

TEST REPORT

Test Report No. : UL-RPT-RP13559945JD05A V3.0

Customer	:	Apple Inc.
Model No. / HVIN	:	A2450
PMN	:	Apple Magic Keyboard
FCC ID	:	BCGA2450
ISED Certification No.	:	IC: 579C-A2450
Technology	:	Bluetooth – BDR & EDR
Test Standard(s)	:	FCC Parts 15.207, 15.247(a)(1), 15.247(a)(1)(iii), 15.247(b)(1) & 15.247(d) Innovation, Science and Economic Development Canada RSS-247 Issue 2 Sections 5.1(a), 5.1(b), 5.1(d), 5.4(b) & 5.5 RSS-Gen Issue 5 Sections 6.7, 6.12 & 8.8
Test Laboratory	:	UL International (UK) Ltd, Basingstoke, Hampshire, RG24 8AH, United Kingdom

- 1. This test report shall not be reproduced except in full, without the written approval of UL International (UK) Ltd.
- 2. The results in this report apply only to the sample(s) tested.
- 3. The sample tested is in compliance with the above standard(s).
- 4. The test results in this report are traceable to the national or international standards.
- 5. Version 3.0 supersedes all previous versions.

Date of Issue:

07 April 2021

Checked by:

seh wilders

Sarah Williams RF Operations Leader, Radio Laboratory

Company Signatory:

RAllee

Ben Mercer Lead Project Engineer, Radio Laboratory

The *Bluetooth*[®] word mark and logos are owned by the *Bluetooth* SIG, Inc. and any use of such marks by UL International (UK) Ltd is under licence. Other trademarks and trade names are those of their respective owners.

UL International (UK) Ltd

Customer Information

Company Name:	Apple Inc.	
Address:	One Apple Park Way Cupertino, California 95014 U.S.A.	
Contact Name:	Stuart Thomas	

Report Revision History

Version Number	Issue Date	Revision Details	Revised By
1.0	17/03/2021	Initial Version	Sarah Williams
2.0	01/04/2021	PMN update, AC Conducted & <30 MHz tests added	Sarah Williams
3.0	07/04/2021	FCC ID update	Sarah Williams

Table of Contents

Customer Information	2
Report Revision History	2
 Attestation of Test Results. 1.1. Description of EUT 1.2. General Information 1.3. Summary of Test Results 1.4. Deviations from the Test Specification 	4 4 4 5
2. Summary of Testing	6 6
2.2. Methods and Procedures2.3. Calibration and Uncertainty2.4. Test and Measurement Equipment	6 7 8
3. Equipment Under Test (EUT)	
 Identification of Equipment Under Test (EUT) Modifications Incorporated in the EUT 	10 10
3.3. Additional Information Related to Testing	11
3.4. Description of Available Antennas 3.5. Description of Test Setup	11 12
4. Antenna Port Test Results	17
4.1. Transmitter 99% Emission Bandwidth	17
4.2. Transmitter 20 dB Bandwidth 4.3. Transmitter Carrier Frequency Separation	22 27
4.4. Transmitter Number of Hopping Frequencies and Average Time of Occupancy 4.5. Transmitter Maximum Peak Output Power	32 35
5. Radiated Test Results	
5.1. Transmitter Radiated Emissions <1 GHz 5.2. Transmitter Radiated Emissions >1 GHz	44 46
5.3. Transmitter Band Edge Radiated Emissions	48
6. AC Power Line Conducted Emissions Test Results 6.1. Transmitter AC Conducted Spurious Emissions	65 65
Appendix 1 FHSS Duty Cycle Correction Factor Calculation	70 70

<u>1. Attestation of Test Results</u>

1.1. Description of EUT

The equipment under test was a *Bluetooth* Keyboard.

1.2. General Information

Specification Reference:	47CFR15.247		
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Section 15.247		
Specification Reference:	47CFR15.207 & 47CFR15.209		
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Sections 15.207 & 15.209		
Specification Reference:	RSS-Gen Issue 5 March 2019		
Specification Title:	General Requirements for Compliance of Radio Apparatus		
Specification Reference:	RSS-247 Issue 2 February 2017		
Specification Title:	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices		
Site Registration:	FCC: 621311, ISEDC: 20903		
FCC Lab. Designation No.:	UK2011		
ISEDC CABID:	UK0001		
Location of Testing:	Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom		
Test Dates:	17 November 2020 to 29 March 2021		

1.3. Summary of Test Results

FCC Reference (47CFR)	ISED Canada Reference	Measurement	Result
N/A	RSS-Gen 6.7	99% Emission Bandwidth	Complied
Part 15.247(a)(1)	RSS-Gen 6.7 / RSS-247 5.1(a)	Transmitter 20 dB Bandwidth	Complied
Part 15.247(a)(1)	RSS-247 5.1(b)	Transmitter Carrier Frequency Separation	Complied
Part 15.247(a)(1)(iii) RSS-247 5.1(d)		Transmitter Number of Hopping Frequencies and Average Time of Occupancy	Complied
Part 15.247(b)(1)	RSS-Gen 6.12 / RSS-247 5.4(b)	Transmitter Maximum Peak Output Power	Complied
Part 15.247(d) & 15.209(a)	RSS-Gen 6.13 / RSS-247 5.5	Transmitter Radiated Emissions	Complied
Part 15.247(d) & 15.209(a)	RSS-Gen 6.13 / RSS-247 5.5	Transmitter Band Edge Radiated Emissions	Complied
Part 15.207	RSS-Gen 8.8	Transmitter AC Conducted Emissions	Complied

1.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

2. Summary of Testing

2.1. Facilities and Accreditation

The test site and measurement facilities used to collect data are located at Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom. The following table identifies which facilities were utilised for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

Site 1	Х
Site 2	-
Site 17	-

UL International (UK) Ltd is accredited by the United Kingdom Accreditation Service (UKAS). UKAS is one of the signatories to the International Laboratory Accreditation Co-operation (ILAC) Arrangement for the mutual recognition of test reports. The tests reported herein have been performed in accordance with its terms of accreditation.

2.2. Methods and Procedures

Reference:	ANSI C63.10-2013	
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices	
Reference:	KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019	
Title:	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules	
Reference:	KDB 174176 D01 Line Conducted FAQ v01r01 June 3, 2015	
Title:	AC Power-Line Conducted Emissions Frequently Asked Questions	

2.3. Calibration and Uncertainty

Measuring Instrument Calibration

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

Measurement Uncertainty

<u>Overview</u>

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

Decision Rule

The decision rule applied is based upon the accuracy method criteria. The measurement uncertainty is met and the result is considered in conformance with the requirement criteria if the observed value is within the prescribed limit.

Measurement Uncertainty

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
99% Emission Bandwidth	2.4 GHz to 2.4835 GHz	95%	±3.92 %
20 dB Bandwidth	2.4 GHz to 2.4835 GHz	95%	±4.59 %
Carrier Frequency Separation	2.4 GHz to 2.4835 GHz	95%	±4.59 %
Average Time of Occupancy	2.4 GHz to 2.4835 GHz	95%	±3.53 ns
Conducted Maximum Peak Output Power	2.4 GHz to 2.4835 GHz	95%	±1.13 dB
Radiated Spurious Emissions	9 kHz to 30 MHz	95%	±5.32 dB
Radiated Spurious Emissions	30 MHz to 1 GHz	95%	±3.30 dB
Radiated Spurious Emissions	1 GHz to 26.5 GHz	95%	±2.94 dB
AC Conducted Spurious Emissions	0.15 MHz to 30 MHz	95%	±1.96 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

VERSION NO. 3.0

2.4. Test and Measurement Equipment

Test Equipment Used for Transmitter Conducted Tests

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2002	Thermohygrometer	Testo	608-H1	45041825	05 Jan 2021	12
A2525	Attenuator	AtlanTecRF	AN18W5-10	832827#3	Calibrated before use	-
M1996	Signal Analyser	Rohde & Schwarz	FSV13	100975	24 Jan 2021	12
G0628	Vector Signal Generator	Rohde & Schwarz	SMBV100A	261847	08 Oct 2023	36

