWER

Reference

FCC: CFR Part 2.1046, 22.913, 24.232.

A.1.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation.

This result contains max output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

A.1.2 Conducted

A.1.2.1 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation.

These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0MHz and 1909.8MHz for PCS1900 band; 824.2MHz, 836.6MHz and 848.8MHz for GSM850 band. (bottom, middle and top of operational frequency range).

GSM850

	Dower stan	Nominal Peak
	Power step	output power (dBm)
GSM	5	33dBm(2W)
GPRS	3	33dBm(2W)

Measurement result

GSM(GMSK)

Frequency(MHz)	Power Step	Output power(dBm)
824.2	5	33.04
836.6	5	32.94
848.8	5	32.82

GPRS(GMSK,1Slot)

Frequency(MHz)	Power Step	Output power(dBm)
824.2	3	33.03
836.6	3	32.87
848.8	3	32.83

Note: Expanded measurement uncertainty is $U = 0.49 \, \text{dB}$, k = 1.96

PCS1900

	Power step	Nominal Peak output
		power (dBm)
GSM	0	30dBm(1W)
GPRS	3	30dBm(1W)

Measurement result

GSM(GMSK)

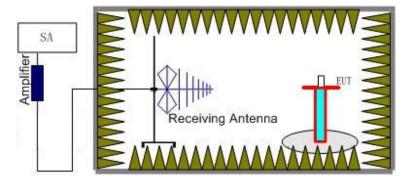
Frequency(MHz)	Power Step	Output power(dBm)
1850.2	0	29.99
1880.0	0	29.97
1909.8	0	29.87

GPRS(GMSK,1Slot)

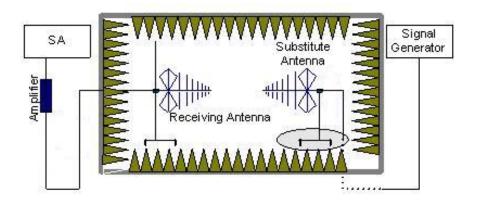
Frequency(MHz)	Power Step	Output power(dBm)
1850.2	3	30.00
1880.0	3	29.99
1909.8	3	29.80

Note: Expanded measurement uncertainty is U = 0.49dB, k = 1.96

A.1.3 Radiated


A.1.3.1 Description

This is the test for the maximum radiated power from the EUT.


Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

A.1.3.2 Method of Measurement

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the

TTL

No.24T04N001383-004-RF GSM

receiver reach the previously recorded (P_r) . The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna.

The cable loss (P_{cl}) , the Substitution Antenna Gain(dBi) (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

Power(EIRP)= P_{Mea} - P_{Ag} - P_{cl} + G_a

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB.

GSM 850-ERP 22.913(a)

Limits

	Power Step	Burst Peak ERP (dBm)
GSM	5	≤38.45dBm (7W)
GPRS	3	≤38.45dBm (7W)

Measurement result

GSM 850

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)+ P _{Ag} (dB)	Ga Antenna Gain(dBi)	Correction (dB)	ERP (dBm)	Limit (dBm)	Polarization
824.20	-2.99	-33.60	-0.79	2.15	27.67	38.45	Н
836.60	-3.05	-33.50	-0.74	2.15	27.56	38.45	Н
848.80	-2.64	-33.50	-0.73	2.15	27.98	38.45	Н

GPRS 850

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)+ P _{Ag} (dB)	Ga Antenna Gain(dBi)	Correction (dB)	ERP (dBm)	Limit (dBm)	Polarization
824.20	-5.33	-33.60	-0.79	2.15	25.33	38.45	Н
836.60	-5.49	-33.50	-0.74	2.15	25.12	38.45	Н
848.80	-4.89	-33.50	-0.73	2.15	25.73	38.45	Н

ANALYZER SETTINGS: RBW = VBW = 3MHz

Note: The maximum value of expanded measurement uncertainty for this test item is U = 2.82dB(30MHz-3GHz)/3.06dB(3GHz-18GHz)/2.40dB(18GHz-40GHz), k = 2

Note: Both of Vertical and Horizontal polarizations are evaluated, but only the worst case is recorded in this report.

PCS1900-EIRP 24.232(c)

Limits

	Power Step	Burst Peak EIRP (dBm)
GSM	0	≤33dBm (2W)
GPRS	3	≤33dBm (2W)

Measurement result

GSM 1900

Frequency	Pmea	Pcl(dB)+	Ga Antenna	EIRP	Limit(dBm)	Polarization
(MHz)	(dBm)	PAg(dB)	Gain(dBi)	(dBm)	2(3.2)	1 oldrization
1850.20	-11.14	-29.30	8.10	24.11	33.00	V
1880.00	-10.65	-29.40	8.10	24.70	33.00	V
1909.80	-10.30	-29.30	8.10	24.95	33.00	V

GPRS 1900

Frequency	Pmea	Pcl(dB)+	Ga Antenna	EIRP	Limit/dDm\	Delegization
(MHz)	(dBm)	PAg(dB)	Gain(dBi)	(dBm)	Limit(dBm)	Polarization
1850.20	-14.38	-29.40	8.10	20.97	33.00	V
1880.00	-13.82	-29.30	8.10	21.43	33.00	V
1909.80	-12.63	-29.30	8.10	22.62	33.00	V

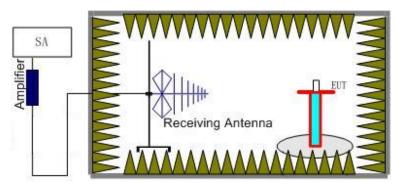
ANALYZER SETTINGS: RBW = VBW = 3MHz

Note: The maximum value of expanded measurement uncertainty for this test item is U = 2.82dB(30MHz-3GHz)/3.06dB(3GHz-18GHz)/2.40dB(18GHz-40GHz), k = 2

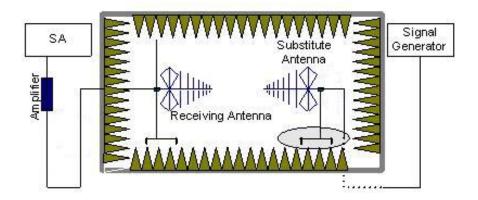
Note: Both of Vertical and Horizontal polarizations are evaluated, but only the worst case is recorded in this report.

