

FCC AND IC SAR TEST REPORT FOR

Applicant :		Cobra Electronics Corporation
Address :		6500 West Cortland Street, Chicago IL, 60707, U.S.A.
Equipment under Test	••	Two-way radio
Model No	••	CXT145, CX112, CX116A,CX131A, CXT145C+, CXT195
Trade Mark VG DI	•	NTESTING
FCC ID		BBO0151A
IC:)	906A-0151A
Manufacturer :		DONGGUAN WISETRONICS TELECOM EQUIPMENT CO.,LTD.
Address :		Elite Industrial City, Meilin District, Daling Shan Town, Dongguan Guangdong, PRC

Issued By: Dongguan Dongdian Testing Service Co., Ltd.

Add: No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City, Guangdong Province, China, 523808

Tel: +86-0769-22891499 <u>Http://www.dgddt.com</u>

Applicant :		Cobra Electronics Corporation
Address :		6500 West Cortland Street, Chicago IL, 60707, U.S.A.
Equipment under Test	:	Two-way radio
Model No	:	CXT145, CX112, CX116A,CX131A, CXT145C+, CXT195
Trade Mark	:	/
FCC ID	:	BBO0151A
IC:		906A-0151A
Manufacturer :		DONGGUAN WISETRONICS TELECOM EQUIPMENT CO.,LTD.
Address :		Elite Industrial City, Meilin District, Daling Shan Town, Dongguan Guangdong, PRC

TEST REPORT DECLARE

We Declare:

The equipment described above is evaluation by Dongguan Dongdian Testing Service Co., Ltd and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Dongguan Dongdian Testing Service Co., Ltd is assumed of full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above standards.

Report No:	DDT-R15Q0311-1SR1				
Date of Test:	Mar.11,2015Mar.14,2015	Date of Report:	Mar.16,2015		

Prepared By:

Approved By:

as low

Leo Liu/Engineer

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Dongguan Dongdian Testing Service Co., Ltd.

Contents

1. <u>TEST STANDARDS/PROCEDURES REFERENCE/FCC KDBS...... 4</u>

<u>2.</u>	<u>SUMMARY</u>	<u> 5</u>
2.1.	General Remarks	5
2.2.	Difference of model number and Accessories	5
2.3.	Short description of the Equipment under Test (EUT)	5
2.4.	TEST Configuration	6
2.5.	EUT operation mode	6
2.6.	EUT configuration	6
		•
<u>3.</u>	TEST ENVIRONMENT	7
3.1.	Address of the test laboratory	7
3.2.	Environmental conditions	7
3.3.	SAR Limits	7
3.4.	Equipments Used during the Test	7
<u>4.</u>	SAR MEASUREMENTS SYSTEM CONFIGURATION	9
<u></u>		
4.1.	SAR Measurement Set-up	9
4.2.	DASY5 E-field Probe System	10
4.3.	Phantoms	10
4.4.	Device Holder	11
4.5.	Scanning Procedure	11
4.6.	Data Storage and Evaluation	12
4.7.	SAR Measurement System	13
4.8.	Tissue equivalent liquid properties	14
4.9.	System Check	14
4.10.	SAR measurement procedure	16
<u>5.</u>	TEST CONDITIONS AND RESULTS	19
5.1.	Conducted Power Results	19
5.2.	Test reduction procedure	19
5.3.	SAR Measurement Results	19
5.4.	SAR Measurement Variability	19
5.5.	Measurement Uncertainty(300MHz-3GHz)	20
5.6.	System Check Results	24
5.7.	SAR Test Graph Results	25
<u>6.</u>	CALIBRATION CERTIFICATE	27
6.1.	Probe Calibration Ceriticate	27
6.2.	D450V3 Dipole Calibration Ceriticate	38
6.3.	DAE4 Calibration Ceriticate	46
<u>7.</u>	TEST SETUP PHOTOS	49
0	EXTERNAL PHOTOS OF THE EUT	EO
<u>8.</u>		

1. <u>TEST STANDARDS/PROCEDURES REFERENCE/FCC</u> <u>KDBs</u>

The tests were performed according to following standards:

<u>IEEE 1528-2003 (2003-04)</u>: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques:

<u>IEEE 1528-2013 (2014-06)</u>: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

IEEE Std. C95-3 (2002): IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave

ANSI Std. C95-1 (1992): Safety Levels with Respect to Human Exposure to Radio Frequency

Electromagnetic Fields, 3 kHz – 300 GHz.(IEEE Std C95.1-1991)

IEC 62209-2 (2010): Human exposure to radio frequency fields from hand-held and bodymounted wireless

communication devices. Human models, instrumentation, and procedures. Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)

<u>RSS-102(Issue 5 of March 2015)</u>: Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands.

Safety Code 6 (2009): Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz.

KDB 865664D01v01r03 (February 7, 2014): SAR Measurement Requirements for 100 MHz to 6 GHz

KDB 865664D02v01r01 (May 28, 2013): RF Exposure Compliance Reporting and Documentation Considerations KDB 447498D01v05r02 (February 7, 2014): Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies

2. <u>SUMMARY</u>

2.1. General Remarks

EUT* Name	:	Two-way radio
Model Number		CXT145, CX112, CX116A,CX131A, CXT145C+, CXT195
Difference of model number	:	See clause 2.2
Trade Mark	••	
EUT function description	:	Please reference user manual of this device
Power supply	••	DC 3.6V from rechargeable battery
Operation frequency range	:	462.55MHz-462.7250MHz / 467.5625MHz-467.7125MHz
Modulation type	:	FM
Max Tx deviation	:	2.5KHz
Emission type	:	F3E
Maximum Reported SAR Values	:	Head: 0.79W/Kg (50% Duty Cycle)
Antenna Type	:	Integral
Date of Receipt	:	Mar.09,2015
Sample Type	:	Series production
Exposure category:	:	General population / Uncontrolled environment

Note1: EUT is the ab.of equipment under test.

2.2. Difference of model number and Accessories

This device have 6 models, and the difference of each models are cabinet color, sales country and accessories, all the other characteristic like circuit, PCB layoutare, RF power are exactly same, and CXT145 was used for test.

Cobra Model	Color	Country	Market	Battery Type & QTY	Batt. mA	USB Cable with "Y" 2 plug KEOE-OT546
CXT145	Black	US	N/A	6xAAA-NiMH 1.2V	300mA	Yes
CX112	Black	US	N/A	No	No	No
CX116A	Black	US	TRU	6xAAA alkaline 1.5V	1250mA	No
CX131A	Pink	US	TRU	6xAAA alkaline 1.5V	1250mA	No
CXT145C+	Black	CA	N/A	6xAAA-NiMH 1.2V	300mA	Yes
CXT195	Black	US	WM	6xAAA-NiMH 1.2V	300mA	Yes

Note: For IC only have CXT145, CX112, CXT145C+, CXT195 model.

2.3. Short description of the Equipment under Test (EUT)

FRS Radio;

The spatial peak SAR values were assessed for systems. Battery and accessories shell be specified by

the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain

uniform power output.

2.4. TEST Configuration

Face-Held Configuration

Face-held Configuration- per FCC KDB447498 page 22: "A test separation distance of 25 mm must be applied for in-front-of the face SAR test exclusion and SAR measurements."

Body-worn Configuration

Body-worn measurements-per FCC KDB447498 page 22 "When body-worn accessory SAR testing is required, the body-worn accessory requirements in section 4.2.2 should be applied. PTT two-way radios that support held-to-ear operating mode must also be tested according to the exposure configurations required for handsets. This generally does not apply to cellphones with PTT options that have already been tested in more conservative configurations in applicable wireless modes for SAR compliance at 100% duty factor."