Test Equipment Used for Transmitter Radiated Emissions

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2040	Thermohygrometer	Testo	608-H1	45124934	10 Dec 2021	12
K0001	3m RSE Chamber	Rainford EMC	N/A	N/A	14 Oct 2021	12
M2044	Test Receiver	Rohde & Schwarz	ESU26	100122	03 Sep 2021	12
M1874	Test Receiver	Rohde & Schwarz	ESU26	100553	24 Apr 2021	12
A3154	Pre-Amplifier	Com Power	PAM-103	18020012	29 Sep 2021	12
A3179	Pre-Amplifier	Hewlett Packard	8449B	3008A00934	29 Sep 2021	12
A3141	Pre-Amplifier	Schwarzbeck	BBV 9718 B	00021	29 Sep 2021	12
A2896	Pre-Amplifier	Schwarzbeck	BBV 9721	9721 - 023	13 Feb 2021	12
A553	Antenna	Chase	CBL6111A	1593	15 Sep 2021	12
A3138	Antenna	Schwarzbeck	BBHA 9120 B	00702	06 Oct 2021	12
A3139	Antenna	Schwarzbeck	HWRD750	00027	06 Oct 2021	12
A2895	Antenna	Schwarzbeck	BBHA 9170	9170-728	13 Feb 2021	12
A3112	Attenuator	AtlanTecRF	AN18-06	219706#2	15 Sep 2021	12
A2141	Attenuator	AtlanTecRF	AN18-10	090918-04	18 Nov 2021	12
A3083	Low Pass Filter	AtlanTecRF	AFL-01000	18010900076	20 Feb 2021	12
A3093	High Pass Filter	AtlanTecRF	AFH-03000	18051800077	20 Feb 2021	12
A3095	High Pass Filter	AtlanTecRF	AFH-07000	18051600012	20 Mar 2021	12
A3198	Magnetic Loop Antenna	ETS-Lindgren	6502	00221887	01 Apr 2021	12

VERSION NO. 3.0

Test and Measurement Equipment (continued)

Test Equipment Used for Transmitter Band Edge Radiated Emissions

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2040	Thermohygrometer	Testo	608-H1	45124934	07 Jan 2021	12
K0001	3m RSE Chamber	Rainford EMC	N/A	N/A	14 Oct 2021	12
M2044	Test Receiver	Rohde & Schwarz	ESU26	100122	03 Sep 2021	12
A3179	Pre-Amplifier	Hewlett Packard	8449B	3008A00934	29 Sep 2021	12
A3138	Antenna	Schwarzbeck	BBHA 9120 B	00702	06 Oct 2021	12
A2141	Attenuator	AtlanTecRF	AN18-10	090918-04	18 Nov 2021	12

Test Equipment Used for Transmitter AC Conducted Spurious Emissions:

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2037	Thermohygrometer	Testo	608-H1	45124925	09 Dec 2021	12
A649	LISN	Rohde & Schwarz	ESH3-Z5	825562/008	03 Aug 2021	12
M1273	Test Receiver	Rohde & Schwarz	ESIB 26	100275	14 Dec 2021	12
A1830	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100668	07 Apr 2021	12

Test Measurement Software/Firmware Used:

Name	Version	Release Date
Rohde & Schwarz EMC32	6.30.0	2018

TEST REPORT

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name:	Apple
Model Name or Number / HVIN:	A2450
PMN:	Apple Magic Keyboard
Test Sample Serial Number:	F0T039400020JPQ0F (Conducted sample)
Hardware Version:	REV 1.0
Software Version:	0xF125
FCC ID:	BCGA2450
ISED Canada Certification Number:	IC: 579C-A2450

Brand Name:	Apple
Model Name or Number / HVIN:	A2450
PMN:	Apple Magic Keyboard
Test Sample Serial Number:	F0T0395000G0JPQ00 (Radiated sample #1)
Hardware Version:	REV 1.0
Software Version:	0xF125
FCC ID:	BCGA2450
ISED Canada Certification Number:	IC: 579C-A2450

Brand Name:	Apple
Model Name or Number / HVIN:	A2450
PMN:	Apple Magic Keyboard
Test Sample Serial Number:	F0T039500090JPQ07 (Radiated sample #2)
Hardware Version:	REV 1.0
Software Version:	0xF125
FCC ID:	BCGA2450
ISED Canada Certification Number:	IC: 579C-A2450

3.2. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.3. Additional Information Related to Testing

Tested Technology:	Bluetooth					
Power Supply Requirement:	Nominal	3.8 VDC				
Type of Unit:	Transceiver	Transceiver				
Channel Spacing:	1 MHz					
Mode:	Basic Rate	En	hanced Data F	Rate		
Modulation:	GFSK	π/4	/4-DQPSK 8DP			8DPSK
Packet Type: (Maximum Payload)	DH1		H1 3DH1			3DH5
Data Rate (Mbps):	1 2			3		3
Maximum Conducted Output Power:	5.4 dBm					
Transmit Frequency Range:	2402 MHz to 2480 MHz					
Fransmit Channels Tested: Channel ID			Channel Number		Chanı	nel Frequency (MHz)
	Bottom		0		2402	
	Middle		39		2441	
	Тор		78			2480

3.4. Description of Available Antennas

The radio utilizes an integrated antenna, with the following maximum gain:

Frequency (MHz)	Antenna Gain (dBi)
2402	5.3
2441	5.2
2480	3.7

3.5. Description of Test Setup

Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Test Laptop
Brand Name:	Apple
Model Name or Number:	MacBook Pro
Serial Number:	C02WP003JW64

Description:	Test Laptop
Brand Name:	Apple
Model Name or Number:	MacBook Pro
Serial Number:	C02C800CP0C1

Description:	USB Diagnostic Cable
Brand Name:	Apple
Model Name or Number:	Kanzi
Serial Number:	3252E1

Description:	USB Power Supply
Brand Name:	Apple
Model Name or Number:	A3185
Serial Number:	D293092Z6E9DHLHCH

Description:	USB Adaptor Type C-A
Brand Name:	Apple
Model Name or Number:	A1632
Serial Number:	Not marked or stated

Description:	USB to Lightning Cable
Brand Name:	Apple
Model Name or Number:	A1480
Serial Number:	Not marked or stated

Description:	Test Laptop
Brand Name:	Apple
Model Name or Number:	MacBook Pro
Serial Number:	C02C800KP0CW

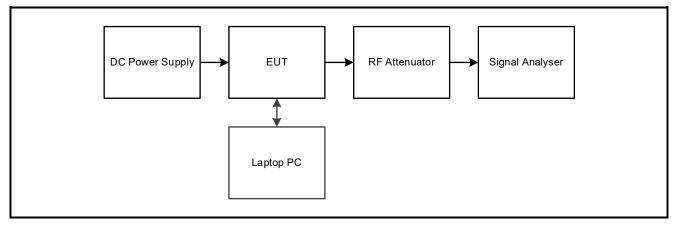
Operating Modes

The EUT was tested in the following operating mode(s):

- Continuously transmitting at maximum power on bottom, middle and top channels in BDR (DH1 packets) or EDR (2DH1, 3DH1 or 3DH5 packets) as required.
- Continuously transmitting at maximum power in hopping mode on all channels in BDR (DH1 packets) or EDR (2DH1, 3DH1 or 3DH5 packets) as required.

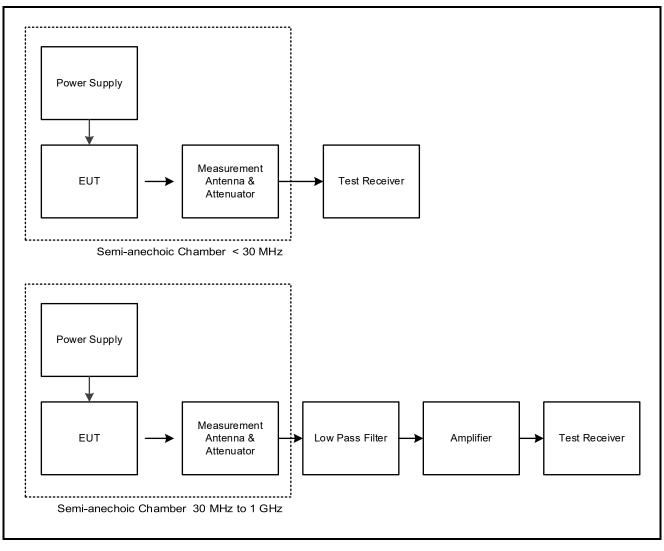
Configuration and Peripherals

The EUT was tested in the following configuration(s):


- Controlled in test mode using a set of commands entered into a terminal application on the test laptop supplied by the customer. The commands were used to enable a continuous transmission and to select the test channels as required. The customer supplied a document containing the setup instructions 'EUT_BT_SOP.docx'.
- The EUT was powered from a DC power supply for conducted tests.
- For transmitter radiated spurious emissions tests, initial checks were performed with the EUT transmitting in all available data rates. BDR (DH1 packets) mode was found to transmit the highest power and was therefore deemed worst case.
- Transmitter radiated spurious emissions tests were performed with the AC Charger connected to the EUT.