A.2 FIELD STRENGTH OF SPURIOUS RADIATION

Reference


FCC: CFR 2.1053, 22.917, 24.238.

A.2.1 Measurement Method


The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910MHz. The resolution bandwidth is set 1MHz as outlined in Part 24.238 and Part 22.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of PCS1900 and GSM850.

The procedure of radiated spurious emissions is as follows:

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere

with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain(dBi) (G_a) should be recorded after test.

A amplifier should be connected in for the test.

The Path loss (P_{pl}) is the summation of the cable loss and the gain of the amplifier.

The measurement results are obtained as described below:

Power(EIRP)= $P_{Mea} - P_{pl} + G_a$

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB.

A.2.2 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.2.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS1900 band (1850.2 MHz, 1880 MHz and 1909.8 MHz) and GSM850 band (824.2MHz, 836.6MHz, 848.8MHz) . It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the PCS1900 ,GSM850 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.2.4 Measurement Results Table

Frequency	Channel	Frequency Range	Result
	Low	30MHz-10GHz	Pass
GSM 850MHz	Middle	30MHz-10GHz	Pass
	High	30MHz-10GHz	Pass
	Low	30MHz-20GHz	Pass
GSM 1900MHz	Middle	30MHz-20GHz	Pass
	High	30MHz-20GHz	Pass

A.2.5 Sweep Table

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
	0.02.4	4001/11-	2001/11-	40
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
850MHz	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
1900MHz	5~8	1 MHz	3 MHz	3
1900IVIFIZ	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2

GSM Mode Channel 128/824.2MHz

Fragues av/MHz)	D (dDm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
8434.00	-48.28	1.80	11.30	-40.93	-13.00	Н
9103.50	-48.23	2.20	11.60	-40.98	-13.00	Н
9224.50	-47.82	2.10	11.60	-40.47	-13.00	Н
9298.00	-47.60	2.00	11.60	-40.15	-13.00	Н
9424.00	-47.88	2.10	11.60	-40.53	-13.00	Н
9473.50	-47.90	2.10	11.60	-40.55	-13.00	V

GSM Mode Channel 190/836.6MHz

Fragues ov/MI (=)	D (dDm)	Path	Antenna	Peak	Limit	Delerization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
8366.00	-46.68	1.80	11.30	-39.33	-13.00	V
8477.50	-47.76	1.80	11.30	-40.41	-13.00	Н
9152.50	-47.88	2.10	11.60	-40.53	-13.00	Н
9227.00	-47.56	2.10	11.60	-40.21	-13.00	Н
9303.00	-47.25	2.00	11.60	-39.80	-13.00	Н
9425.00	-48.03	2.10	11.60	-40.68	-13.00	Н

GSM Mode Channel 251/848.8MHz

Fragues av/MUI=)	D (dDm)	Path	Antenna	Peak	Limit	Delegization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
8489.00	-47.48	1.80	11.30	-40.13	-13.00	V
9159.50	-48.04	2.10	11.60	-40.69	-13.00	Н
9227.00	-47.65	2.10	11.60	-40.30	-13.00	Н
9296.50	-47.60	2.00	11.60	-40.15	-13.00	Н
9425.00	-48.35	2.10	11.60	-41.00	-13.00	Н
9475.00	-48.02	2.10	11.60	-40.67	-13.00	V

Note: The maximum value of expanded measurement uncertainty for this test item is U = 2.82dB(30MHz-3GHz)/3.06dB(3GHz-18GHz)/2.40dB(18GHz-40GHz), k = 2

GSM Mode Channel 512/1850.2MHz

Fraguesov/MHz)	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization							
Frequency(MHz)	r _{Mea} (ubiii)	r _{Mea} (ubiii)	r _{Mea} (ubiii)	r _{Mea} (ubiii)	r Mea(ubiii)	r Mea(ubiii)	r Mea(ubiii)	r Mea(ubiii)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16944.38	-41.32	2.90	16.50	-27.72	-13.00	Н							
17111.25	-40.56	2.90	14.50	-28.96	-13.00	Н							
17368.12	-38.86	3.20	14.50	-27.56	-13.00	Н							
17508.75	-36.31	2.90	12.80	-26.41	-13.00	Н							
17611.25	-35.59	3.30	12.80	-26.09	-13.00	Н							
17796.88	-36.28	3.60	12.80	-27.08	-13.00	Н							

GSM Mode Channel 661/1880.0MHz

Fragues av/MUI=)	D (dDm)	Path	Antenna	Peak	Limit	Delerization		
Frequency(MHz)	P _{Mea} (dBm)	P _{Mea} (ubiii)	(IVIDZ) P _{Mea} (UDIII)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16996.25	-39.89	2.90	16.50	-26.29	-13.00	Н		
17140.62	-39.25	2.90	14.50	-27.65	-13.00	Н		
17301.25	-38.39	3.20	14.50	-27.09	-13.00	Н		
17416.25	-36.97	2.90	14.50	-25.37	-13.00	Н		
17571.88	-34.77	3.30	12.80	-25.27	-13.00	Н		
17813.75	-34.57	3.60	12.80	-25.37	-13.00	Н		

