FCC TEST REPORT				
	FCC ID: 2BBXJ-YK06			
Report No.	: <u>SSP25020004-1E</u>			
Applicant	: Shenzhen Yongshi Intelligent Co., LTD			
Product Name	: smart watch			
Model Name	: <u>YK06</u>			
Test Standard	: FCC Part 15.247			
Date of Issue	: 2025-02-14			
	CCUT			
	Shenzhen CCUT Quality Technology Co., Ltd.			
	g Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, aina; (Tel.:+86-755-23406590 website: www.ccuttest.com)			
-	he above client company and the product model only. It may not be duplicated or permitted by Shenzhen CCUT Quality Technology Co., Ltd.			

Г

Test Report Basic Information

Applicant	Shenzhen Yongshi Intelligent Co., LTD				
	A305, Building A6-6, No. 20, Gangtou Road, Bogang Community, Shajing				
Address of Applicant	Street, Bao 'an District, Shenzhen, Guangdong				
Manufacturer	Shenzhen Yongshi Intelligent Co., LTD				
Manufacturer	A305, Building A6-6, No. 20, Gangtou Road, Bogang Community, Shajing				
Address of Manufacturer:	Street, Bao 'an District, Shenzhen, Guangdong				
	0. 00, 2.0 al 2.00.00, 0.00.00, 0.00.00, 0.00.00				
Product Name	smart watch				
Brand Name	-				
Main Model	YK06				
Series Models	-				
	FCC Part 15 Subpart C				
	KDB 558074 D01 15.247 Meas Guidance v05r02				
	ANSI C63.4-2014				
Test Standard	ANSI C63.10-2013				
Date of Test	2025-02-08 to 2025-02-12				
Test Result	PASS				
m . 15	Walker Wa (Walker Wu) J Quality Tech				
Tested By	(Walker Wu)				
	S P				
Reviewed By	Lieber Ouyang (Lieber Ouyang) G APPROVED				
	Lahn Peng (Jahn Pang)				
Authorized Signatory	(Lahm Peng)				
Note : This test report is limited	to the above client company and the product model only. It may not be				
duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in					
this test report is only applicabl	e to presented test sample.				

CONTENTS

1. General Information	
1.1 Product Information	
1.2 Test Setup Information	
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	
3.1 Standard and Limit	
3.2 Test Result	
4. Conducted Emissions	12
4.1 Standard and Limit	12
4.2 Test Procedure	
4.3 Test Data and Results	13
5. Radiated Emissions	16
5.1 Standard and Limit	16
5.2 Test Procedure	16
5.3 Test Data and Results	18
6. Band-edge Emissions(Radiated)	22
6.1 Standard and Limit	22
6.2 Test Procedure	22
6.3 Test Data and Results	22
7. Maximum Peak Conducted Output Power	24
7.1 Standard and Limit	24
7.2 Test Procedure	24
7.3 Test Data and Results	
8. Occupied Bandwidth	26
8.1 Standard and Limit	26
8.2 Test Procedure	26
8.3 Test Data and Results	26
9. Maximum Power Spectral Density	28
9.1 Standard and Limit	
9.2 Test Procedure	
9.3 Test Data and Results	28
10. Band-edge Emission(Conducted)	30
10.1 Standard and Limit	
10.2 Test Procedure	30
10.3 Test Data and Results	
11. Conducted RF Spurious Emissions	32
11.1 Standard and Limit	32
11.2 Test Procedure	32
11.3 Test Data and Results	32

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2025-02-14	Initial Release	Lahm Peng

1. General Information

1.1 Product Information

Product Name:	smart watch		
Trade Name:	-		
Main Model:	YK06		
Series Models:	-		
Rated Voltage:	DC 3.8V by battery, USB 5V charging		
Battery:	DC 3.8V, 400mAh		
Test Sample No:	SP25020004-1		
Hardware Version:	Z5150V1.0		
Software Version:	V1.08		
Note 1: The test data is gathered from a production sample, provided by the manufacturer.			