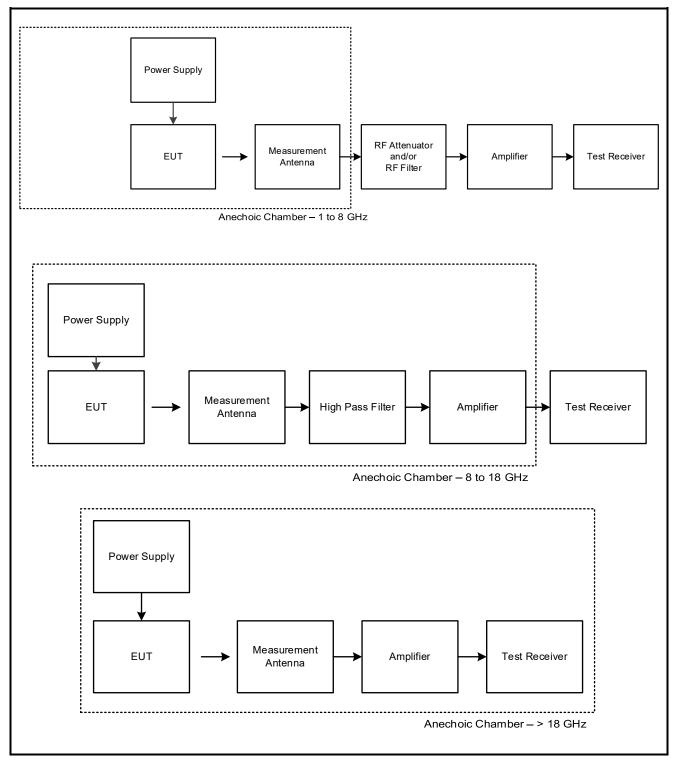
VERSION NO. 3.0

Test Setup Diagrams

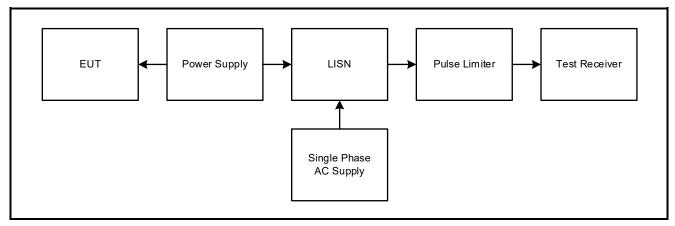

Conducted Tests:

Test Setup for Transmitter Conducted Tests

Radiated Tests:


Test Setup for Transmitter Radiated Emissions

VERSION NO. 3.0


Test Setup Diagrams (continued)

Test Setup for Transmitter Radiated Emissions (continued)

Test Setup Diagrams (continued)

Test Setup for Transmitter AC Conducted Emissions

4. Antenna Port Test Results

4.1. Transmitter 99% Emission Bandwidth

Test Summary:

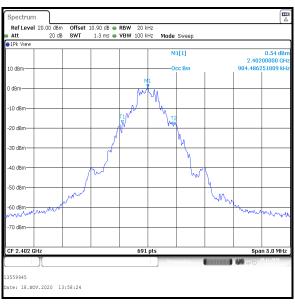
Test Engineers:	Chanthu Thevarajah & Matthew Botfield	Test Date:	18 November 2020
Test Sample Serial Number:	F0T039400020JPQ0F		

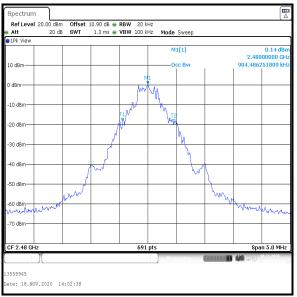
FCC Reference:	N/A
ISED Canada Reference:	RSS-Gen 6.7
Test Method Used:	RSS-Gen 6.7

Environmental Conditions:

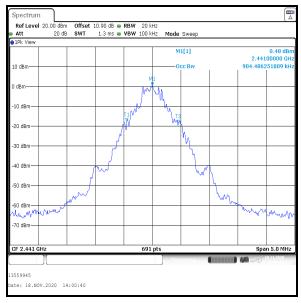
Temperature (°C):	23
Relative Humidity (%):	42

Note(s):


1. The signal analyser resolution bandwidth was set to 20 kHz and video bandwidth 100 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The span was set to 5 MHz. The signal analyser occupied bandwidth function measured the 99% emission bandwidth.


2. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable.

Transmitter 99% Emission Bandwidth (continued)


Results: DH1

Channel	99% Emission Bandwidth (kHz)
Bottom	904.486
Middle	904.486
Тор	904.486

Top Channel


Middle Channel

Transmitter 99% Emission Bandwidth (continued)

Results: 2DH1

Channel	99% Emission Bandwidth (kHz)
Bottom	1143.271
Middle	1143.271
Тор	1143.271

Top Channel

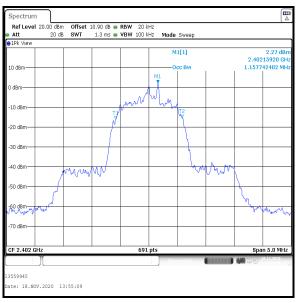
Middle Channel

Transmitter 99% Emission Bandwidth (continued)

Results: 3DH1

Channel	99% Emission Bandwidth (kHz)
Bottom	1143.271
Middle	1150.507
Тор	1150.507

Top Channel



Middle Channel

Transmitter 99% Emission Bandwidth (continued)

Results: 3DH5

Channel	99% Emission Bandwidth (kHz)
Bottom	1157.742
Middle	1157.742
Тор	1157.742

Top Channel

Middle Channel

4.2. Transmitter 20 dB Bandwidth

Test Summary:

Test Engineers:	Chanthu Thevarajah & Matthew Botfield	Test Date:	18 November 2020
Test Sample Serial Number:	F0T039400020JPQ0F		

FCC Reference:	Part 15.247(a)(1)
ISED Canada Reference:	RSS-Gen 6.7 / RSS-247 5.1(a)
Test Method Used:	ANSI C63.10 Section 6.9.2

Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	42

Note(s):

- The signal analyser resolution bandwidth was set to 20 kHz and video bandwidth 100 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The span was set to 3 MHz. Normal and delta markers were placed 20 dB down from the peak of the carrier.
- 2. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable.

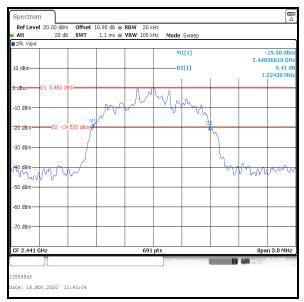
Results: DH1

Channel	20 dB Bandwidth (kHz)
Bottom	1046.300
Middle	1046.300
Тор	1046.300

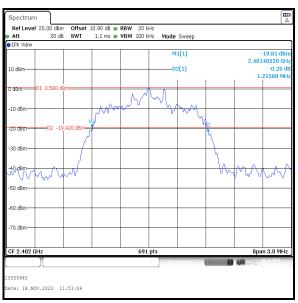
Top Channel

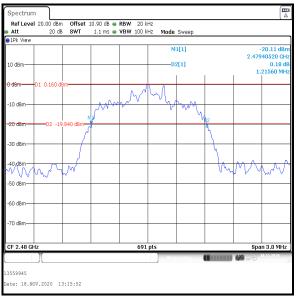

Middle Channel

Results: 2DH1

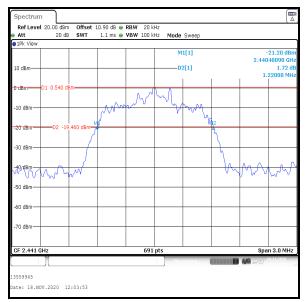

Channel	20 dB Bandwidth (kHz)	
Bottom	1224.300	
Middle	1224.300	
Тор	1228.700	

Bottom Channel


Top Channel



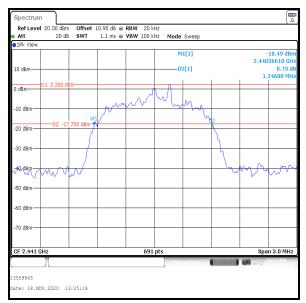
Middle Channel


Results: 3DH1

Channel	20 dB Bandwidth (kHz)	
Bottom	1215.600	
Middle	1220.000	
Тор	1215.600	


Top Channel

Middle Channel


Results: 3DH5

Channel	20 dB Bandwidth (kHz)	
Bottom	1246.000	
Middle	1246.000	
Тор	1241.700	

Top Channel

Middle Channel

4.3. Transmitter Carrier Frequency Separation

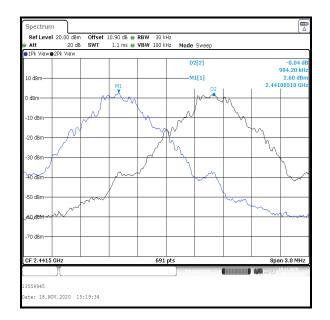
Test Summary:

Test Engineers:	Chanthu Thevarajah & Matthew Botfield	Test Date:	18 November 2020
Test Sample Serial Number:	F0T039400020JPQ0F		

FCC Reference:	Part 15.247(a)(1)
ISED Canada Reference:	RSS-247 5.1(b)
Test Method Used:	ANSI C63.10 Section 7.8.2

Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	42

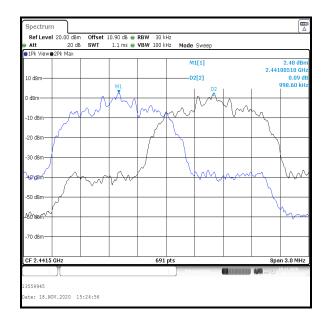

Note(s):

- 1. The 20 dB bandwidth measured for the middle channel operating at 2441 MHz was used to calculate the limit.
- 2. The signal analyser resolution bandwidth was set to 30 kHz and video bandwidth 100 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 3 MHz. A marker was placed at the centre of one signal and then a delta marker was placed in the same place on the second signal.
- 3. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable.

Transmitter Carrier Frequency Separation (continued)

Results: DH1

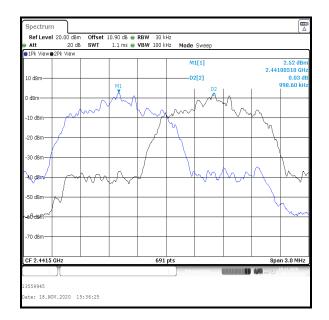
Carrier Frequency	Limit (²/₃ of 20 dB BW)	Margin	Result
Separation (kHz)	(kHz)	(kHz)	
994.200	697.533	296.667	Complied


VERSION NO. 3.0

ISSUE DATE: 07 APRIL 2021

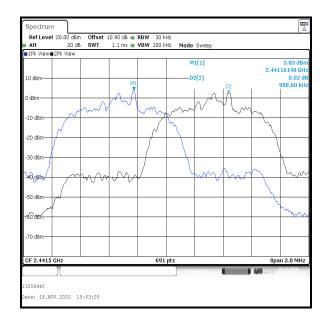
Transmitter Carrier Frequency Separation (continued)

Results: 2DH1


Carrier Frequency Separation (kHz)	Limit (²/₃ of 20 dB BW) (kHz)	Margin (kHz)	Result
998.600	816.200	182.400	Complied

Transmitter Carrier Frequency Separation (continued)

Results: 3DH1


Carrier Frequency Separation (kHz)	Limit (²/₃ of 20 dB BW) (kHz)	Margin (kHz)	Result
998.600	813.333	185.267	Complied

Transmitter Carrier Frequency Separation (continued)

Results: 3DH5

Carrier Frequency Separation (kHz)	Limit (²/₃ of 20 dB BW) (kHz)	Margin (kHz)	Result
998.600	830.667	167.933	Complied

VERSION NO. 3.0

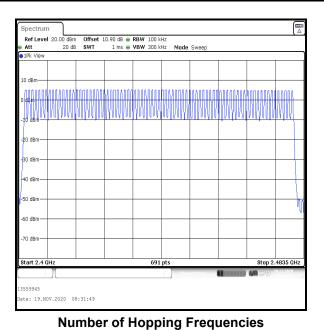
4.4. Transmitter Number of Hopping Frequencies and Average Time of Occupancy

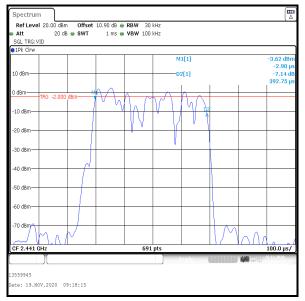
Test Engineers:	Chanthu Thevarajah & Matthew Botfield	Test Date:	19 November 2020
Test Sample Serial Number:	F0T039400020JPQ0F		

FCC Reference:	Part 15.247(a)(1)(iii)	
ISED Canada Reference:	RSS-247 5.1(d)	
Test Method Used:	ANSI C63.10 Sections 7.8.3 & 7.8.4	

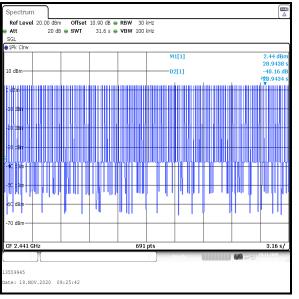
Environmental Conditions:

Temperature (°C):	22
Relative Humidity (%):	36

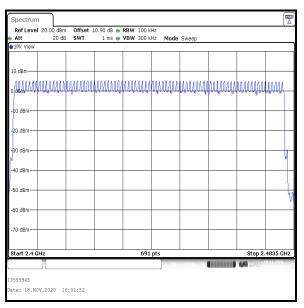

Note(s):

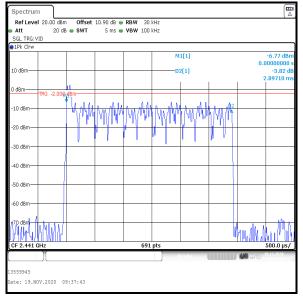

- 1. Tests were performed to identify the average time of occupancy in number of channels (79) x 0.4 seconds. The calculated period is 31.6 seconds.
- 2. The signal analyser was set up for the Number of Hopping Frequencies measurement as follows: the resolution bandwidth was set to 100 kHz and video bandwidth of 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 83.5 MHz.
- 3. The signal analyser was set up for the Emission Width measurement as follows: the resolution bandwidth was set to 30 kHz and video bandwidth of 100 kHz. A peak detector was used and sweep time was set to auto with a span of zero Hz. The signal analyser was set to trigger at 0.3 ms for 1-DH1 and 1 ms for 3-DH5, with a marker placed at the start of the emission and a delta marked place at the end of the emission. The emission width is recorded in the table below.
- 4. The signal analyser was set up for the Number of Hopping Frequencies in 32 seconds measurement as follows: the resolution bandwidth was set to 30 kHz and video bandwidth of 100 kHz. A peak detector was used and sweep time was set to 31.6 seconds. The EUT was set to transmit in a hopping frequency mode with zero span. The total number of hopping frequencies were recorded in the table below.
- 5. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable.

VERSION NO. 3.0

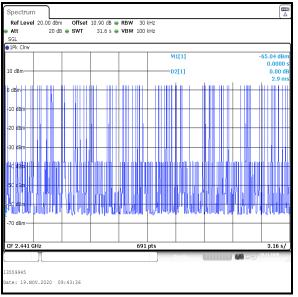

Transmitter Number of Hopping Frequencies and Average Time of Occupancy (continued) Results: DH1

Emission Width (μs)	Number of Hops in 31.6 Seconds	Average Time of Occupancy (s)	Limit (s)	Margin (s)	Result
392.750	168	0.066	0.4	0.334	Complied


Emission Width



Number of Hopping Frequencies in 32 s


<u>Transmitter Number of Hopping Frequencies and Average Time of Occupancy (continued)</u> <u>Results: 3DH5</u>

Emission Width (μs)	Number of Hops in 31.6 Seconds	Average Time of Occupancy (s)	Limit (s)	Margin (s)	Result
2897.100	97	0.281	0.4	0.119	Complied

Number of Hopping Frequencies

4.5. Transmitter Maximum Peak Output Power

Test Summary:

Test Engineers:	Chanthu Thevarajah & Matthew Botfield	Test Date:	24 November 2020
Test Sample Serial Number:	F0T039400020JPQ0F		