The Two-way Radio has Speaker/Microphone Jack while cannot support VOX (Voice Operated Transmit) function refer to user manual information; body-worn SAR not required test by got response from FCC by KDB inquire;

CH #	FREQ (MHz)	TYPE	CH #	FREQ (MHz)	TYPE
1	462.5625	GMRS	12	467.6625	FRS
2	462.5875	GMRS	13	467.6875	FRS
3	462.6125	GMRS	14	467.7125	FRS
4	462.6375	GMRS	15	462.55	GMRS
5	462.6625	GMRS	16	462.575	GMRS
6	462.6875	GMRS	17	462.6	GMRS
7	462.7125	GMRS	18	462.625	GMRS
8	467.5625	FRS	19	462.65	GMRS
9	467.5875	FRS	20	462.675	GMRS
10	467.6125	FRS	21	462.7	GMRS
11	467.6375	FRS	22	462.725	GMRS

2.5. EUT operation mode

The EUT has been tested under typical operating condition and The Transmitter was operated in the normal

operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Note: The device has Speaker/Microphone Jack while cannot support VOX (Voice Operated Transmit) function, and manufacturer will not provide any standard default accessory when sold.

2.6. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

Accessory name	Model	Description	Remark
Battery 1	6xAA-NiMH	6xAA-NiMH, 300mA, 1.2V	Supplied by the manufacturer
Battery 2	6xAAA alkaline	6xAAA alkaline 1250mA, 1.5V	Supplied by the manufacturer

3. <u>TEST ENVIRONMENT</u>

3.1. Address of the test laboratory

The test was subcontracted to The Testing and Technology Center for Industrial Products of Shenzhen Entry-Exit Inspection and Quarantine Bureau

No.289, 8th Industry Road, Nanshan District, Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2009) and CISPR Publication 22.

3.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

3.3. SAR Limits

Limit (1g Tissue)

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

3.4. Equipments Used during the Test

				Calib	ration
Test Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Interval
Data Acquisition Electronics DAEx	SPEAG	DAE4	1315	2014/07/22	1
E-field Probe	SPEAG	ES3DV3	3292	2014/08/15	1
System Validation Dipole D450V3	SPEAG	D450V3	1079	2013/02/28	3
Network analyzer	Agilent	8753E	US37390562	2014/03/21	1
Dielectric Probe Kit	Agilent	85070E	US44020288	/	/
Power meter	Agilent	E4417A	GB41292254	2014/12/21	1
Power sensor	Agilent	8481H	MY41095360	2014/12/21	1
Signal generator	IFR	2032	203002/100	2014/10/18	1
Amplifier	AR	75A250	302205	2014/10/18	1

Note:

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
 - a) There is no physical damage on the dipole;
 - b) System check with specific dipole is within 10% of calibrated values;
 - c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
 - d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 50 Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

4. SAR Measurements System configuration

4.1.SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

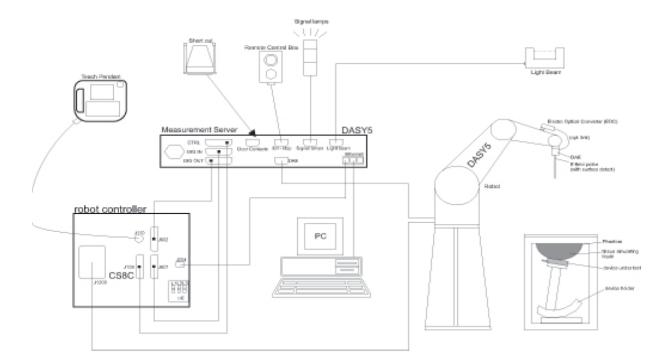
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld mobile phones.

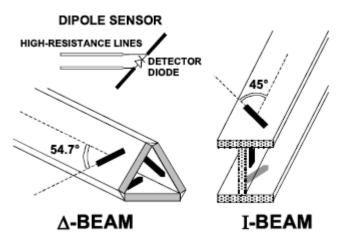
Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

4.2.DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification


Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	\pm 0.2 dB in HSL (rotation around probe axis) \pm 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	$5 \mu W/g \text{ to} > 100 \text{ mW/g};$ Linearity: $\pm 0.2 \text{ dB}$
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

4.3. Phantoms

Phantom for compliance testing of handheld andbody-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI isfully compatible with the IEC 62209-2 standard and all known tissuesimulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents

evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI Phantom

4.4.Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

4.5.Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn)

are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

4.6.Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi
- Diode compression point	Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With	Vi = compensated signal of channel i	(i = x, y, z)
	Ui = input signal of channel i	(i = x, y, z)
	cf = crest factor of exciting field	(DASY parameter)
	dcpi = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

		E – fieldprobes : $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$	
		H – fieldprobes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}}{f}$	f^2
With	Vi	= compensated signal of channel i $(i = x, y, z)$	
	Normi	= sensor sensitivity of channel i $(i = x, y, z)$	
		[mV/(V/m)2] for E-field Probes	
	ConvF	= sensitivity enhancement in solution	
	aij	= sensor sensitivity factors for H-field probes	
	f	= carrier frequency [GHz]	
	Ei	= electric field strength of channel i in V/m	
	Hi	= magnetic field strength of channel i in A/m	

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with	SAR	= local specific absorption rate in mW/g
	Etot	= total field strength in V/m
	σ	= conductivity in [mho/m] or [Siemens/m]
	ρ	= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4.7.SAR Measurement System

The SAR measurement system being used is the DASY5 system, the system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

In operation, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

4.7.1 Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

Target Frequency	He			ody
(MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4.8. Tissue equivalent liquid properties

Dielectric performance of Head and Body tissue simulating liquid.

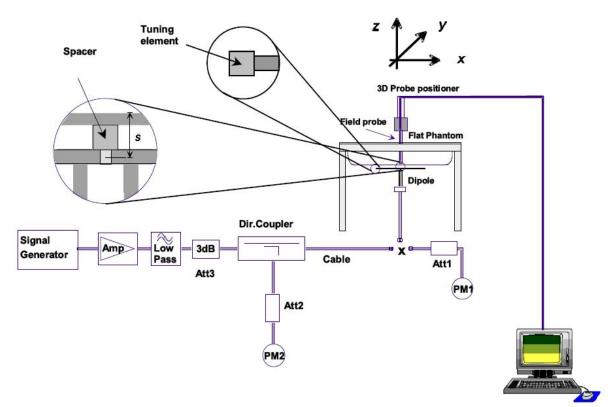
Composition of the Head Tissue Equivalent Matter

Mixture %	Frequency (Brain) 450MHz		
Water	38.56		
Sugar	56.32		
Salt	3.95		
Preventol	0.10		
Cellulose	1.07		
Dielectric Parameters Target Value	f=450MHz ϵ_r =43.5 σ =0.87		

Composition of the Body Tissue Equivalent Matter

Composition of the Body Tissue Equivalent Matter					
Mixture %	Frequency (Brain) 450MHz				
Water	56.16				
Sugar	46.78				
Salt	1.49				
Preventol	0.10				
Cellulose	0.47				
Dielectric Parameters Target Value	f=450MHz ϵ_r =56.7 σ =0.94				

Dielectric performance of Head tissue simulating liquid.


Tissue	Measured	Target	Tissue		Measure	d Tissue		Liquid	
Туре	Frequency (MHz)	ε _r	σ	ε _r	Dev. %	σ	Dev. %	Liquid Temp.	Test Data
	450	43.5	0.87	43.11	-0.90%	0.85	-2.30%		
450H	462.6375	43.43	0.87	42.89	-1.24%	0.88	1.14%	22 degree	2015-03-12
	467.6375	43.41	0.87	42.78	-1.45%	0.89	2.30%		

4.9. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

The output power on dipole port must be calibrated to 30 dBm (1000mW) before dipole is connected.

System Validation of Head								
Measuremer	Measurement is made at temperature 22.0 $^{\circ}$ C and relative humidity 55%.							
Tissue tempe	erature 22.0 ℃							
Measuremer	Measurement Date: 450 MHz Mar 12 th 2015							
Verification	Frequency	•	t value /kg)	Measure (W/	ed value /kg)	Devi	ation	
results	(MHz)	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	
	450	4.63	3.09	4.53	3.20	-2.16%	3.56%	

Peak in cube?

All primary and

secondary peaks tested?