Wireless Specification	
Wireless Standard:	Bluetooth BLE
Operating Frequency:	2402MHz ~ 2480MHz
RF Output Power:	2.61dBm
Number of Channel:	40
Channel Separation:	2MHz
Modulation:	GFSK
Antenna Gain:	-1.8dBi
Type of Antenna:	Integral Antenna
Type of Device:	Portable Device Device Mobile Device

1.2 Test Setup Information

List of Test Modes						
Test Mode	Description		Remark			
TM1	BI	E_1Mbps		2402/2440/2480MHz		
TM2	C	Charging		AC 120V/60)Hz	
-		-		-		
-		-		-		
List and Detail	ls of Auxiliary	Cable				
Descrip	ption	Length (cm)		Shielded/Unshielded	With/Without Ferrite	
-		-		-	-	
-						
List and Detail	ls of Auxiliary	Equipment				
Descrij	Description Manufacturer		r	Model	Serial Number	
Adapter Xiaomi				MDY-12-EF	HC78E2N6A23645	
-						
Test Software & Power level setup of EUT						
Test Software Power level setup				vel setup		
	BT_'	Tool			7	

Note: The DUT was installed in a test fixture and this test fixture is connected to a laptop computer. The laptop computer was used to configure the EUT to continuously transmit at a specified output power using all different modes and modulation schemes, using the proprietary tool BT_Tool.

List of Chann	List of Channels						
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

1.3 Compliance Standards

Compliance Standards				
ECC Dont 15 Submont C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,			
FCC Part 15 Subpart C	Intentional Radiators			
All measurements contained in this	report were conducted with all above standards			
According to standards for test n	nethodology			
ECC Dout 15 Submout C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,			
FCC Part 15 Subpart C	Intentional Radiators			
KDB 558074 D01 15.247 Meas	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION			
Guidance v05r02	SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM			
Guidance v05r02	DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES			
ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio-Noise Emissions			
ANSI 003.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.			
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed			
ANSI C03.10-2015	Wireless Devices			
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which				
result is lowering the emission, should be checked to ensure compliance has been maintained.				

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.			
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,			
	Guangming District, Shenzhen, Guangdong, China			
CNAS Laboratory No.:	L18863			
A2LA Certificate No.:	6893.01			
FCC Registration No:	583813			
ISED Registration No.:	CN0164			
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing				
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.				

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date		
Conducted Emissions							
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06		
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A		
		Radiated Emission	IS				
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06		
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06		
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06		
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06		
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06		
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06		
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02		
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02		
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02		
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 8	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 9	N/A	2024-08-07	2025-08-06		
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A		
	Conducted RF Testing						
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06		
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06		
RF Test Software	MWRFTest	MTS 8310	N/A	N/A	N/A		
Laptop	Lenovo	ThlnkPad E15 Gen 3	SPPOZ22485	N/A	N/A		
DUT Test Software	JL	FCC_assist	N/A	N/A	N/A		

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty	
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB	
	9kHz ~ 30MHz	±2.88 dB	
Radiated Emissions	30MHz ~ 1GHz	±3.32 dB	
Radiated Emissions	$1 \mathrm{GHz} \sim 18 \mathrm{GHz}$	±3.50 dB	
	18GHz ~ 40GHz	±3.66 dB	
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB	
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %	
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB	
Power Spectrum Density	9kHz ~ 26GHz	±0.62 dB	

2. Summary of Test Results

FCC Rule	Description of Test Item	Result					
FCC Part 15.203	Antenna Requirement	Passed					
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed					
FCC Part 15.207	Conducted Emissions	Passed					
FCC Part 15.209, 15.247(d)	Radiated Emissions	Passed					
FCC Part 15.247(d)	Band-edge Emissions(Radiated)	Passed					
FCC Part 15.247(b)(3)	Maximum Conducted Output Power	Passed					
FCC Part 15.247(a)(2)	Occupied Bandwidth	Passed					
FCC Part 15.247(e)	Maximum Power Spectral Density	Passed					
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed					
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed					
Passed: The EUT complies with the ess	ential requirements in the standard						
Failed: The EUT does not comply with the essential requirements in the standard							
N/A: Not applicable							