GSM Mode Channel 810/1909.8MHz

Frequency(MHz)	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization							
1 requericy(ivii iz)	r Mea(ubiii)	r Mea(ubiii)	r Mea(ubiii)	i Mea(ubiii)	i Mea(ubiii)	Mea(GDIII)	r Mea(ubiii)	PMea(UDIII)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Folanzation
16959.38	-41.90	2.90	16.50	-28.30	-13.00	Н							
17135.62	-40.81	2.90	14.50	-29.21	-13.00	Н							
17362.50	-40.08	3.20	14.50	-28.78	-13.00	Н							
17520.62	-37.35	2.90	12.80	-27.45	-13.00	Н							
17580.62	-36.45	3.30	12.80	-26.95	-13.00	Н							
17773.75	-37.43	3.60	12.80	-28.23	-13.00	Н							

Note: The maximum value of expanded measurement uncertainty for this test item is U = 2.82dB(30MHz-3GHz)/3.06dB(3GHz-18GHz)/2.40dB(18GHz-40GHz), k = 2

A.3 FREQUENCY STABILITY

Reference

FCC: CFR Part 2.1055, 22.355, 24.235.

A.3.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30℃.
- With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call
 on mid channel of PCS 1900 and GSM850, measure the carrier frequency. These
 measurements should be made within 2 minutes of Powering up the EUT, to prevent significant
 self-warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the center channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10° C increments from -30° C to $+50^{\circ}$ C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5 °C during the measurement procedure. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of the lower, higher and nominal voltage. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress.

A.3.2 Measurement results

GSM 850

Frequency Error vs Voltage

Temperature(°ℂ)	Voltage(V)	FL(MHz)	FH(MHz)	Officet(Uz)	Fraguanay arrar(nam)
20				Offset(Hz)	Frequency error(ppm)
50				1.55	0.0037
40				-0.71	0.0017
30				6.39	0.0153
10	3.70	824.042	848.900	-0.87	0.0021
0				2.29	0.0055
-10				5.59	0.0134
-20				3.16	0.0076
-30				6.97	0.0167

Frequency Error vs Voltage

Voltage(V)	Temperature(°ℂ)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
3.60	20	824.042	848.900	2.03	0.0049
4.20	20	024.042	040.900	1.29	0.0031

Expanded measurement uncertainty is 10Hz, k = 2

PCS 1900

Frequency Error vs Voltage

Temperature(°C)	Voltage(V)	FL(MHz)	FH(MHz)	Officet/Ll=)	Fraguency arrar(npm)
20				Offset(Hz)	Frequency error(ppm)
50				13.11	0.0139
40				-1.78	0.0019
30			1850.064 1909.900	2.45	0.0026
10	3.70	1850.064		7.65	0.0081
0				-0.87	0.0009
-10				-2.42	0.0026
-20				-3.58	0.0038
-30				3.55	0.0038

Frequency Error vs Voltage

Voltage(V)	Temperature(℃)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
3.60	20	1050.064	1000 000	-0.97	0.0010
4.20	20	1850.064	1909.900	2.29	0.0024

Expanded measurement uncertainty is 10Hz, k = 2

A.4 OCCUPIED BANDWIDTH

Reference

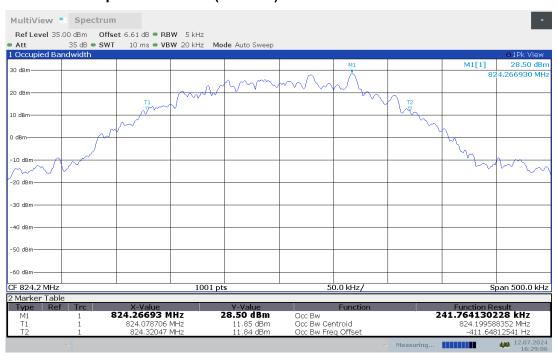
FCC: CFR Part 2.1049, 22.917, 24.238.

A.4.1 Measurement Procedure

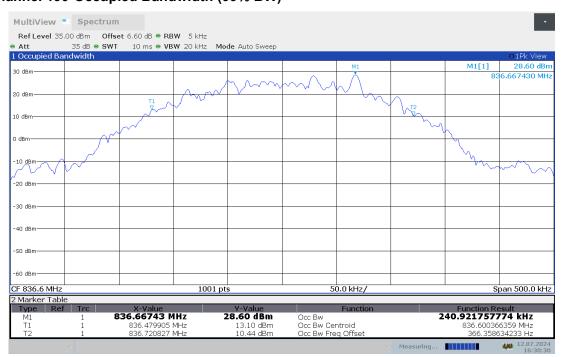
- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.
- d) Set the detection mode to peak, and the trace mode to max hold.
- e) Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

A.4.2 Occupied Bandwidth Results

Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages.

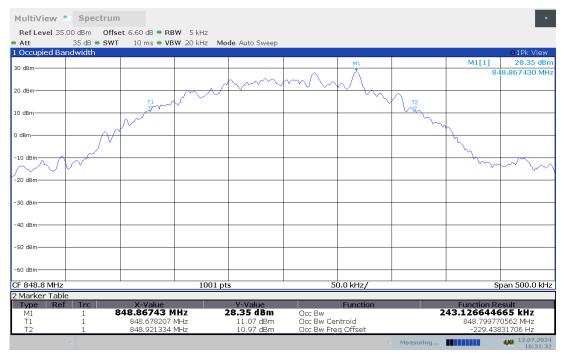

GSM 850(99% BW)

GSM


Frequency (MHz)	Occupied Bandwidth (99%) (kHz)
824.2	241.764
836.6	240.922
848.8	243.127