YES

YES

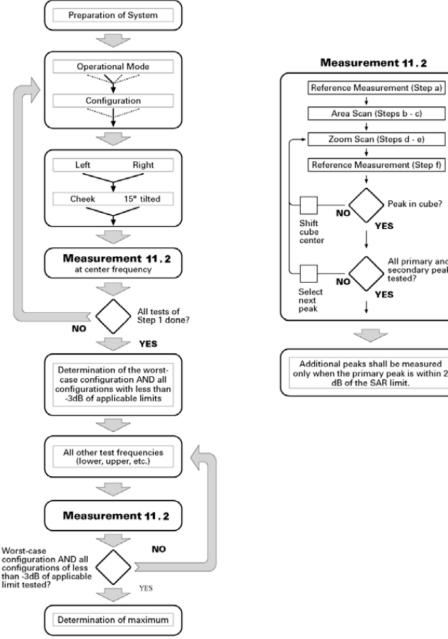
4.10. SAR measurement procedure

4.10.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.

Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

a). all device positions (cheek and tilt, for both left and right sides of the SAM phantom;


b). all configurations for each device position in a), e.g., antenna extended and retracted, and

c). all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 10.1 Block diagram of the tests to be performed

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			$5\pm1~\mathrm{mm}$	½·δ·ln(2) ± 0.5 mm	
Maximum probe angle f normal at the measurem			30°±1°	20°±1°	
			$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ 2 – 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \hspace{0.1 cm} \mathrm{GHz:} \leq 12 \hspace{0.1 cm} \mathrm{mm} \\ 4-6 \hspace{0.1 cm} \mathrm{GHz:} \leq 10 \hspace{0.1 cm} \mathrm{mm} \end{array}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^4$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^4$	
	uniform g	nid: ∆z _{Zoom} (n)	<u><</u> 5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1^{st} two points closest to phantom surface	≤4 mm	$3 - 4 \text{ GHz} \le 3 \text{ mm}$ $4 - 5 \text{ GHz} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$	
	grid ∆z _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zcom}(n-1)$		
Minimum zoom scan volume x, y, z			≥ 30 mm	$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ $5 - 6 \text{ GHz}: \ge 22 \text{ mm}$	
2011 for details. * When zoom scan is re	equired and	the <u>reported</u> SAR from th	idence to the tissue medium; see te area scan based <i>1-g SAR estind</i>	ntion procedures of KDB	

447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4.10.3 Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.11 to Table 14.11 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

4.10.4 Area Scan Based 1-g SAR

4.10.4.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

5. <u>TEST CONDITIONS AND RESULTS</u>

5.1.Conducted Power Results

According KDB 447498 D01 General RF Exposure Guidance v05r01Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

Mode/ Modulation Type	Test Frequency (MHz)	1250mA Battery ERP (dBm)	300mA Battery ERP (dBm)
	CH8:467.5625	25.13	25.10
FRS/FM	CH11: 467.6375	25.18	25.13
	CH14:467.7125	25.16	25.10
	CH15:462.55	24.89	24.67
GMRS/FM	CH 4:462.6375	24.96	24.76
	CH22:462.7250	24.82	24.67

Manufacturing tolerance

GMRS						
Test Frequency(MHz)	462.55	462.6375	462.7250			
Target (dBm)	25.0(ERP)	25.0(ERP)	25.0(ERP)			
Tolerance $\pm(dB)$	± 1.00	±1.00	± 1.00			
	F	RS				
Test Frequency(MHz)	467.5625	467.6375	462.7250			
Target (dBm)	25.0 (ERP)	25.0 (ERP)	25.0(ERP)			
Tolerance $\pm(dB)$	± 1.00	±1.00	± 1.00			

5.2.Test reduction procedure

The maximum power level, $P_{max,m}$, that can be transmitted by a device before the SAR averaged over a mass, m, exceeds a given limit, SAR_{lim}, can be defined. Any device transmitting at power levels below $P_{max,m}$ can then be excluded from SAR testing. The lowest possible value for $P_{max,m}$ is: $P_{max,m} = SAR_{lim}^* m$.

5.3.SAR Measurement Results

SAR Values - Head (1250mA Battery, 1.5V)

Test F	requency	Mode/	Maximum Allowed	ERP	Test	SAR	rement over V/kg)	Power	Scaling	ove	ed SAR er1g /kg)	SAR limit	Ref. Plot
Chann.	MHz	Band	Power (dBm)	(dBm)	Config.	100% Duty Cycle	50% Duty Cycle	drift	Factor	100% Duty Cycle	50% Duty Cycle	1g (W/kg)	#
4	462.6375	PTT/GMRS	26.0	24.96	Face Held	1.24	0.62	0.11	1.27 1.	57	0.79	1.60	1
11	467.6375	PTT/FRS	26.0	25.18	Face Held	1.18	0.59	0.07	1.21	1.43	0.71	1.60	2

Test F	requency Mode/ Band		Maximum Allowed	ERP	Test	SAR	rement over V/kg)	Power	Scaling	ove	ed SAR er1g /kg)	SAR limit	Ref. Plot
Chann.	MHz	Band	Power (dBm)	(dBm)	Config.	100% Duty Cycle	50% Duty Cycle	drift	Factor	100% Duty Cycle	50% Duty Cycle	1g (W/kg)	#
4	462.6375	PTT/GMRS	26.0	24.76	Face Held	1.16	0.58	0.10	1.33 1.	54	0.77	1.60	/
11	467.6375	PTT/FRS	26.0	25.13	Face Held	1.12	0.56	0.12	1.22	1.37	0.68	1.60	/

Note: Because 1250mA Battery have worst result, so only provided 1250mA Battery test plot.

5.4.SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-

equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is ≥ 1.20 .

		A	According to I	EC62209-1/IE	EE 15	28:201	3			
No.	Error Description	Туре	Uncertainty Value	Probably Distributio n	Div	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measurement								-	-	-
1	Probe calibration	В	5.50%	Ν	1	1	1	5.50%	5.50%	œ
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	x
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	x
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	x
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	x
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	œ
7	RF ambient conditions- noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	œ
8	RF ambient conditions- reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	œ
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	x
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	x
11	RF ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	x
12	Probe positioned mech. restrictions	В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	œ
13	Probe positioning with respect to phantom shell	В	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	œ
14	Max.SAR evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	x
Test Sample										
15	Test sample positioning	А	1.86%	Ν	1	1	1	1.86%	1.86%	œ
16	Device holder uncertainty	А	1.70%	Ν	1	1	1	1.70%	1.70%	x
17	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	x
Phantom and	Set-up									

5.5.Measurement Uncertainty(300MHz-3GHz)

18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
19	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	8
20	Liquid conductivity (meas.)	А	0.50%	Ν	1	0.64	0.43	0.32%	0.26%	8
21	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	x
22	Liquid cpermittivity (meas.)	А	0.16%	Ν	1	0.64	0.43	0.10%	0.07%	x
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i}$	μ_i^2	/	/	/	/	/	10.20%	10.00%	x
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		/	R	K= 2	/	/	20.40%	20.00%	8

			Accordin	g to IEC6220	9-2/201	10				
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measuremen			1	1		•			1	1
1	Probe calibration	В	6.20%	Ν	1	1	1	6.20%	6.20%	x
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	œ
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	œ
4	Boundary Effects	В	2.00%	R	$\sqrt{3}$	1	1	1.20%	1.20%	œ
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	œ
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	x
7	RF ambient conditions- noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	x
8	RF ambient conditions- reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	œ
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	x
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	x
11	RF Ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	x
12	Probe positioned mech. restrictions	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	œ
13	Probe positioning with respect to phantom shell	В	6.70%	R	$\sqrt{3}$	1	1	3.90%	3.90%	œ