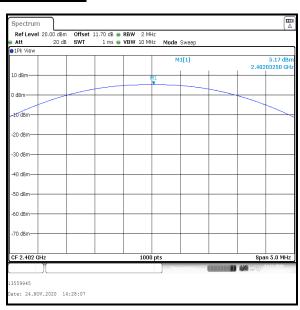
FCC Reference:	Part 15.247(b)(1)	
ISED Canada Reference:	RSS-Gen 6.12 / RSS-247 5.4(b)	
Test Method Used:	ANSI C63.10 Section 7.8.5	

Environmental Conditions:

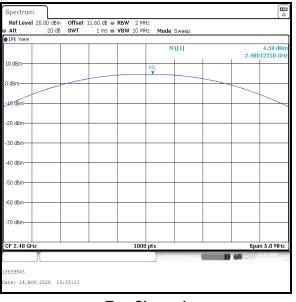
Temperature (°C):	23
Relative Humidity (%):	41

Note(s):

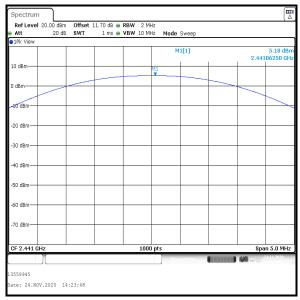
- 1. The signal analyser resolution bandwidth was set to 2 MHz (>20 dB bandwidth) and video bandwidth of 10 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 5 MHz (approximately five times the 20 dB bandwidth). A marker was placed at the peak of the signal and the results recorded in the tables below.
- 2. The declared antenna gain was added to the conducted peak power to obtain the EIRP.
- The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable. An RF offset level was entered on the signal analyser to compensate for the loss of the attenuator and RF cable.


Transmitter Maximum Peak Output Power (continued)

Results: DH1


Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Power Limit (dB)	
Bottom	5.2	30.0	24.8	Complied
Middle	5.2	30.0	24.8	Complied
Тор	4.6	30.0	25.4	Complied

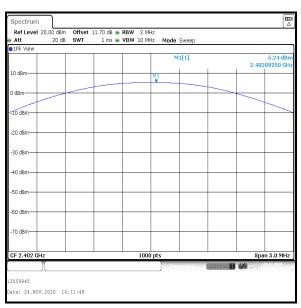
Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	5.2	5.3	10.5	36.0	25.5	Complied
Middle	5.2	5.2	10.4	36.0	25.6	Complied
Тор	4.6	3.7	8.3	36.0	27.7	Complied


Transmitter Maximum Peak Output Power (continued) Results: DH1

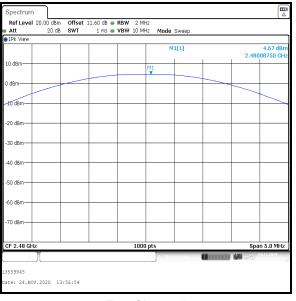
Bottom Channel

Top Channel

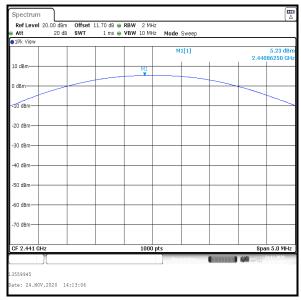
Middle Channel


Transmitter Maximum Peak Output Power (continued)

Results: 2DH1


Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	5.2	21.0	15.8	Complied
Middle	5.2	21.0	15.8	Complied
Тор	4.7	21.0	16.3	Complied

Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	5.2	5.3	10.5	27.0	16.5	Complied
Middle	5.2	5.2	10.4	27.0	16.6	Complied
Тор	4.7	3.7	8.4	27.0	18.6	Complied

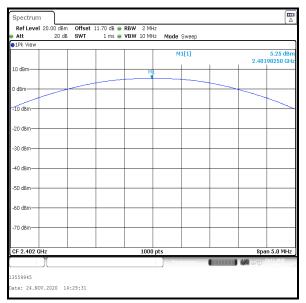

Transmitter Maximum Peak Output Power (continued) Results: 2DH1

Bottom Channel

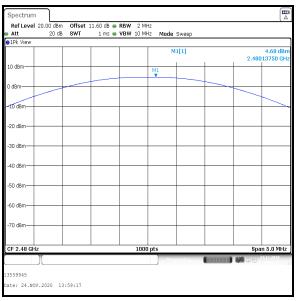
Top Channel

Middle Channel

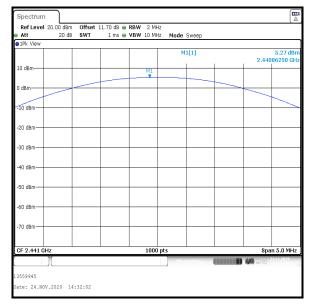
Transmitter Maximum Peak Output Power (continued)


Results: 3DH1

Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	5.3	21.0	15.7	Complied
Middle	5.3	21.0	15.7	Complied
Тор	4.7	21.0	16.3	Complied


Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	5.3	5.3	10.6	27.0	16.4	Complied
Middle	5.3	5.2	10.5	27.0	16.5	Complied
Тор	4.7	3.7	8.4	27.0	18.6	Complied

Transmitter Maximum Peak Output Power (continued)

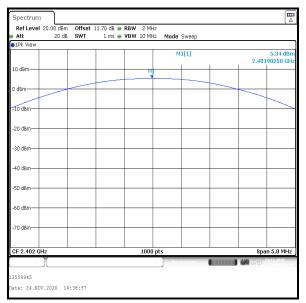

Results: 3DH1

Bottom Channel

Top Channel

Middle Channel

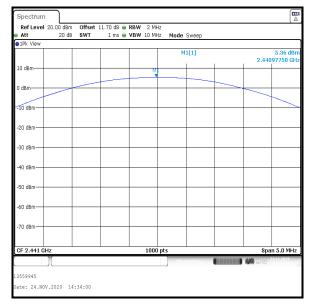
Transmitter Maximum Peak Output Power (continued)


Results: 3DH5

Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	5.3	21.0	15.7	Complied
Middle	5.4	21.0	15.6	Complied
Тор	4.8	21.0	16.2	Complied

Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	5.3	5.3	10.6	27.0	16.4	Complied
Middle	5.4	5.2	10.6	27.0	16.4	Complied
Тор	4.8	3.7	8.5	27.0	18.5	Complied

Transmitter Maximum Peak Output Power (continued)


Results: 3DH5

Bottom Channel

	db SWT	1 ms 😑	VBW 10 MH	z Mode	Sweep			
1Pk View								
				•	41[1]		2 47	4.79 dBn 997750 GH:
10 dBm	_		M			_		-
						_		
0 dBm		F						
10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-+o ubin								
-50 dBm								
-60 dBm						_		
-70 dBm								
CF 2.48 GHz		1	1000	pts			Sp	an 5.0 MHz
Y				Me	asuring			24.11.2020
3559945								

Top Channel

Middle Channel

5. Radiated Test Results

5.1. Transmitter Radiated Emissions <1 GHz

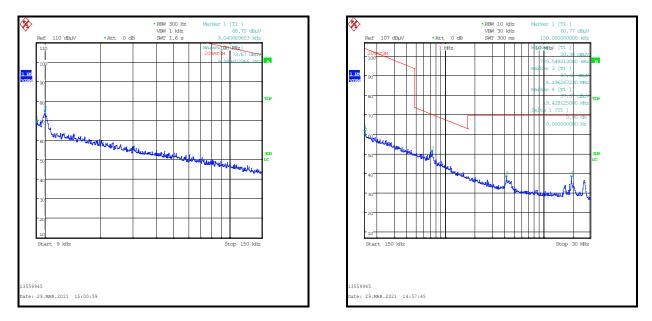
Test Summary:

Test Engineers:	Marco Zunarelli & Nick Tye	Test Dates:	24 November 2020 & 29 March 2021	
Test Sample Serial Numbers:	F0T0395000G0JPQ00 & F0T039500090JPQ07			

FCC Reference:	Parts 15.247(d) & 15.209(a)
ISED Canada Reference:	RSS-Gen 6.13 / RSS-247 5.5
Test Method Used:	ANSI C63.10 Sections 6.3 and 6.5
Frequency Range	9 kHz to 1000 MHz

Environmental Conditions:

Temperature (°C):	20 to 21
Relative Humidity (%):	40 to 45


Note(s):


- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. No spurious emissions were detected above the noise floor of the measuring receiver therefore the highest peak noise floor reading of the measuring receiver was recorded as shown in the table below.
- 3. Measurements below 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 4. Pre-scans were performed and markers placed on the highest measured levels. The test receiver was configured as follows: For 9 kHz to 150 kHz, the resolution bandwidth was set to 300 Hz and video bandwidth 1 kHz. A peak detector was used and trace mode was Max Hold. For 150 kHz to 30 MHz, the resolution bandwidth was set to 10 kHz and video bandwidth 30 kHz, trace mode was Max Hold. For 30 MHz to 1 GHz, the resolution bandwidth was set to 120 kHz and video bandwidth 500 kHz. A peak detector was used and trace mode was Max Hold.