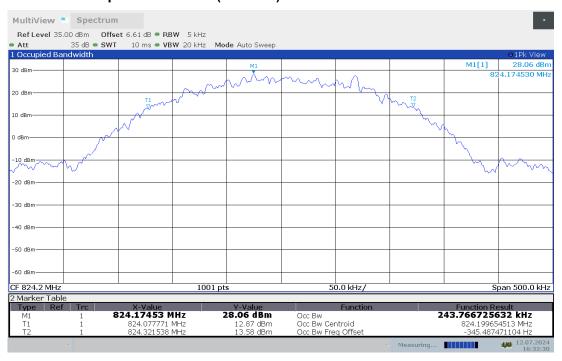
GSM850

Channel 128-Occupied Bandwidth (99% BW)



Channel 190-Occupied Bandwidth (99% BW)

Channel 251-Occupied Bandwidth (99% BW)

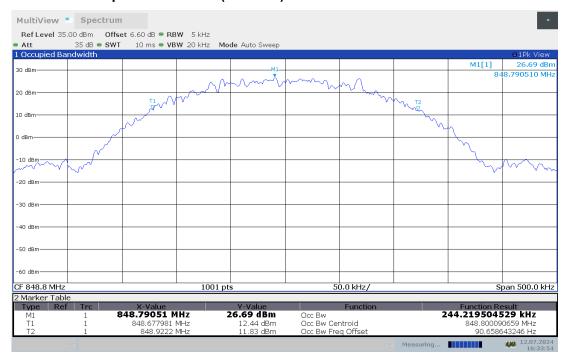

GSM850 (99 %)

GPRS

Frequency (MHz)	Occupied Bandwidth (99%) (kHz)
824.2	243.767
836.6	243.133
848.8	244.220

GSM850

Channel 128-Occupied Bandwidth (99% BW)

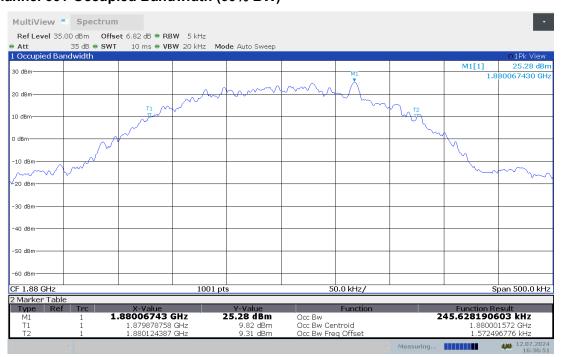


Channel 190-Occupied Bandwidth (99% BW)

Channel 251-Occupied Bandwidth (99% BW)

PCS1900 (99 %)

GSM

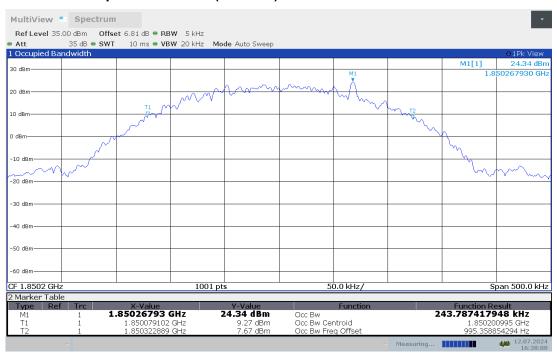

Frequency (MHz)	Occupied Bandwidth (99%) (kHz)
1850.2	242.742
1880	245.628
1909.8	243.161

PCS1900

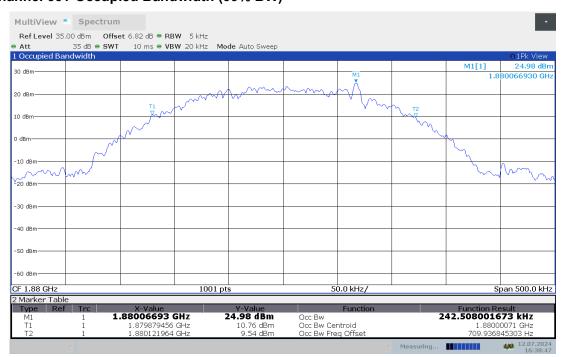
Channel 512-Occupied Bandwidth (99% BW)

Channel 661-Occupied Bandwidth (99% BW)

Channel 810-Occupied Bandwidth (99% BW)


PCS1900 (99 %)

GPRS


Frequency (MHz)	Occupied Bandwidth (99%) (kHz)
1850.2	243.787
1880	242.508
1909.8	241.415

PCS1900

Channel 512-Occupied Bandwidth (99% BW)

Channel 661-Occupied Bandwidth (99% BW)

Channel 810-Occupied Bandwidth (99% BW)

Note: Expanded measurement uncertainty is U = 3428Hz, k = 2

A.5 EMISSION BANDWIDTH

Reference

FCC: CFR Part 2.1049, 22.917, 24.238

A.5.1 Measurement Procedure

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.
- d) Set the detection mode to peak, and the trace mode to max hold.
- e) Use the 26dB bandwidth function of the spectrum analyzer and report the measured bandwidth.

A.5.2Emission Bandwidth Results

Similar to conducted emissions; Emission bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of PCS1900 band and GSM850 band. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages.