14	Max.SAR Evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	x
15	Modulation Response	В	2.40%	R	$\sqrt{3}$	1	1	1.40%	1.40%	00
Test Sample										
16	Test sample positioning	А	1.86%	Ν	1	1	1	1.86%	1.86%	∞
17	Device holder uncertainty	А	1.70%	Ν	1	1	1	1.70%	1.70%	8
18	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	8
Phantom and	Set-up									
19	Phantom uncertainty	В	6.10%	R	$\sqrt{3}$	1	1	3.50%	3.50%	00
20	SAR correction	В	1.90%	R	$\sqrt{3}$	1	0.84	1.11%	0.90%	8
21	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	x
22	Liquid conductivity (meas.)	А	0.50%	Ν	1	0.64	0.43	0.32%	0.26%	x
23	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	00
24	Liquid cpermittivity (meas.)	А	0.16%	Ν	1	0.64	0.43	0.10%	0.07%	×
25	Temp.Unc Conductivity	В	3.40%	R	$\sqrt{3}$	0.78	0.71	1.50%	1.40%	8
26	Temp.Unc Permittivity	В	0.40%	R	$\sqrt{3}$	0.23	0.26	0.10%	0.10%	8
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u}$	l_i^2	/	/	/	/	/	12.90%	12.70%	x
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		/	R	K=2	/	/	25.80%	25.40%	8

	Uncert	tainty o	f a System P	erformance C	Check	with D	ASY5 S	System		
			Accordin	g to IEC6220	9-2/20	10				
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measuremer	nt System									
1	Probe calibration	В	6.00%	Ν	1	1	1	6.00%	6.00%	8
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	8
3	Hemispherical isotropy	В	0.00%	R	$\sqrt{3}$	0.7	0.7	0.00%	0.00%	8
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	8
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8
7	RF ambient conditions-	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8

	noine				1		r			
	noise						1			
8	RF ambient conditions- reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
11	RF Ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8
12	Probe positioned mech. restrictions	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	œ
13	Probe positioning with respect to phantom shell	В	6.70%	R	$\sqrt{3}$	1	1	3.90%	3.90%	œ
14	Max.SAR Evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
15	Modulation Response	В	2.40%	R	$\sqrt{3}$	1	1	1.40%	1.40%	∞
Test Sample	Related									
16	Test sample positioning	А	0.00%	Ν	1	1	1	0.00%	0.00%	8
17	Device holder uncertainty	А	2.00%	Ν	1	1	1	2.00%	2.00%	8
18	Drift of output power	В	3.40%	R	$\sqrt{3}$	1	1	2.00%	2.00%	8
Phantom and	d Set-up									
19	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8
20	SAR correction	В	1.90%	R	$\sqrt{3}$	1	0.84	1.11%	0.90%	8
21	Liquid conductivity (meas.)	А	0.50%	Ν	1	0.64	0.43	0.32%	0.26%	8
22	Liquid cpermittivity (meas.)	А	0.16%	Ν	1	0.64	0.43	0.10%	0.07%	8
23	Temp.Unc Conductivity	В	1.70%	R	$\sqrt{3}$	0.78	0.71	0.80%	0.80%	∞
24	Temp.Unc Permittivity	В	0.40%	R	$\sqrt{3}$	0.23	0.26	0.10%	0.10%	∞
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u}$	u_i^2	/	/	/	/	/	12.90%	12.70%	œ
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		/	R	K=2	/	/	18.80%	18.40%	8

5.6.System Check Results

System Performance Check at 450 MHz Head TSL DUT: Dipole450 MHz; Type: D450V3; Serial: 1079 Date/Time: 03/12/2015 09:12:12 AM

Communication System: DuiJiangJi; Frequency: 450 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 450 MHz; $\sigma = 0.85 \text{ S/m}$; $\varepsilon_r = 43.11$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.71, 6.71, 6.71); Calibrated: 08/15/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

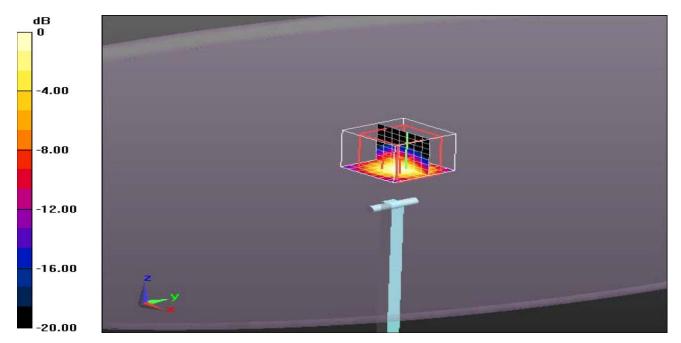
Electronics: DAE4 Sn1315; Calibrated: 07/22/2014

Phantom: ELI4; Type: Triple Modular;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x161x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 5.56 W/Kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.6 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 5.33 W/Kg

SAR(1 g) = 4.53 W/Kg; SAR(10 g) = 3.20 W/Kg

Maximum value of SAR (measured) = 5.12 W/Kg

0 dB = 5.11 W/Kg = 7.08 dB W/Kg

5.7.SAR Test Graph Results

Face held for GMRS Analog Front towards Phantom 462.6375 MHz

Communication System: DuiJiangJi; Frequency: 462.6375 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 462.6375 MHz; $\sigma = 0.87$ S/m; $\varepsilon_r = 42.89$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.71, 6.71, 6.71); Calibrated: 08/15/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

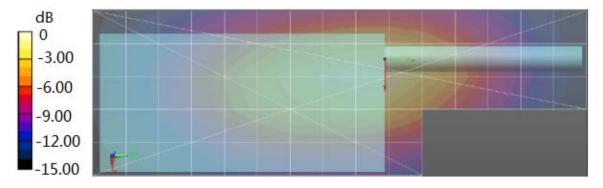
Electronics: DAE4 Sn1315; Calibrated: 07/22/2014

Phantom: ELI4; Type: Triple Modular;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =1.57 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.14 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 2.27 mW/g

SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.712 mW/g

Maximum value of SAR (measured) = 1.31 W/kg

 $^{0 \}text{ dB} = 1.36 \text{ W/kg} = 1.34 \text{ dB W/kg}$

Figure 1: Face held for GMRS Analog Front towards Phantom 462.6375 MHz

Face held for FRS Analog Front towards Phantom 467.6375 MHz

Communication System: DuiJiangJi; Frequency: 467.6375 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 467.6375 MHz; $\sigma = 0.89$ S/m; $\epsilon_r = 42.78$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.71, 6.71, 6.71); Calibrated: 08/15/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

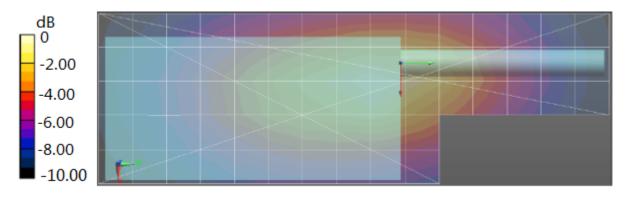
Electronics: DAE4 Sn1315; Calibrated: 07/22/2014

Phantom: ELI4; Type: Triple Modular;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 1.21 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.98 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.37 W/Kg