3. Antenna Requirement

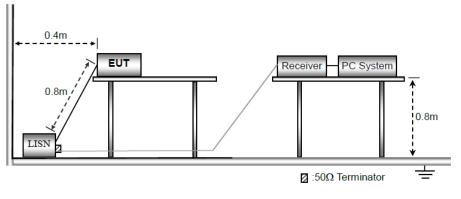
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an integral antenna, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)							
(MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56	56 to 46						
0.5-5	56	46						
5-30	60	50						
Note 1: Decreases with the log	Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz							
Note 2: The lower limit applies	Note 2: The lower limit applies at the band edges							

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

IESUI	Plots and Data o	of Conducte	d Emissic	ons									
Teste	d Mode:	TM2											
Test V	Voltage:	AC 12	AC 120V/60Hz										
Гest F	ower Line:	Neut	Neutral										
Rema	rk:												
90.0	dBu∀												
30.0													7
80													-
70							_						_
60									FCC I	Part15 C	E-Class B	_QP	
50									FCC	Part15 C	E-Class B	_AVe	
40													
40		, 1		5	7	0							
30	- when when	mandle	Mudmini	Million Sandy	White and the second	i santhi Ald	11 4 Xu						M peak
20		www		mar and the second second	• •••••	And An La deal	Mar ANN	M.	theats	manualt	mander	www.washalinter.teratu	AVG
10						10	12	-			manha		4
0													
-10													
0."	150	0.50	00		(MHz)		5.0	00				30.	.000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Re	mark			
1	0.5325	25.69	9.39	35.08	56.00	-20.92	QP	Р					
2	0.5325	10.95	9.39	20.34	46.00	-25.66	AVG	Р					
3 *	0.8655	28.24	9.39	37.63	56.00	-18.37	QP	Р					
4	0.8655	11.31	9.39	20.70	46.00	-25.30	AVG	Р					
5	1.2255	24.48	9.44	33.92	56.00	-22.08	QP	Р					
6	1.2255	11.24	9.44	20.68	46.00	-25.32	AVG	Р					
7	1.7655	20.03	9.46	29.49	56.00	-26.51	QP	Ρ					
8	1.7655	6.59	9.46	16.05	46.00	-29.95	AVG	Ρ					
9	3.1155	20.10	9.50	29.60	56.00	-26.40	QP	Ρ					
10	3.1155	1.42	9.50	10.92	46.00	-35.08	AVG	Р					
11	4.7985	15.99	9.56	25.55	56.00	-30.45	QP	Р					
	4.7985	-1.20	9.56	8.36	46.00	-37.64	AVG	Р					

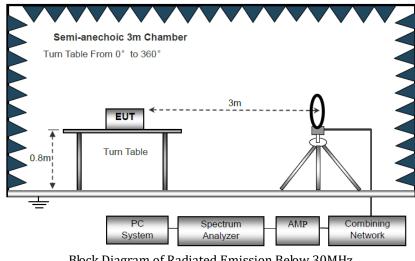
Test P	Plots and Data c	of Conducte	ed Emissio	ons						
Teste	d Mode:	TM2								
Test V	oltage:	AC 1	20V/60Hz	Z						
Test P	ower Line:	Live								
Rema	rk:									
90.0	dBu¥	1								
80										
00										
70										_
60									FCC Part15 CE-Class B_QP	_
50									FCC Part15 CE-Class B_AVe	_
40		_	X							_
30	mm	1 mmm	Harry Alberton	home the stand	Z	9	, <u>j</u> 1			
20		*			······································	(Million)	MA WAY	human	Abberto water and a specific and a straight a	∬ peak
10					and the second s		12	+		Mavg
o										
-10										
0."	150	0.5	00		(MHz)		5.0	00	30	.000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.3660	24.92	9.58	34.50	58.59	-24.09	QP	Р		
2	0.3660	11.24	9.58	20.82	48.59	-27.77	AVG	Р		
3 *		33.19	9.58	42.77	56.00	-13.23	QP	P		
4	0.8700	11.98	9.58	21.56	46.00	-24.44	AVG	P		
5	1.1085	23.18	9.62	32.80	56.00	-23.20	QP	P		
6	1.1085	11.10	9.62	20.72	46.00	-25.28	AVG	P		
7	1.7835	20.40	9.65	30.05	56.00	-25.95	QP	P		
8	1.7835	6.63	9.65	16.28	46.00	-29.72	AVG	P		
9	3.4350	19.17	9.70	28.87	56.00	-27.13	QP	P		
10	3.4350	0.90	9.70	10.60	46.00	-35.40	AVG	P		
11	4.6770	15.49	9.75	25.24	56.00	-30.76	QP	P		
12	4.6770	-1.16	9.75	8.59	46.00	-37.41	AVG	P		