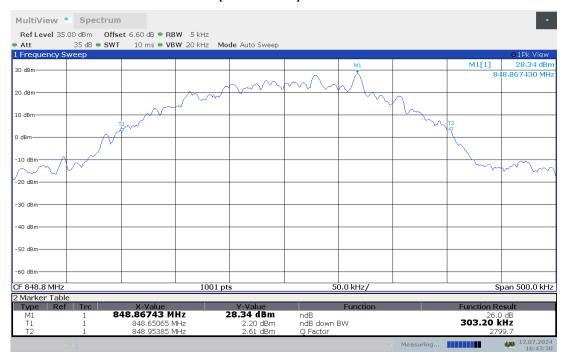
GSM 850(-26dBc BW)

GSM

Frequency (MHz)	Emission Bandwidth (-26dBc)(kHz)
824.2	296.700
836.6	303.200
848.8	303.200

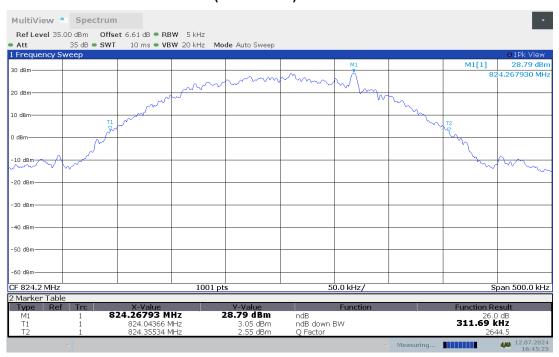
GSM850

Channel 128-Emission Bandwidth (-26dBc BW)

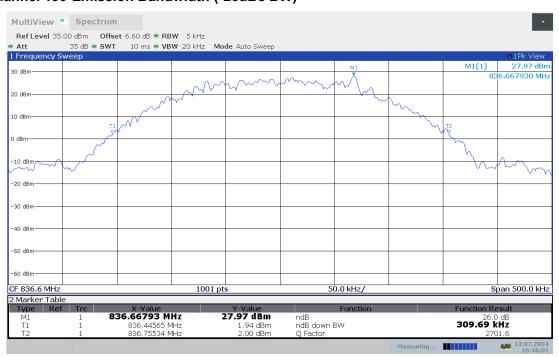


Channel 190-Emission Bandwidth (-26dBc BW)

Channel 251-Emission Bandwidth (-26dBc BW)

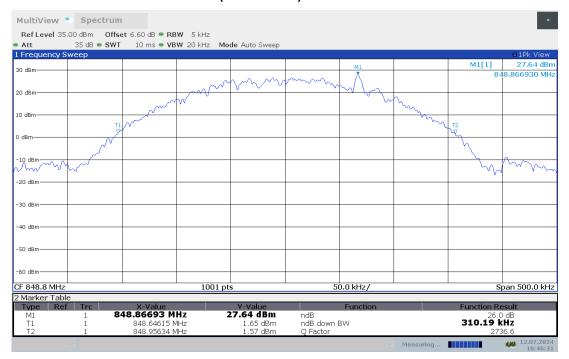

GSM850 (-26dBc)

GPRS


Frequency (MHz)	Emission Bandwidth (-26dBc)(kHz)	
824.2	311.690	
836.6	309.690	
848.8	310.190	

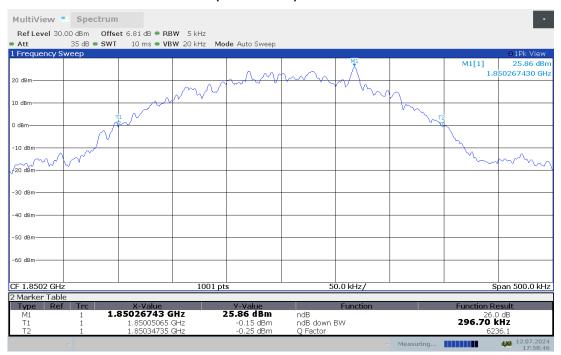
GSM850

Channel 128-Emission Bandwidth (-26dBc BW)



Channel 190-Emission Bandwidth (-26dBc BW)

Channel 251-Emission Bandwidth (-26dBc BW)


PCS1900 (-26dBc)

GSM

Frequency (MHz)	Emission Bandwidth (-26dBc)(kHz)	
1850.2	296.700	
1880	299.200	
1909.8	296.700	

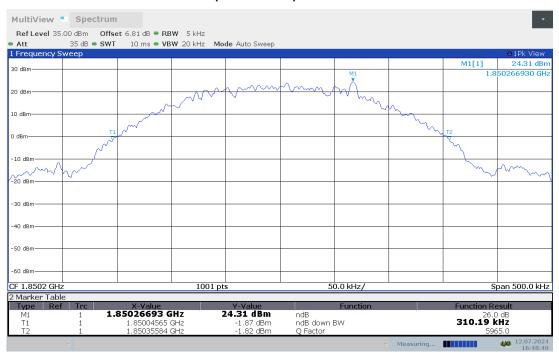
PCS1900

Channel 512-Emission Bandwidth (-26dBc BW)



Channel 661-Emission Bandwidth (-26dBc BW)

Channel 810-Emission Bandwidth (-26dBc BW)

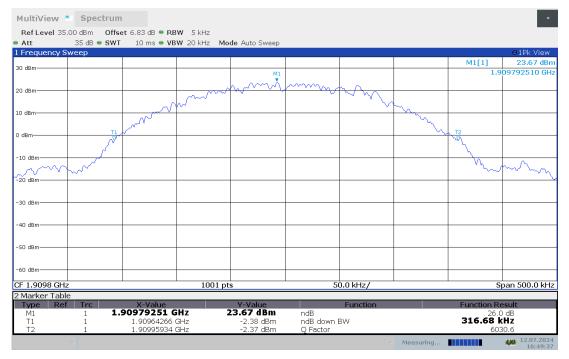

PCS1900 (-26dBc)

GPRS

Frequency (MHz)	Emission Bandwidth (-26dBc)(kHz)	
1850.2	310.190	
1880	307.690	
1909.8	316.680	

PCS1900

Channel 512-Emission Bandwidth (-26dBc BW)



Channel 661-Emission Bandwidth (-26dBc BW)

Channel 810-Emission Bandwidth (-26dBc BW)

Note: Expanded measurement uncertainty is U = 3428Hz, k = 2

A.6 BAND EDGE COMPLIANCE

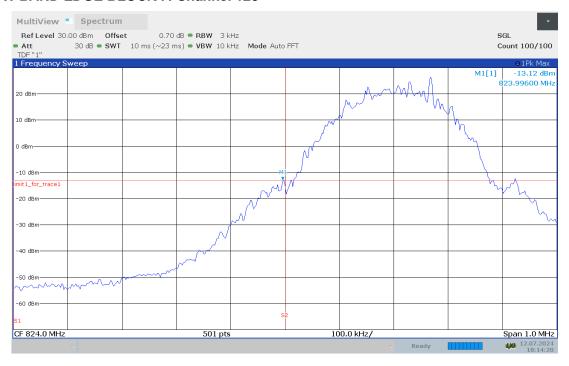
Reference

FCC: CFR Part 2.1051, 22.917, 24.238

Measurement limit

On any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm. A relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth.