SAR(1 g) = 1.18 W/g; SAR(10 g) = 0.810 W/Kg

Maximum value of SAR (measured) = 1.12 W/kg

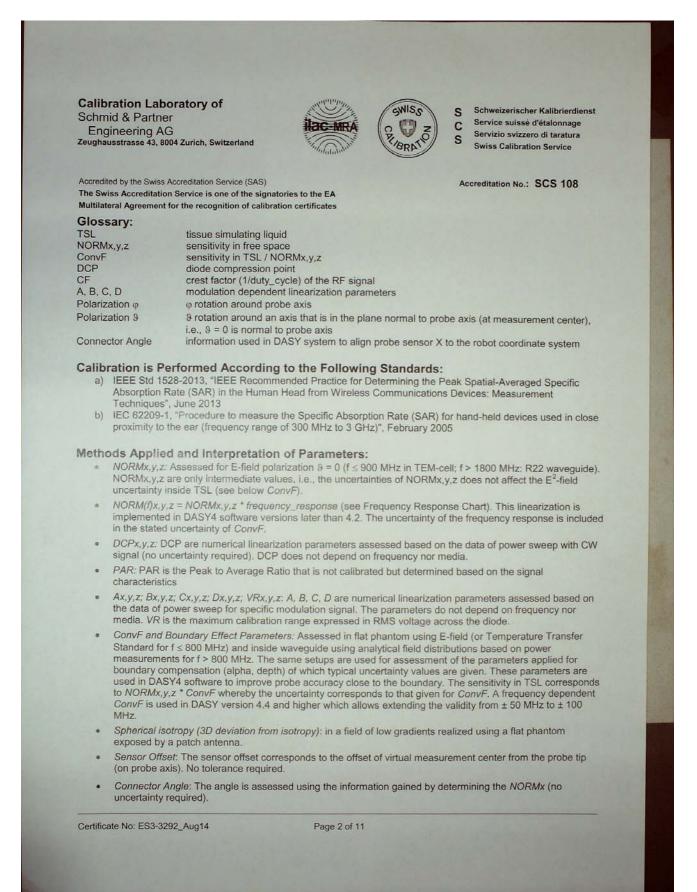

0dB = 1.12 W/kg = 0.49 dBW/kg

Figure 2: Face held for FRS Analog Front towards Phantom 467.6375 MHz

6. <u>Calibration Certificate</u>

6.1. Probe Calibration Ceriticate

annedited by the Curies Access	rrich, Switzerland		Schweizerischer Kalibrierdienst Servize suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
	vice is one of the signatories e recognition of calibration of	to the EA	
Client CIQ (Auden)			ES3-3292_Aug14
CALIBRATION	CERTIFICATE		
Object	ES3DV3 - SN:329	12	
Calibration procedure(s)		A CAL-12.v9, QA CAL-23.v5, QA dure for dosimetric E-field probes	CAL-25.v6
Calibration date:	August 15, 2014		
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15 Apr-15
	SN: S5277 (20x)	03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01920)	Apr-15
Reference 20 dB Attenuator	SN: \$5129 (30b)		A MAY KORNINGS
Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	SN: S5129 (30b) SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
Reference 30 dB Attenuator	SN: S5129 (30b) SN: 3013 SN: 660	30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13)	Dec-14 Dec-14
Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	SN: 3013 SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	SN: 3013 SN: 660	13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house)	
Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	SN: 3013 SN: 660 ID US3642U01700	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14 Scheduled Check
Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	SN: 3013 SN: 660 ID US3642U01700 US37390585	13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-13)	Dec-14 Scheduled Check In house check: Apr-16 In house check: Oct-14
Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	SN: 3013 SN: 660 ID US3642U01700	13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13)	Dec-14 Scheduled Check In house check: Apr-16
Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	SN: 3013 SN: 660 ID US3642U01700 US37390585 Name	13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-13) Function	Dec-14 Scheduled Check In house check: Apr-16 In house check: Oct-14

ES3DV3 - SN:3292

August 15, 2014

Probe ES3DV3

SN:3292

Manufactured: July 6, 2010

Repaired: July 28, 2014 Calibrated: August 15, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3292_Aug14

Page 3 of 11

ES3DV3- SN:3292

August 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.89	0.95	1.46	± 10,1 %
DCP (mV) ^B	107.1	106.1	103.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	209.7	±3.8 %
		Y	0.0	0.0	1.0		218.8	
		Z	0.0	0.0	1.0		198.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of NormX,Y,Z do not affect the E³-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES3-3292_Aug14

Page 4 of 11

ES3DV3- SN:3292

August 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	43.5	0.87	6.71	6.71	6.71	0.18	1.80	± 13.3 %
835	41.5	0.90	6.23	6.23	6.23	0.80	1.11	± 12.0 %
900	41.5	0.97	6.71	6.71	6.71	0.71	1.17	± 12.0 %
1810	40.0	1.40	5.07	5.07	5.07	0.61	1.36	± 12.0 %
1900	40.0	1.40	5.03	5.03	5.03	0.45	1.55	± 12.0 %
2100	39.8	1.49	5.04	5.04	5.04	0.77	1.17	± 12.0 %
2450	39.2	1.80	4.43	4.43	4.43	0.73	1.23	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.
^{*} At frequencies below 3 GHz, the validity of tissue parameters (a and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
^{*} Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