5. Radiated Emissions

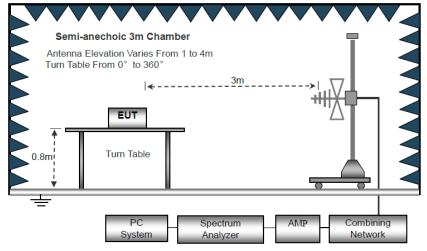
5.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

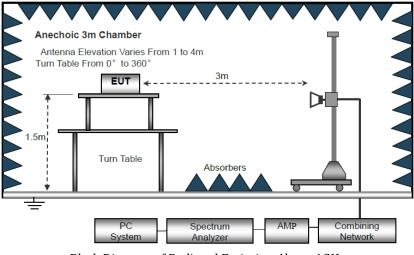
Frequency of Emission	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3
Note: The more stringent limit applies	at transition frequencies.	


According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure


Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

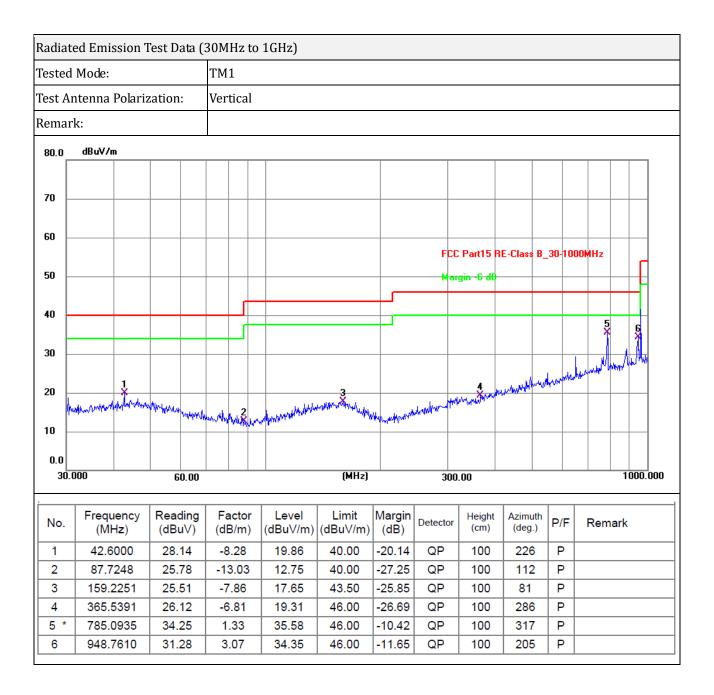
a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.


f) For the actual test configuration, please refer to the related item - EUT test photos.

5.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case BLE_1Mbps 2402MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