Measurement Procedure

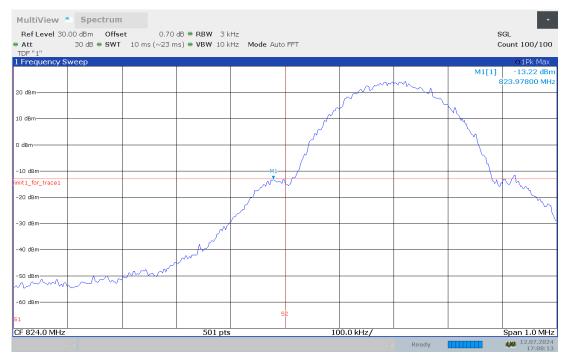

The testing follows ANSI C63.26

- a) The EUT was connected to spectrum analyzer and system simulator via a power divider.
- b) The band edges of low and high channels for the highest RF powers were measured.
- c) Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- d) Set spectrum analyzer with RMS detector.
- e) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- f) Checked that all the results comply with the emission limit line.

Only worst case result is given below

GSM 850

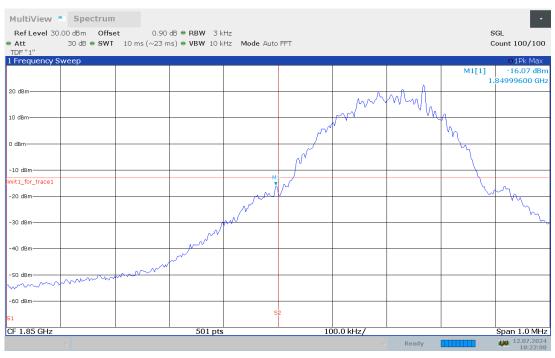
LOW BAND EDGE BLOCK-A-Channel 128



HIGH BAND EDGE BLOCK-C - Channel 251

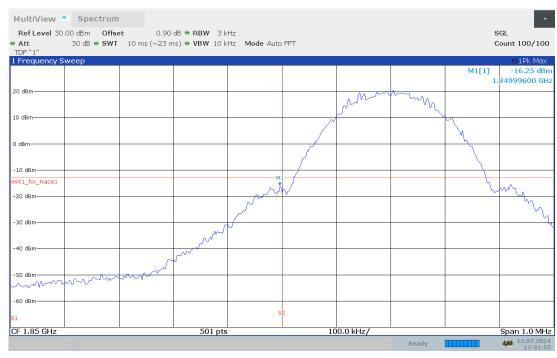


GPRS 850 LOW BAND EDGE BLOCK-A-Channel 128



HIGH BAND EDGE BLOCK-C-Channel 251

PCS 1900 LOW BAND EDGE BLOCK-A-Channel 512



HIGH BAND EDGE BLOCK-C-Channel 810

GPRS 1900 LOW BAND EDGE BLOCK-A-Channel 512

HIGH BAND EDGE BLOCK-C-Channel 810

Note: Expanded measurement uncertainty is U = 0.49dB(100KHz-2GHz)/1.21dB(2GHz-26.5GHz), k = 1.96

A.7 CONDUCTED SPURIOUS EMISSION

Reference

FCC: CFR Part 2.1051, 22.917, 24.238

A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- Determine frequency range for measurements: From CFR 2.1051 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz.
- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

GSM850 Transmitter

Channel	Frequency (MHz)	
128	824.2	
190	836.6	
251	848.8	

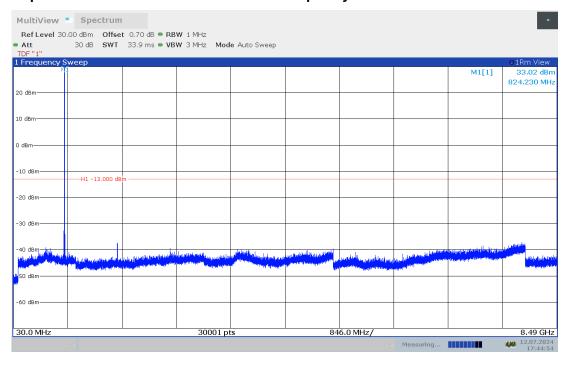
PCS1900 Transmitter

Channel	Frequency (MHz)	
512	1850.2	
661	1880.0	
810	1909.8	

A. 7.2 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

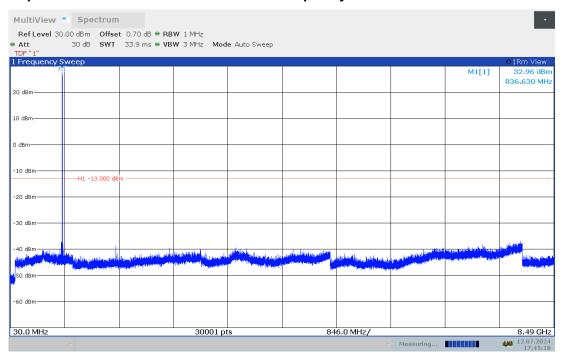
The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.