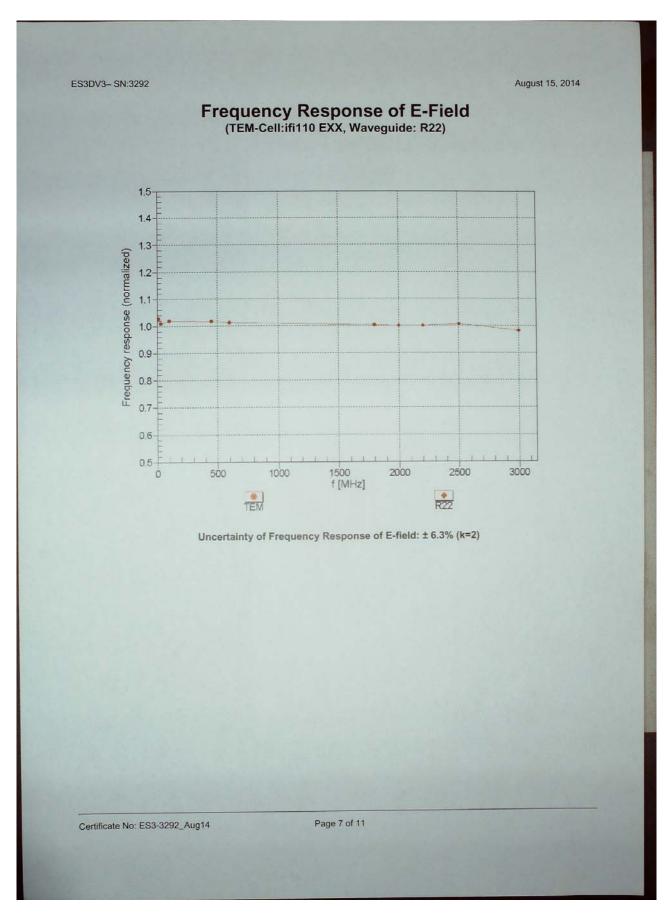
Certificate No: ES3-3292_Aug14

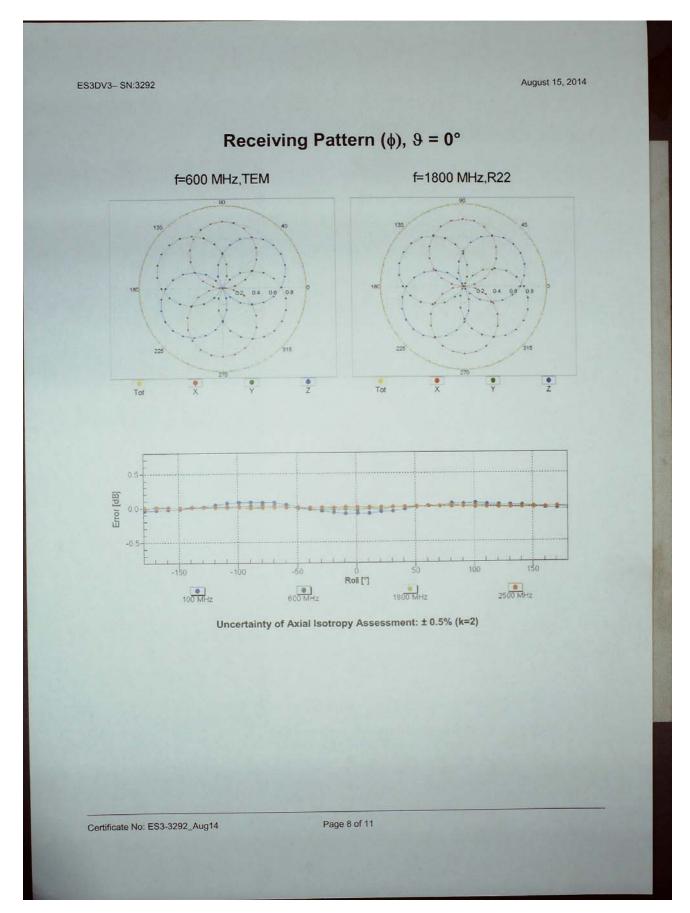
Page 5 of 11

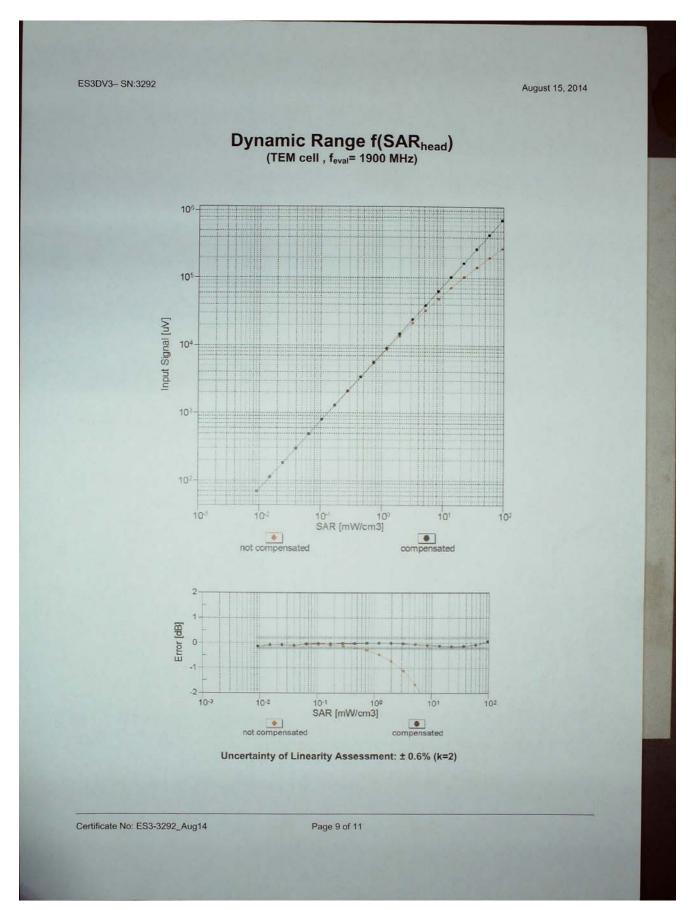
ES3DV3- SN:3292

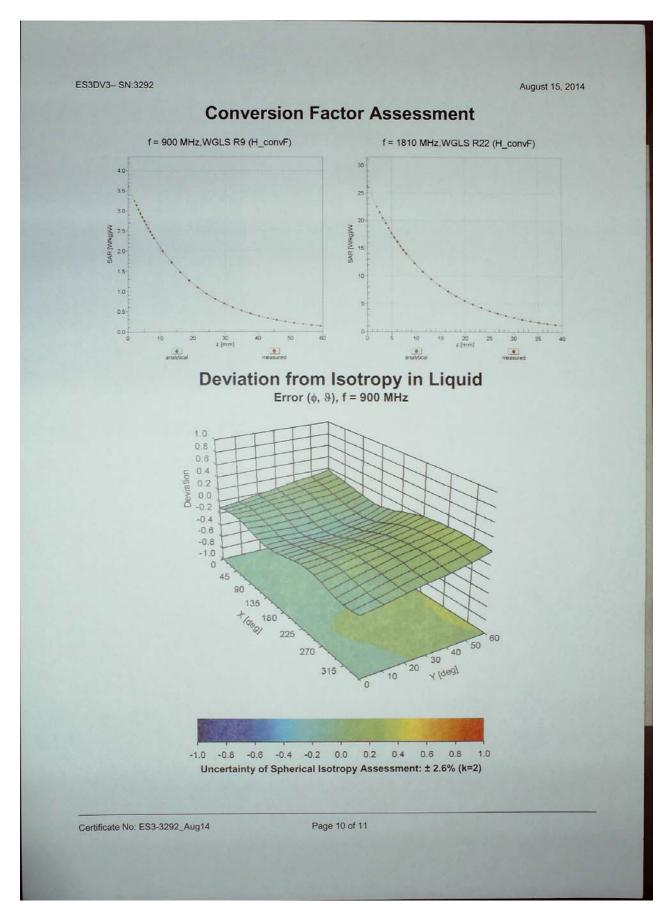
August 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292


f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	7.10	7.10	7.10	0.13	1.00	± 13.3 %
835	55.2	0.97	6.11	6.11	6.11	0.36	1.78	± 12.0 %
900	55.0	1.05	5.97	5.97	5.97	0.73	1.22	± 12.0 %
1810	53.3	1.52	4.79	4.79	4.79	0.59	1.45	± 12.0 %
1900	53.3	1.52	4.66	4.66	4.66	0.41	1.79	± 12.0 %
2100	53.2	1.62	4.77	4.77	4.77	0.63	1.42	± 12.0 %
2450	52.7	1.95	4.23	4.23	4.23	0.66	0.98	± 12.0 %


Calibration Parameter Determined in Body Tissue Simulating Media


^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated larget fissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: ES3-3292_Aug14

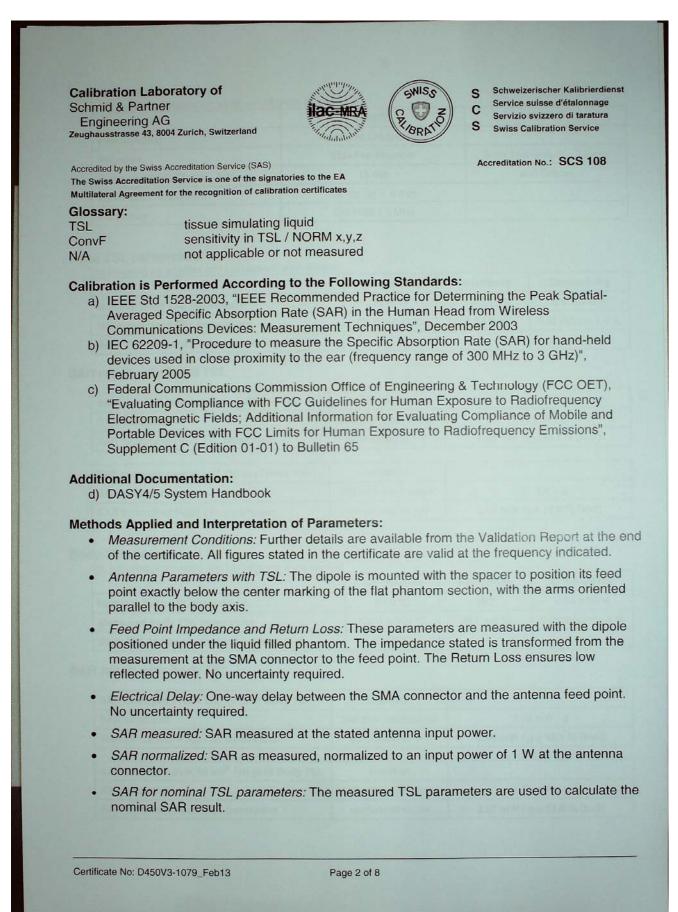
Page 6 of 11

ES3DV3- SN:3292

August 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Other Probe Parameters


Sensor Arrangement	Triangular
Connector Angle (°)	-8.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3292_Aug14