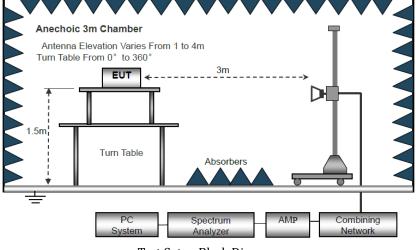
Radiat	ed Emi	ssion T	fest D	ata (3	30M	Hz to	1GHz)									
Tested	Mode:				ТМ	1										
Test A	ntenna	Polariz	zation	:	Hor	Iorizontal										
Remar	·k:															
	dBuV∕r															
80.0	UDUY/I															
70																
60 -											C Part15 F			000141	_	+
50 -											rgin -6 dD	12-01888 0)_30-1		2	⊢ [
40																¥
						_⊢										
30 -							ndudburhan						*			A way way
								-				make	MANNA	mannen	prover	
20	1 Anna March	manutive	mile.					white when		. A showed	manyour	Mary Comment				\square
10	on the same of			man	w	herent	Muddherthom	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	Mappenhilt	All and a local design of the second se						
	000							(MHz)			D.00					1000.000
50.	000		ь	0.00				(M112)		30	0.00					1000.000
No.	Frequ (Mł		Read (dBu			ictor 3/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Re	emarl	¢
1	33.7	986	27.0	08	-9	.05	18.03	40.00	-21.97	QP	100	156	P	+		
2	54.0	711	26.9	93	-9	.04	17.89	40.00	-22.11	QP	100	187	P			
3	143.3		26.			.06	18.24	43.50	-25.26	QP	100	167	P			
4	547.0		30.			.79	27.77	46.00	-18.23	QP	100	105	P	_		
5	787.8		29.			.36	30.73	46.00	-15.27	QP	100	115	P			
6 *	962.1	1623	38.	57	3.	.12	41.69	54.00	-12.31	QP	100	355	P			

Frequency	ssion Test Dat Reading	Correct	Result	Limit	Margin	Polar	Detector
					-		
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
			r	el (2402MHz)			
4804	77.67	-14.72	62.95	74	-11.05	Н	РК
4804	62.62	-14.72	47.9	54	-6.1	Н	AV
7206	63.7	-8.41	55.29	74	-18.71	Н	РК
7206	50.47	-8.41	42.06	54	-11.94	Н	AV
4804	78.73	-14.72	64.01	74	-9.99	V	РК
4804	58.16	-14.72	43.44	54	-10.56	V	AV
7206	63.89	-8.41	55.48	74	-18.52	V	РК
7206	48.01	-8.41	39.6	54	-14.4	V	AV
			Middle Chann	el (2440MHz)			
4880	78.29	-14.64	63.65	74	-10.35	Н	РК
4880	62.27	-14.64	47.63	54	-6.37	Н	AV
7320	62.08	-8.28	53.8	74	-20.2	Н	РК
7320	45	-8.28	36.72	54	-17.28	Н	AV
4880	77.24	-14.64	62.6	74	-11.4	V	РК
4880	57.52	-14.64	42.88	54	-11.12	V	AV
7320	64.89	-8.28	56.61	74	-17.39	V	РК
7320	48.6	-8.28	40.32	54	-13.68	V	AV
			Highest Chanr	nel (2480MHz)			
4960	79.43	-14.53	64.9	74	-9.1	Н	РК
4960	60.38	-14.53	45.85	54	-8.15	Н	AV
7440	65.46	-8.13	57.33	74	-16.67	Н	РК
7440	47.68	-8.13	39.55	54	-14.45	Н	AV
4960	76.3	-14.53	61.77	74	-12.23	V	РК
4960	60.61	-14.53	46.08	54	-7.92	V	AV
7440	65.29	-8.13	57.16	74	-16.84	V	РК
7440	50.67	-8.13	42.54	54	-11.46	V	AV

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.


6. Band-edge Emissions(Radiated)

6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case as below:

Test Mode	Frequency	Limit	Result
Test Mode	MHz	dBuV/dBc	Result
Louvoat	2310.00	<54 dBuV	Pass
Lowest	2390.00	<54 dBuV	Pass
Uighost	2483.50	<54 dBuV	Pass
Highest	2500.00	<54 dBuV	Pass