Transmitter Radiated Emissions (continued)

Results: Peak / DH1

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
983.283	Horizontal	34.7	54.0	19.3	Complied

5.2. Transmitter Radiated Emissions >1 GHz

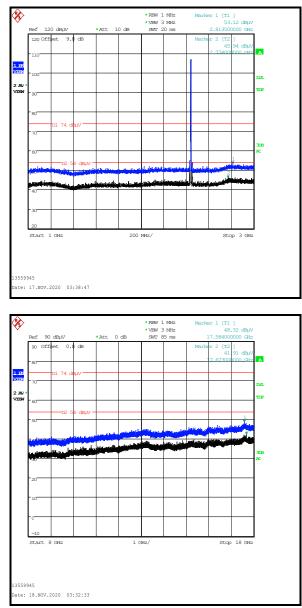
Test Summary:

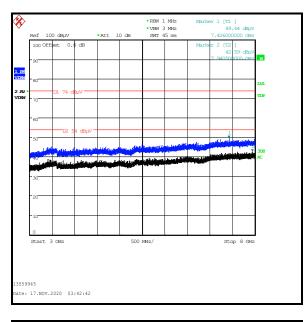
Test Engineer:	Marco Zunarelli	Test Dates:	17 November 2020 & 18 November 2020
Test Sample Serial Number:	F0T0395000G0JPQ00		

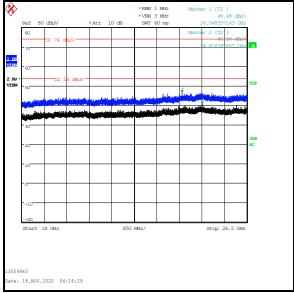
FCC Reference:	Parts 15.247(d) & 15.209(a)	
ISED Canada Reference:	RSS-Gen 6.13 / RSS-247 5.5	
Test Method Used:	ANSI C63.10 Sections 6.3 and 6.6	
Frequency Range	1 GHz to 25 GHz	

Environmental Conditions:

Temperature (°C):	21 to 22
Relative Humidity (%):	46 to 48


Note(s):


- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. No spurious emissions were detected above the noise floor of the measuring receiver therefore the highest peak noise floor reading of the measuring receiver was recorded as shown in the table below. The peak level was compared to the average limit as opposed to being compared to the peak limit because this is the more onerous limit.
- 3. The emission shown on the 1 GHz to 3 GHz plot is the EUT fundamental at 2441 MHz.
- 4. Pre-scans above 1 GHz were performed in a fully anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT.
- 5. Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto. Peak and average measurements were performed with their own appropriate detectors during the pre-scan measurements.


Results: Middle Channel / DH1

Frequency	Antenna	Peak Level	Average Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBμV/m)	(dB)	
2813.500	Horizontal	53.1	54.0	0.9	Complied

Transmitter Radiated Emissions (continued)

5.3. Transmitter Band Edge Radiated Emissions

Test Summary:

Test Engineers:	Marco Zunarelli & Andrew Edwards	Test Dates:	17 November 2020 to 04 December 2020
Test Sample Serial Number:	F0T0395000G0JPQ00		

FCC Reference:	Parts 15.247(d) & 15.209(a)
ISED Canada Reference:	RSS-Gen 6.13 / RSS-247 5.5
Test Method Used:	ANSI C63.10 Section 6.10

Environmental Conditions:

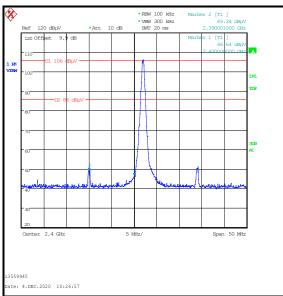
Temperature (°C):	20 to 22
Relative Humidity (%):	45 to 48

Note(s):

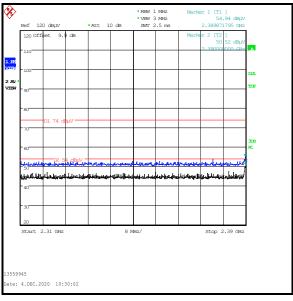
- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. The lower band edge is adjacent to a non-restricted band. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent band (where a higher level emission was present). Marker frequencies and levels were recorded.
- 3. The upper band edge is adjacent to a restricted band. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. Peak and average measurements were performed with their respective detectors, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent band (where a higher level emission was present). Marker frequencies and levels were recorded.
- 4. There is a restricted band 10 MHz below the lower band edge. The test receiver was set up as follows: the RBW set to 1 MHz, the VBW set to 3 MHz, with the sweep time set to auto couple. Peak and average measurements were performed with their respective detectors. Markers were placed on the highest point on each trace.
- 5. * -20 dBc limit.
- **The corrected average level has been obtained by subtracting the calculated duty cycle correction factor from the measured peak level for any restricted band emissions related to the fundamental. See Appendix 1 for further information.

Results: Static Mode / DH1

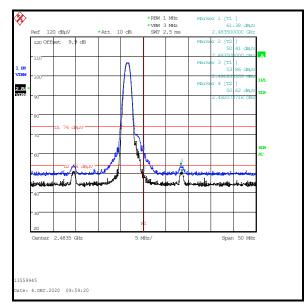
Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2390.000	Horizontal	49.3	86.0*	36.7	Complied
2400.0	Horizontal	46.6	86.0*	39.4	Complied
2483.5	Horizontal	61.4	74.0	12.6	Complied


Frequency (MHz)	Antenna Polarity	Average Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	41.4**	54.0	12.6	Complied
2491.833	Horizontal	33.9**	54.0	20.1	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2389.872	Horizontal	54.9	74.0	19.1	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2389.872	Horizontal	34.9**	54.0	19.1	Complied

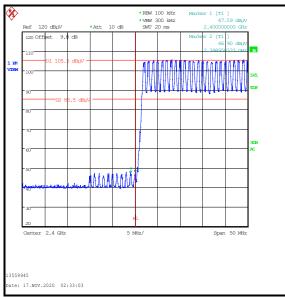

Results: Static Mode / DH1

Lower Band Edge

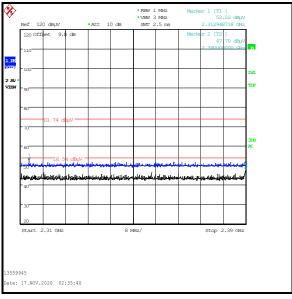
Upper Band Edge

Frequency Antenna Peak Level Limit Margin Result (MHz) Polarity (dBµV/m) (dBµV/m) (dB) 2400.0 Horizontal 47.6 85.5* 37.9 Complied 2483.5 Horizontal 49.6 74.0 24.4 Complied Complied 2483.580 Horizontal 56.4 74.0 17.6

Results: Hopping Mode / DH1	
-----------------------------	--


Frequency (MHz)	Antenna Polarity	Average Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	29.6**	54.0	24.4	Complied
2483.580	Horizontal	36.4**	54.0	17.6	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2312.949	Horizontal	52.2	74.0	21.8	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2390.000	Horizontal	47.7	54.0	6.3	Complied


Results: Hopping Mode / DH1

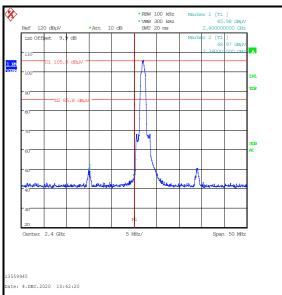
Lower Band Edge

Upper Band Edge

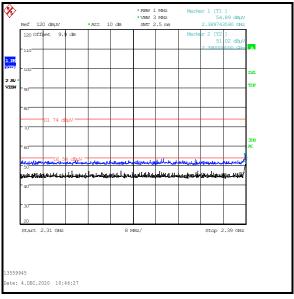
Results: Static Mode / 2DH1

Transmitter Band Edge Radiated Emissions (continued)