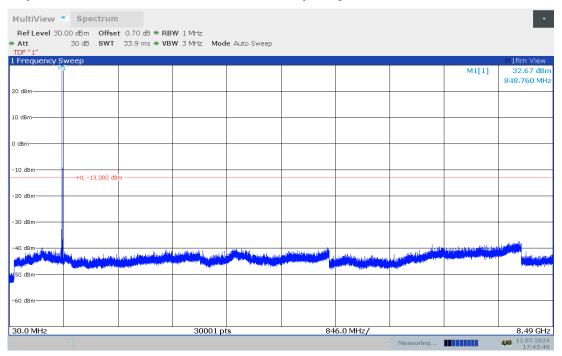
A.7.3 Measurement result Only worst case result is given below

GSM850

Channel 128: 30MHz–8.49 GHz Spurious emission limit –13dBm

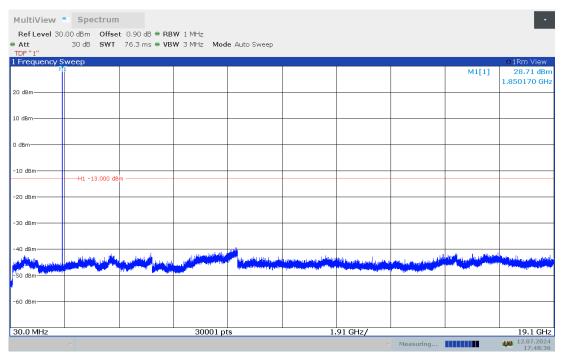

NOTE: peak above the limit line is the carrier frequency..

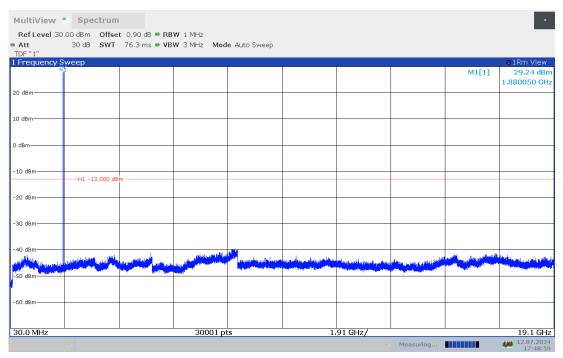
Channel 190: 30MHz – 8.49GHzSpurious emission limit –13dBm


NOTE: peak above the limit line is the carrier frequency.

Channel 251: 30MHz – 8.49 GHz Spurious emission limit –13dBm.

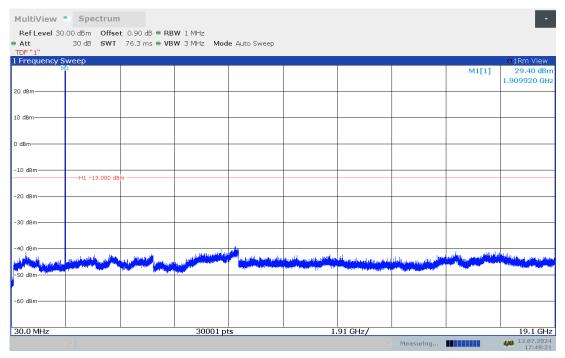
NOTE: peak above the limit line is the carrier frequency.




PCS1900

Channel 512: 30MHz - 19.1GHz

Spurious emission limit -13dBm.


Channel 661: 30MHz –19.1GHz Spurious emission limit –13dBm

Channel 810: 30MHz -19.1GHz

Spurious emission limit -13dBm.

Note: Expanded measurement uncertainty is U = 0.49 dB(100 KHz-2 GHz)/1.21 dB(2 GHz-26.5 GHz), k = 1.96

A.8 PEAK-TO-AVERAGE POWER RATIO

Reference

FCC: CFR Part 24.232, KDB971168 D01.

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

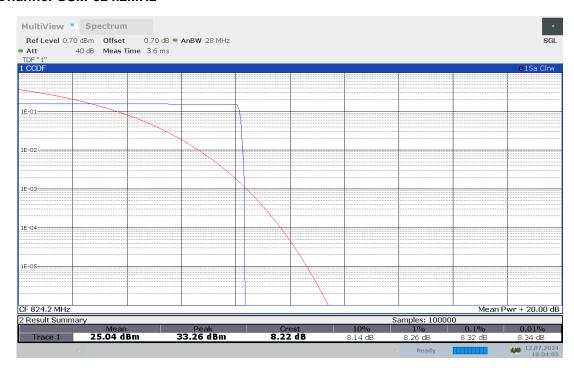
- a)Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- c) Set the number of counts to a value that stabilizes the measured CCDF curve;
- d) Set the measurement interval to 1 ms
- e)Record the maximum PAPR level associated with a probability of 0.1%