Radiated Em	ission Test Dat	a (Band edge o	emissions)				
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
			Lowest Chann	nel (2402MHz)			·
2310	66.03	-21.34	44.69	74	-29.31	Н	РК
2310	51.32	-21.34	29.98	54	-24.02	Н	AV
2390	66.81	-20.96	45.85	74	-28.15	Н	РК
2390	52.61	-20.96	31.65	54	-22.35	Н	AV
2400	69.76	-20.91	48.85	74	-25.15	Н	РК
2400	55.77	-20.91	34.86	54	-19.14	Н	AV
2310	65.44	-21.34	44.1	74	-29.9	V	РК
2310	49.75	-21.34	28.41	54	-25.59	V	AV
2390	65.64	-20.96	44.68	74	-29.32	V	РК
2390	52.01	-20.96	31.05	54	-22.95	V	AV
2400	74.14	-20.91	53.23	74	-20.77	V	РК
2400	55.38	-20.91	34.47	54	-19.53	V	AV
			Highest Chanr	nel (2480MHz)			
2483.50	71.81	-20.51	51.3	74	-22.7	Н	РК
2483.50	54.16	-20.51	33.65	54	-20.35	Н	AV
2500	68.62	-20.43	48.19	74	-25.81	Н	РК
2500	49.49	-20.43	29.06	54	-24.94	Н	AV
2483.50	70.02	-20.51	49.51	74	-24.49	V	РК
2483.50	56.78	-20.51	36.27	54	-17.73	V	AV
2500	64.63	-20.43	44.2	74	-29.8	V	РК
2500	49.78	-20.43	29.35	54	-24.65	V	AV

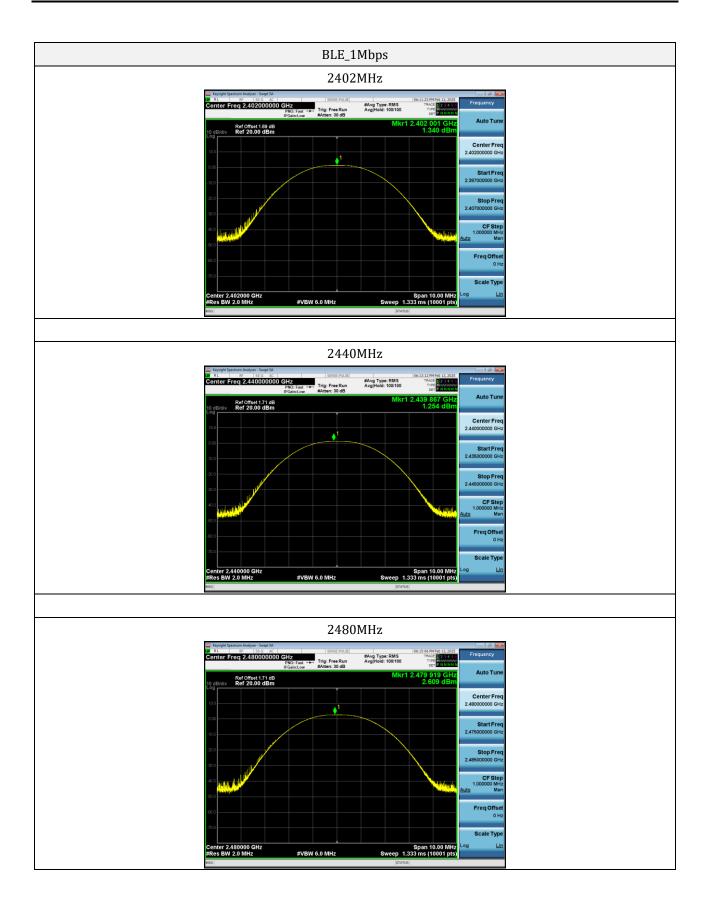
Remark: Level = Reading + Factor, Margin = Level - Limit

7. Maximum Peak Conducted Output Power


7.1 Standard and Limit

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

7.2 Test Procedure


1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 2MHz, VBW = 6MHz, Sweep = Auto, Detector = Peak.
- 4) Measure the highest amplitude appearing on spectral display and mark the value.
- 5) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel MHz	Conducted Output Power (dBm)	Limit (dBm)	Test Result
BLE_1Mbps	2402	1.34	30	Pass
	2440	1.25	30	Pass
	2480	2.61	30	Pass

8. Occupied Bandwidth

8.1 Standard and Limit

According to 15.247(a)(2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto.