Page 11 of 11

6.2.D450V3 Dipole Calibration Ceriticate

Schmid & Partner	ry of		Schweizerischer Kalibrierdiens Service suisse d'étalonnage Servizio svizzero di taratura
Engineering AG Zeughausstrasse 43, 8004 Zuric	h, Switzerland	RIGRATIO S	Swiss Calibration Service
			No. 600 400
Accredited by the Swiss Accredita The Swiss Accreditation Service	ation Service (SAS) e is one of the signatories		No.: SCS 108
Multilateral Agreement for the r	ecognition of calibration of	certificates	
Client CIQ SZ (Auden	1)	Certificate N	o: D450V3-1079_Feb13
	ERTIFICATE		
Object	D450V3 - SN: 107	79	
			Contract Property Color
Calibration procedure(s)	QA CAL-15.v6	dure for dipole validation kits be	low 700 MHz
	Galibration proces	dure for dipole validation kits be	
	Call Service and State		States and the states
Calibration date:	February 28, 201	3	
A DESCRIPTION OF THE PARTY OF T			
The measurements and the unce	ertainties with confidence pr	onal standards, which realize the physical u robability are given on the following pages a	and are part of the certificate.
The measurements and the unce	ertainties with confidence prince of the closed laborator	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3)	ind are part of the certificate. °C and humidity < 70%.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards	ertainties with confidence protected in the closed laborator TE critical for calibration)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	and are part of the certificate. °C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been condu Calibration Equipment used (M&	ertainties with confidence protected in the closed laborator TE critical for calibration)	robability are given on the following pages a ry facility: environment temperature (22 ± 3)	ind are part of the certificate. °C and humidity < 70%.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E4419B	ertainties with confidence protected in the closed laborator TE critical for calibration)	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-13 Apr-13 Apr-13 Apr-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter F4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ertainties with confidence proceed in the closed laborator ITE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367)	Ind are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-13 Apr-13 Apr-13 Apr-13 Apr-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter F4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination	ertainties with confidence protected in the closed laborator ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: 5047.3 / 06327	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367)	Ind are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter F4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ertainties with confidence proceed in the closed laborator ITE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367)	Ind are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-13 Apr-13 Apr-13 Apr-13 Apr-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4	ertainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5047.3 / 06327 SN: 1507 SN: 654	color color <td< td=""><td>nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13</td></td<>	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter F4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6	ertainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5047.3 / 06327 SN: 1507	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01168) 30-Dec-12 (No. ET3-1507_Dec11)	rnd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards	ertainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5047.3 / 06327 SN: 1507 SN: 1507 SN: 654 ID #	cobability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01168) 30-Dec-12 (No. ET3-1507_Dec11) 03-May-12 (No. DAE4-654_May11) Check Date (in house)	rnd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A	ertainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5047.3 / 06327 SN: 1507 SN: 654 ID # MY41092317	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01168) 30-Dec-12 (No. ET3-1507_Dec11) 03-May-12 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-11)	rnd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13 <u>Scheduled Check</u> In house check: Oct-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter F4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ertainties with confidence protected in the closed laborator ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: 5047.3 / 06327 SN: 1507 SN: 654 ID # MY41092317 100005	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01168) 30-Dec-12 (No. ET3-1507_Dec11) 03-May-12 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	rd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13 <u>Scheduled Check</u> In house check: Oct-13 In house check: Oct-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter F4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ertainties with confidence protected in the closed laborator ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: 5047.3 / 06327 SN: 1507 SN: 654 ID # MY41092317 100005 US37390585 S4206	cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01168) 30-Dec-12 (No. ET3-1507_Dec11) 03-May-12 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	rd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13 <u>Scheduled Check</u> In house check: Oct-13 In house check: Oct-12
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ertainties with confidence protected in the closed laborator ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: 5047.3 / 06327 SN: 1507 SN: 654 ID # MY41092317 100005 US37390585 S4206 Name	cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01168) 30-Dec-12 (No. ET3-1507_Dec11) 03-May-12 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) Function	rd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13 <u>Scheduled Check</u> In house check: Oct-13 In house check: Oct-12

Measurement Conditions

far as not given on page 1

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	a hard and
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

meters and calculations were applied.

ne following parametero and careta	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.6 ± 6 %	0.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

Condition	Linder and the providence
398 mW input power	1.81 mW / g
normalized to 1W	4.63 mW /g ± 18.1 % (k=2)
	398 mW input power

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.21 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	3.09 mW /g ± 17.6 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	0.91 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	398 mW input power	1.74 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	4.45 mW / g ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 398 mW input power	1.16 mW / g

Certificate No: D450V3-1079_Feb13

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	59.8 Ω - 0.5 jΩ	
Return Loss	- 21.0 dB	

Antenna Parameters with Body TSL

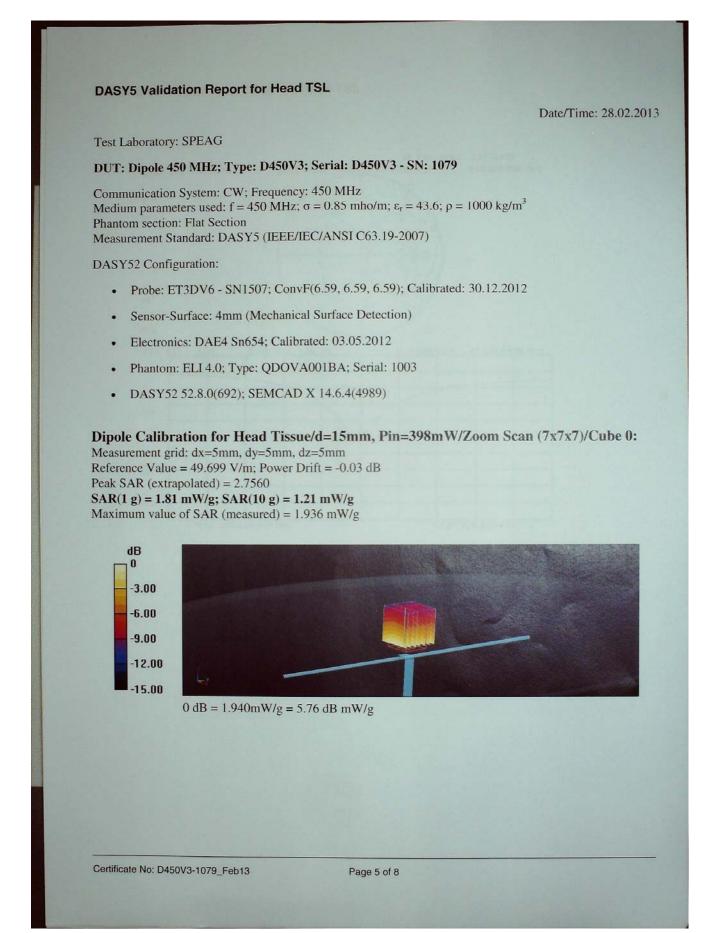
Impedance, transformed to feed point	56.4 Ω - 5.9 jΩ	
Return Loss	- 21.7 dB	