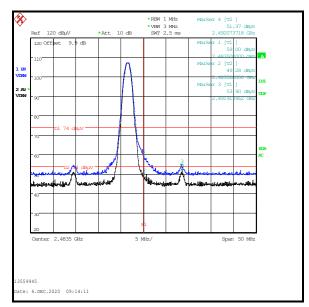
Limit Frequency Antenna Peak Level Margin Result (MHz) Polarity (dBµV/m) (dBµV/m) (dB) 2390.000 49.0 85.8* Horizontal 36.8 Complied 2400.0 Horizontal Complied 46.0 85.8* 39.8 2483.5 Horizontal 59.0 74.0 15.0 Complied


Frequency (MHz)	Antenna Polarity	Average Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	39.0**	54.0	15.0	Complied
2491.913	Horizontal	33.9**	54.0	20.1	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2389.744	Horizontal	54.9	74.0	19.1	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2389.744	Horizontal	34.9**	54.0	19.1	Complied


Results: Static Mode / 2DH1

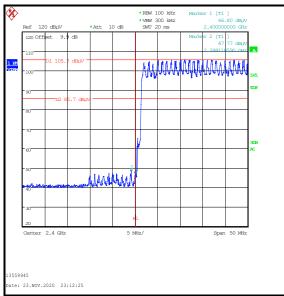
Lower Band Edge

Upper Band Edge

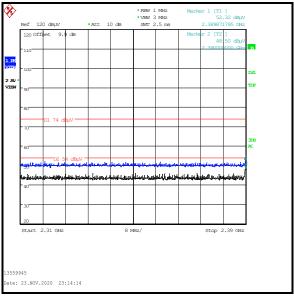
Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.119	Horizontal	47.8	85.7*	37.9	Complied
2400.0	Horizontal	46.8	85.7*	38.9	Complied
2483.5	Horizontal	49.4	74.0	24.6	Complied
2483.901	Horizontal	55.5	74.0	18.5	Complied

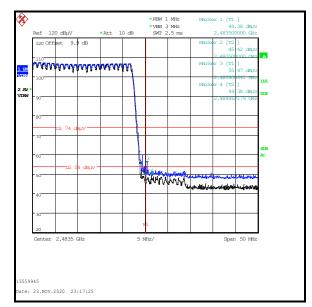
Results: Hopping Mode / 2DH1


Frequency (MHz)	Antenna Polarity	Average Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	29.4**	54.0	24.6	Complied
2483.901	Horizontal	35.5**	54.0	18.5	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2389.872	Horizontal	52.3	74.0	21.7	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2389.872	Horizontal	32.3**	54.0	21.7	Complied

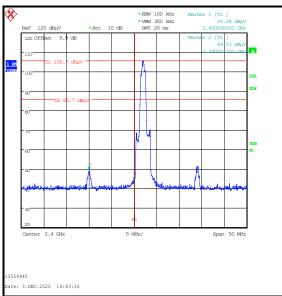

Results: Hopping Mode / 2DH1

Lower Band Edge

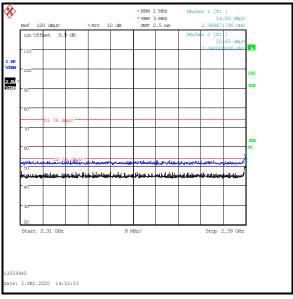
Upper Band Edge

Results: Static Mode / 3DH1

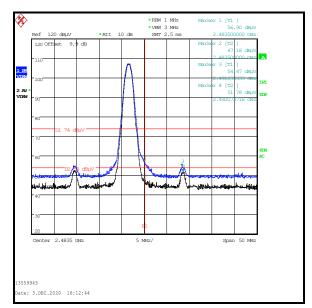
Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2390.000	Horizontal	49.5	85.7*	36.2	Complied
2400.0	Horizontal	44.2	85.7*	41.5	Complied
2483.5	Horizontal	56.9	74.0	17.1	Complied


Frequency (MHz)	Antenna Polarity	Average Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	36.9**	54.0	17.1	Complied
2491.833	Horizontal	34.5**	54.0	19.5	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2389.872	Horizontal	54.8	74.0	19.2	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2389.872	Horizontal	34.8**	54.0	19.2	Complied


Results: Static Mode / 3DH1

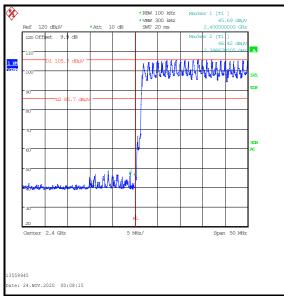
Lower Band Edge

Upper Band Edge

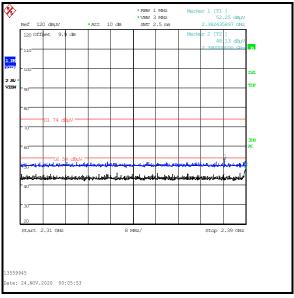
Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2398.878	Horizontal	46.4	85.7*	39.3	Complied
2400.0	Horizontal	45.7	85.7*	40.0	Complied
2483.5	Horizontal	52.0	74.0	22.0	Complied
2483.740	Horizontal	55.6	74.0	18.4	Complied

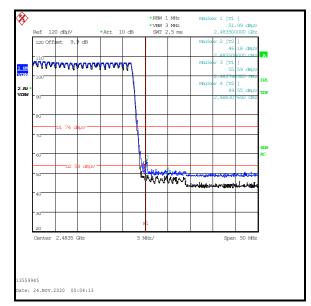
Results: Hopping Mode / 3DH1


Frequency (MHz)	Antenna Polarity	Average Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	32.0**	54.0	22.0	Complied
2483.740	Horizontal	35.6**	54.0	18.4	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2382.436	Horizontal	52.3	74.0	21.7	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2390.000	Horizontal	48.1	54.0	5.9	Complied

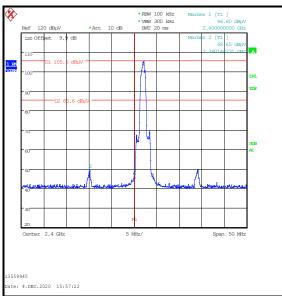

Results: Hopping Mode / 3DH1

Lower Band Edge

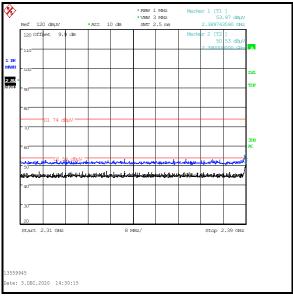
Upper Band Edge

Results: Static Mode / 3DH5

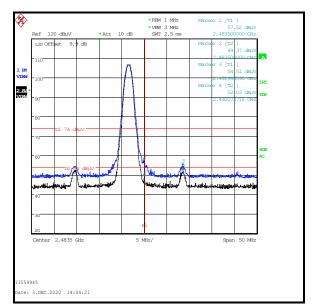
Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2390.144	Horizontal	48.7	85.6*	36.9	Complied
2400.0	Horizontal	46.8	85.6*	38.8	Complied
2483.5	Horizontal	57.5	74.0	16.5	Complied


Frequency (MHz)	Antenna Polarity	Average Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	38.5**	54.0	15.5	Complied
2491.994	Horizontal	35.5**	54.0	18.5	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2389.744	Horizontal	54.0	74.0	20.0	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2389.744	Horizontal	35.0**	54.0	19.0	Complied


Results: Static Mode / 3DH5

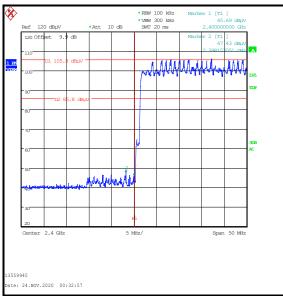
Lower Band Edge

Upper Band Edge

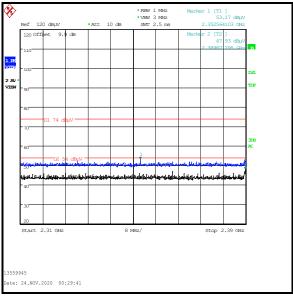
Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2398.157	Horizontal	47.4	85.8*	38.4	Complied
2400.0	Horizontal	45.7	85.8*	40.1	Complied
2483.5	Horizontal	52.8	74.0	21.2	Complied
2483.586	Horizontal	57.5	74.0	16.5	Complied

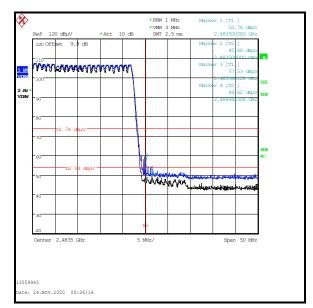
Results: Hopping Mode / 3DH5


Frequency (MHz)	Antenna Polarity	Average Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	33.8**	54.0	20.2	Complied
2483.586	Horizontal	38.5**	54.0	15.5	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2352.564	Horizontal	53.2	74.0	20.8	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2352.564	Horizontal	34.2**	54.0	19.8	Complied