4) Set a reference level on the measuring instrument equal to the highest peak value.

5) Measure the frequency difference of two frequencies that were attenuated 6dB from the reference level. Record the frequency difference as the emission bandwidth.

6) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Teat Mede	Test Channel	6dB Bandwidth	99% Bandwidth	6 dB Bandwidth Limit	Teat Degult	
Test Mode	(MHz)	z) (MHz) (MHz)		(MHz)	Test Result	
	2402	0.667	1.024	0.5	Pass	
BLE_1Mbps	2440	0.666	1.026	0.5	Pass	
	2480	0.676	1.021	0.5	Pass	

9. Maximum Power Spectral Density

9.1 Standard and Limit

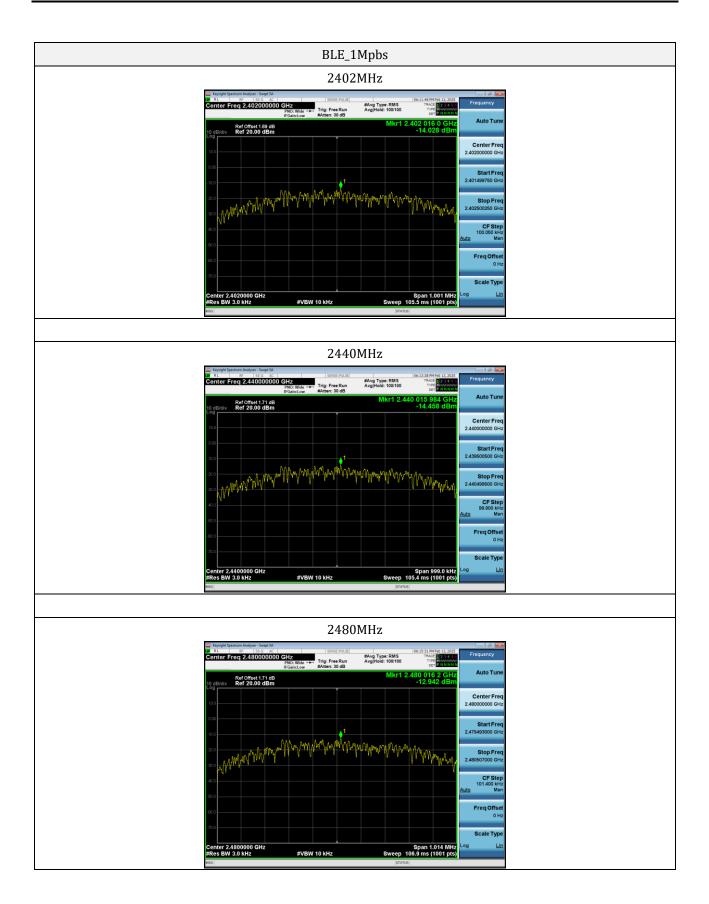
According to FCC 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

9.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 3kHz, VBW = 10kHz, Sweep = Auto, Detector = Peak.


4) Measure the highest amplitude appearing on spectral display and mark the value.

5) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel MHz	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Test Result
BLE_1Mbps	2402	-14.03	8	Pass
	2440	-14.46	8	Pass
	2480	-12.94	8	Pass

10. Band-edge Emission(Conducted)

10.1 Standard and Limit

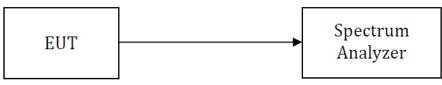
According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