A.8.1 Measurement limit

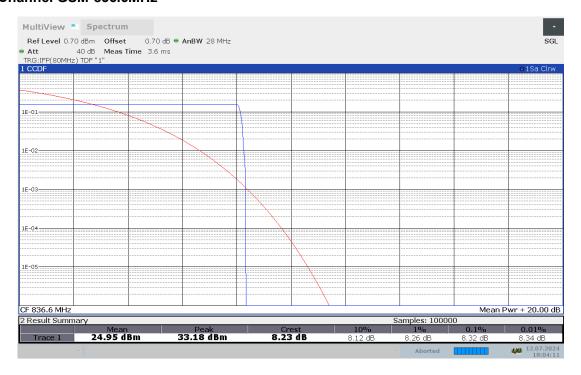
not exceed 13 dB

A.8.2 Measurement results

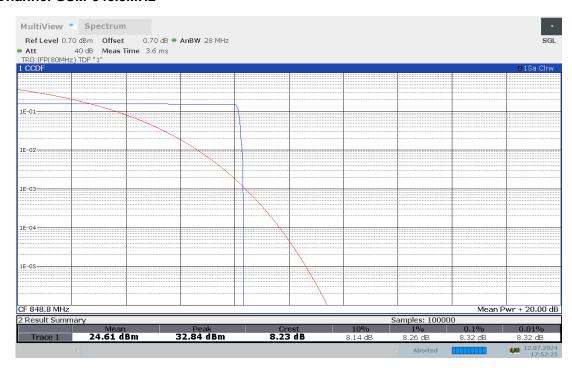
Only worst case result is given below


GSM850

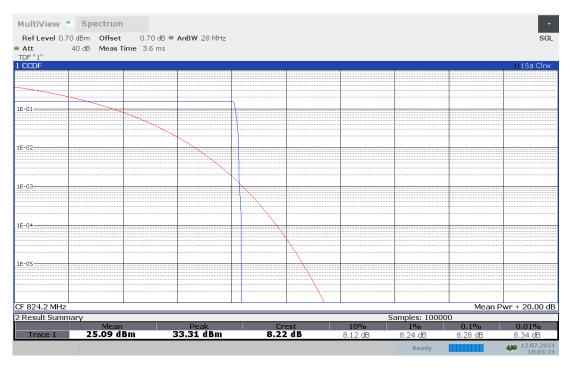
Measurement result


GSM850	Frequency (MHz)	PAPR (dB)
GSM	824.2	8.32
GSM	836.6	8.32
GSM	848.8	8.32
GPRS	824.2	8.28
GPRS	836.6	8.30
GPRS	848.8	8.32

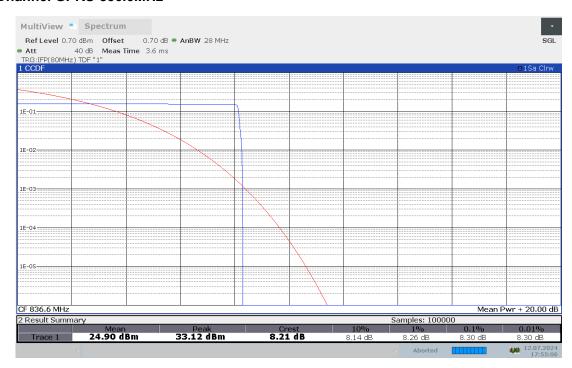
Channel GSM-824.2MHz



Channel GSM-836.6MHz



Channel GSM-848.8MHz



Channel GPRS-824.2MHz

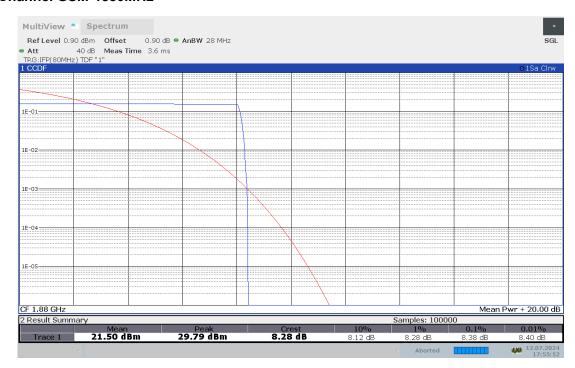
Channel GPRS-836.6MHz

Channel GPRS-848.8MHz



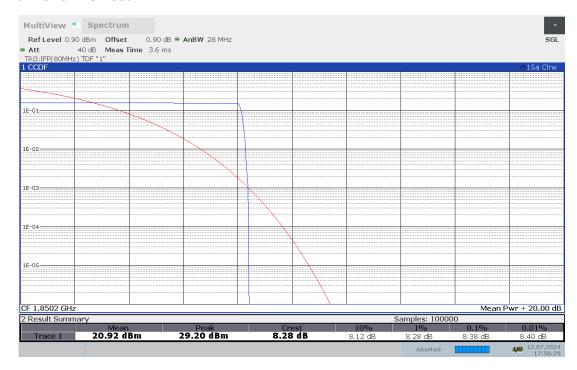
PCS1900

Measurement result


PCS1900	Frequency (MHz)	PAPR (dB)
GSM	1850.2	8.34
GSM	1880	8.38
GSM	1909.8	8.34
GPRS	1850.2	8.38
GPRS	1880	8.38
GPRS	1909.8	8.34

Channel GSM-1850.2MHz

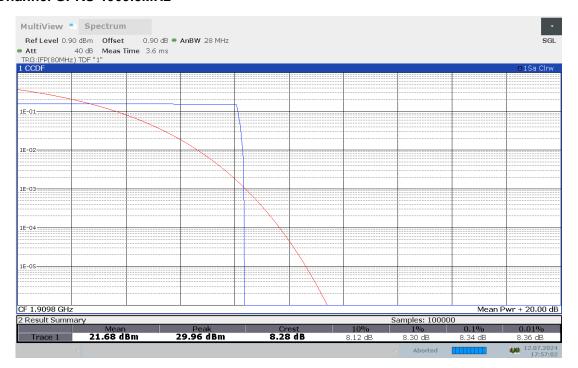
Channel GSM-1880MHz



Channel GSM-1909.8MHz



Channel GPRS-1850.2MHz



Channel GPRS-1880MHz

Channel GPRS-1909.8MHz

ANNEX B: Accreditation Certificate

Accredited Laboratory

A2LA has accredited

SHENZHEN ACADEMY OF INFORMATION AND COMMUNICATIONS TECHNOLOGY

Shenzhen, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 14th day of November 2023.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council

Certificate Number 4353.01 Valid to November 30, 2025

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

ANNEX C: Certificate of Brand Authorization

END OF REPORT