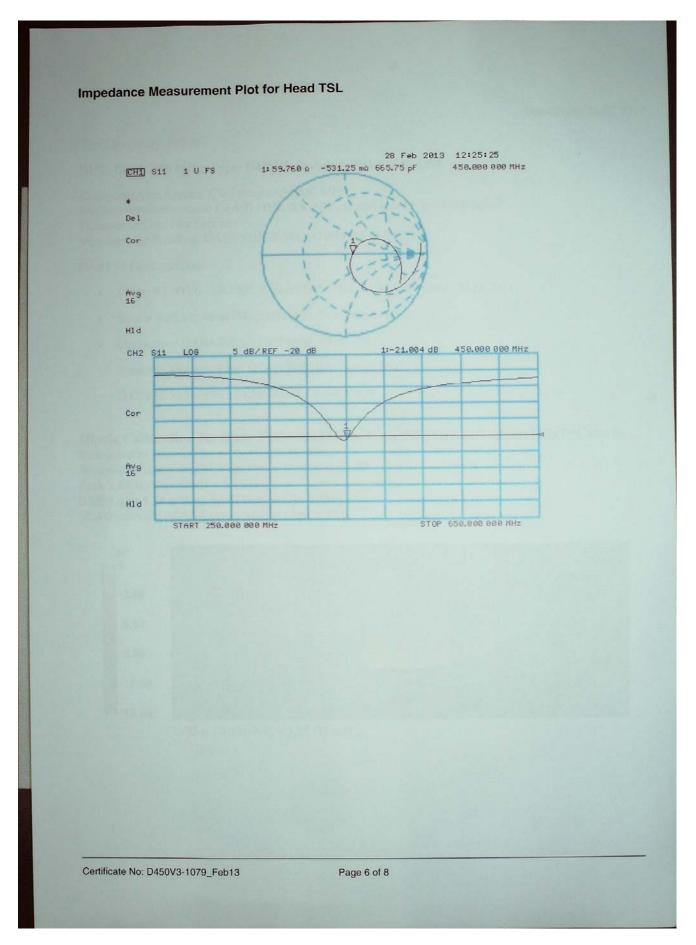
General Antenna Parameters and Design

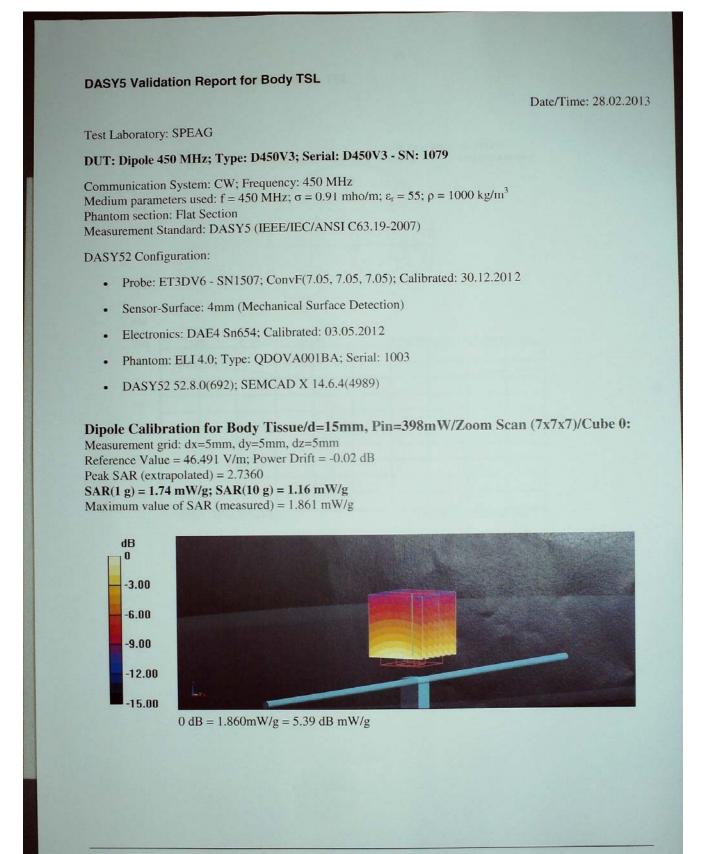
Electrical Delay (one direction)	1.350 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

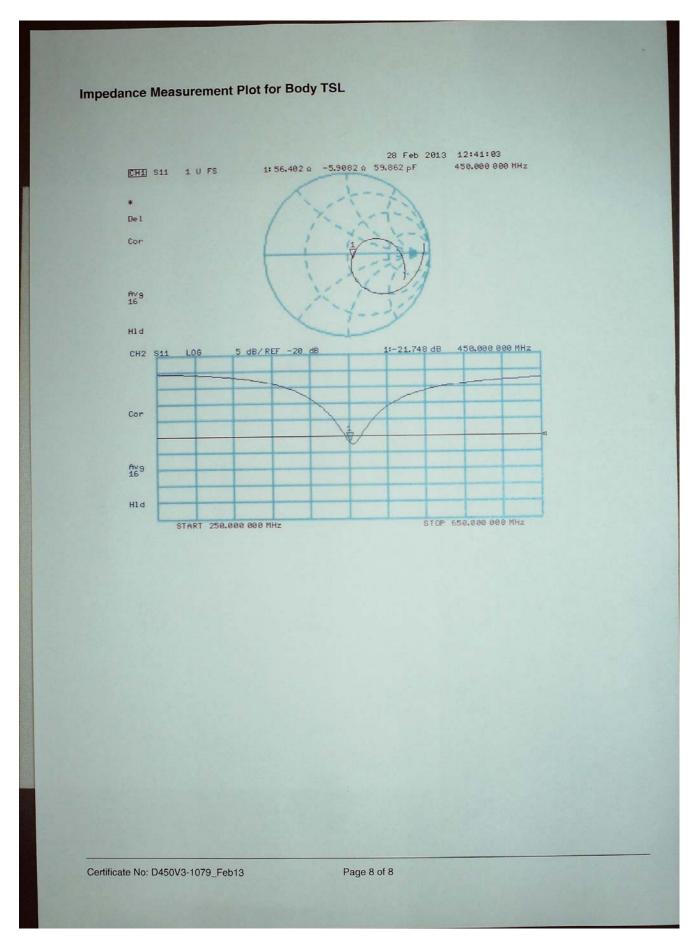

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

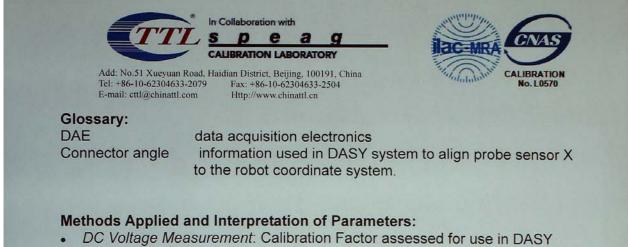

Additional EUT Data


Manufactured by	SPEAG
Manufactured on	March 03, 2011

Certificate No: D450V3-1079_Feb13

Page 4 of 8




Certificate No: D450V3-1079_Feb13

Page 7 of 8

6.3.DAE4 Calibration Ceriticate

CALIBRATION		Certificate No: Z14-97066		
	CERTIFICA	ATE		
Object	DAE	E4 - SN: 1315		
Calibration Procedure(s)	Calib	TMC-OS-E-01-198 Calibration Procedure for the Data Acquisition Electronics (DAEx)		
Calibration date:	July	22, 2014		
humidity<70%.		in the closed laboratory facility: environment temperature(22 ± 3)°C and the closed laboratory facility:		
Calibration Equipment u Primary Standards		al for calibration) Cal Date(Calibrated by, Certificate No.) Scheduled Calibration		
		our bale(ourbrated by, ocruited into the ocruited ourbratter)		
Documenting Process Calibrator 753	1971018	01-July-14 (CTTL, No:J14X02147) July-15		
	1971018			
	1971018 Name Yu Zongying	01-July-14 (CTTL, No:J14X02147) July-15 Function Signature		
Process Calibrator 753	Name	01-July-14 (CTTL, No:J14X02147) July-15 Function Signature		
Process Calibrator 753	Name Yu Zongying	01-July-14 (CTTL, No:J14X02147) July-15 Function Signature SAR Test Engineer SAR Project Leader Deputy Director of the laboratory Dth 2 Labs 4 to 2		
Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	Name Yu Zongying Qi Dianyuan Lu Bingsong	01-July-14 (CTTL, No:J14X02147) July-15 Function Signature SAR Test Engineer SAR Project Leader		

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z14-97066

Page 2 of 3

	CALIBRATION LABORAT	CORV	IC MRA
Add: No SI Years D			
Tel: +86-10-62304633-	oad, Haidian District, Beijing, 10 2079 Fax: +86-10-62304633		No. L057
E-mail: cttl@chinattl.cc	m Http://www.chinattl.cr	1	
Low Range: 1L	on nominal _SB =6.1µV,full r	ange = -100+300 m ange = -1+3mV sec; Measuring time: 3 sec	
A/D - Converter Resoluti High Range: 11 Low Range: 1L DASY measurement part	on nominal LSB = 6.1µV , full r LSB = 61nV , full r ameters: Auto Zero Time: 3 s	ange = -1+3mV sec; Measuring time: 3 sec	
A/D - Converter Resoluti High Range: 11 Low Range: 1L	on nominal LSB = 6.1µV , full r LSB = 61nV , full r	ange = -1+3mV	
A/D - Converter Resoluti High Range: 11 Low Range: 1L DASY measurement part	on nominal LSB = 6.1µV , full r LSB = 61nV , full r ameters: Auto Zero Time: 3 s	ange = -1+3mV sec; Measuring time: 3 sec	

Connector Angle

Connector Angle to be used in DASY system

22°±1°

Certificate No: Z14-97066

Page 3 of 3