10.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

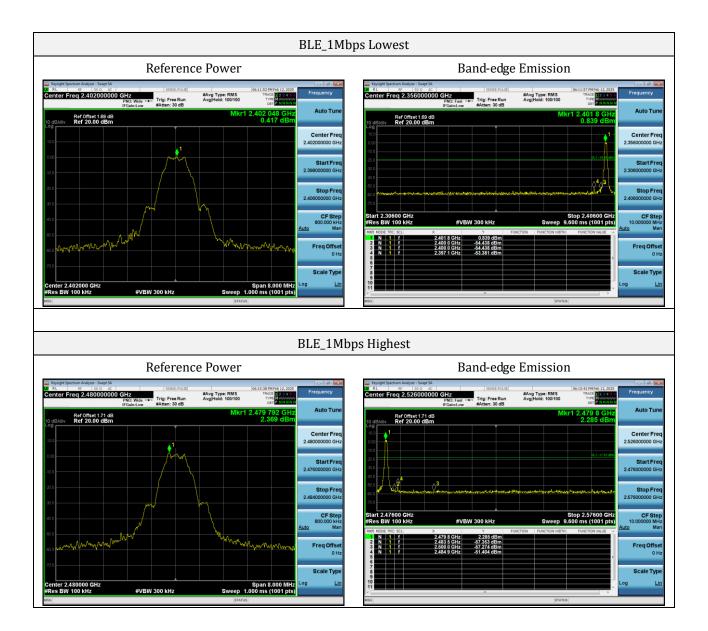
1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.


3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.

5) Set a convenient frequency span including 100 kHz bandwidth from band edge.


6) Measure the emission and marking the edge frequency.

7) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Band-edge	Test Channel (MHz)	Max. Value (dBc)	Limit (dBc)	Test Result
BLE_1Mbps	Lowest	2402	-53.8	-20	Pass
	Highest	2480	-53.77	-20	Pass

11. Conducted RF Spurious Emissions

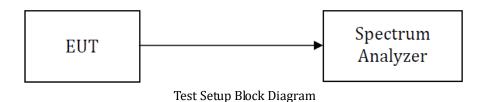
11.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

11.2 Test Procedure

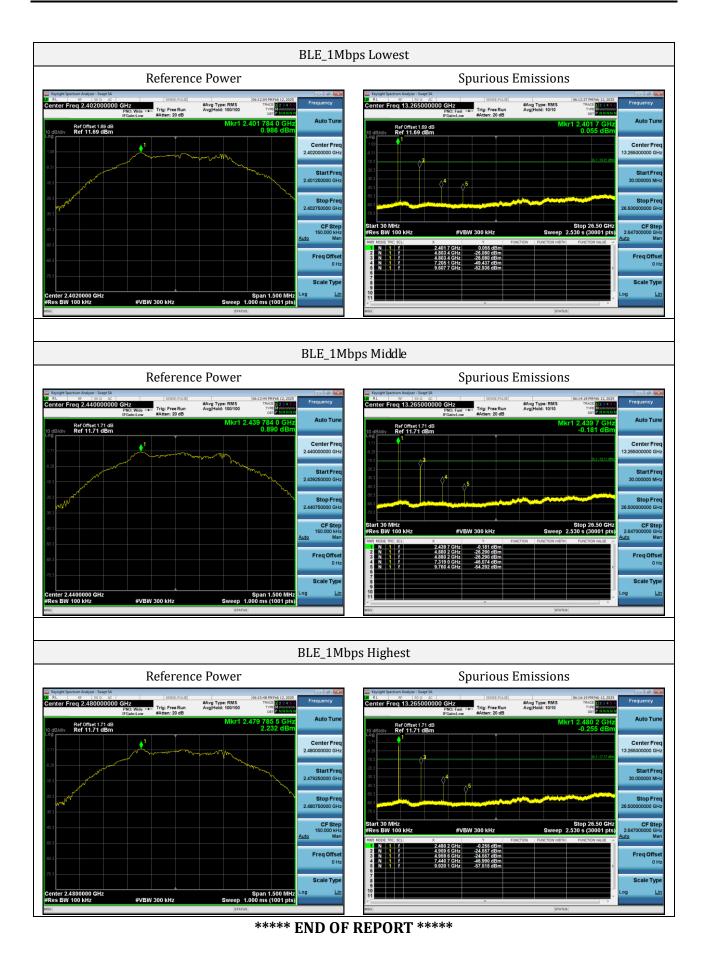
Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.


2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.


5) Measure the spurious emissions with frequency range from 9kHz to 26.5GHz.

6) Repeat above procedures until all measured frequencies were complete.

11.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.