Results: Hopping Mode / 3DH5

Lower Band Edge

Upper Band Edge

6. AC Power Line Conducted Emissions Test Results

6.1. Transmitter AC Conducted Spurious Emissions

Test Summary:

Test Engineer:	Matthew Botfield	Test Date:	29 March 2021
Test Sample Serial Number:	F0T0395000G0JPQ00		

FCC Reference:	Part 15.207
ISED Canada Reference:	RSS-Gen 8.8
Test Method Used:	ANSI C63.10 Section 6.2 / FCC KDB 174176 and notes below

Environmental Conditions:

Temperature (°C):	24
Relative Humidity (%):	44

Note(s):

- 1. The EUT was plugged into a USB cable which is connected to an AC charger. The AC charger was connected to 120 VAC 60 Hz single phase supply via a LISN.
- 2. In accordance with FCC KDB 174176 Q4, tests were performed with a 240 VAC 60 Hz single phase supply as this was within the voltage range marked on the power supply.
- 3. A pulse limiter was fitted between the LISN and the test receiver.
- 4. Pre-scans were performed and markers placed on the highest live and neutral measured levels. Final measurements were performed on the marker frequencies and the results entered into the tables below.

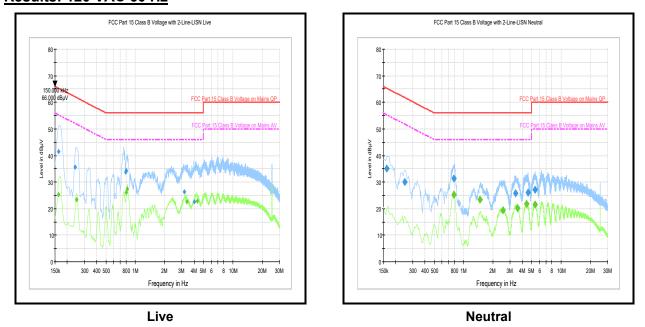
Transmitter AC Conducted Spurious Emissions (continued)

Results: Live / Quasi Peak / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBµV)	Limit (dBµV)	Margin (dB)	Result
0.164	Live	41.4	65.3	23.9	Complied
0.240	Live	35.5	62.1	26.6	Complied
0.798	Live	33.7	56.0	22.3	Complied
0.803	Live	34.4	56.0	21.6	Complied
3.161	Live	26.3	56.0	29.7	Complied
3.998	Live	22.7	56.0	33.3	Complied

Results: Live / Average / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBµV)	Limit (dBµV)	Margin (dB)	Result
0.164	Live	25.3	55.3	30.0	Complied
0.249	Live	23.4	51.8	28.4	Complied
0.807	Live	26.0	46.0	20.0	Complied
0.821	Live	27.3	46.0	18.7	Complied
3.345	Live	22.7	46.0	23.3	Complied
4.290	Live	22.8	46.0	23.2	Complied


Results: Neutral / Quasi Peak / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBµV)	Limit (dBµV)	Margin (dB)	Result
0.164	Neutral	35.0	65.3	30.3	Complied
0.249	Neutral	30.0	61.8	31.8	Complied
0.794	Neutral	31.4	56.0	24.6	Complied
3.390	Neutral	25.9	56.0	30.1	Complied
4.578	Neutral	26.2	56.0	29.8	Complied
5.415	Neutral	27.1	60.0	32.9	Complied

Results: Neutral / Average / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBµV)	Limit (dBµV)	Margin (dB)	Result
0.798	Neutral	25.3	46.0	20.7	Complied
1.464	Neutral	23.3	46.0	22.7	Complied
2.544	Neutral	19.4	46.0	26.6	Complied
3.552	Neutral	20.3	46.0	25.7	Complied
4.434	Neutral	21.7	46.0	24.3	Complied
5.424	Neutral	21.6	50.0	28.4	Complied

Transmitter AC Conducted Spurious Emissions (continued) Results: 120 VAC 60 Hz

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

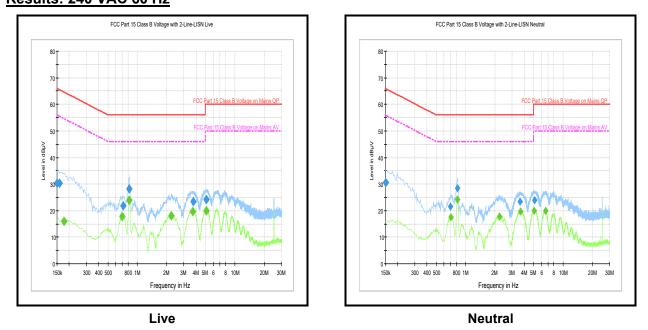
Transmitter AC Conducted Spurious Emissions (continued)

Results: Live / Quasi Peak / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dBµV)	Limit (dBµV)	Margin (dB)	Result
0.150	Live	30.3	66.0	35.7	Complied
0.159	Live	30.3	65.5	35.2	Complied
0.713	Live	21.7	56.0	34.3	Complied
0.821	Live	28.1	56.0	27.9	Complied
3.741	Live	23.5	56.0	32.5	Complied
5.118	Live	24.1	60.0	35.9	Complied

Results: Live / Average / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dBµV)	Limit (dBµV)	Margin (dB)	Result
0.177	Live	16.0	54.6	38.6	Complied
0.699	Live	17.7	46.0	28.3	Complied
0.825	Live	24.0	46.0	22.0	Complied
2.220	Live	18.0	46.0	28.0	Complied
3.714	Live	19.6	46.0	26.4	Complied
5.087	Live	20.0	50.0	30.0	Complied


Results: Neutral / Quasi Peak / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dBµV)	Limit (dBµV)	Margin (dB)	Result
0.150	Neutral	30.6	66.0	35.4	Complied
0.155	Neutral	30.7	65.8	35.1	Complied
0.699	Neutral	21.5	56.0	34.5	Complied
0.825	Neutral	28.6	56.0	27.4	Complied
3.633	Neutral	23.4	56.0	32.6	Complied
5.105	Neutral	23.9	60.0	36.1	Complied

Results: Neutral / Average / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dBµV)	Limit (dBµV)	Margin (dB)	Result
0.704	Neutral	17.5	46.0	28.5	Complied
0.825	Neutral	24.1	46.0	21.9	Complied
2.229	Neutral	17.8	46.0	28.2	Complied
3.660	Neutral	19.6	46.0	26.4	Complied
5.037	Neutral	20.0	50.0	30.0	Complied
6.567	Neutral	19.8	50.0	30.2	Complied

Transmitter AC Conducted Spurious Emissions (continued) Results: 240 VAC 60 Hz

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

Appendix 1

FHSS Duty Cycle Correction Factor Calculation

In accordance with KDB 558074 section 9 and ANSI C63.10 section 7.5, a duty cycle correction factor may be applied to calculate the average radiated field strength emission levels for an FHSS device.

For DH1, 2DH1, 3DH1 and 3DH5 *Bluetooth* signals, the following values were taken from the *Bluetooth* Core Specification V5.0 to give the worst case correction:

Modulation	DH1, 2DH1, 3DH1	3DH5
Channel Hopping Rate (Hops/s)	1600	1600
Tx Timeslots	1	5
Rx Timeslots	1	1
Adjusted Hopping Rate for Adaptive Frequency Hopping (Hops/s)	800	266.667
Time per Hop (ms)	1.25	3.75
Minimum Number of Channels	20	20
Time per Hop Sequence (ms)	25	75
Maximum Number of Hops on One Channel in any 100 ms Observation Period	5	3
Maximum Dwell Time on One Channel in any 100 ms Observation Period (ms)	6.25	11.25
Calculated Duty cycle correction factor applied (dB)	24.1	19.0
Maximum Duty cycle correction factor applied (dB)	20.0	19.0

*Note: If the duty cycle correction factor is calculated to be > 20 dB then 20 dB correction factor applies.

The duty cycle correction factor was calculated based on the above values:

DH1, 2DH1, 3DH1: 20*Log(6 ms / 100 ms) = 24.1 dB* 3DH5: 20*Log(11.25 ms / 100 ms) = 19.0 dB

--- END OF REPORT ---