

FCC RF Test Report

APPLICANT	:	OnePlus Technology (Shenzhen) Co., Ltd.
EQUIPMENT	:	Power Bank
BRAND NAME	:	ONEPLUS
MODEL NAME	:	MPBV01
FCC ID	:	2ABZ2-MPBV01
STANDARD	:	FCC Part 15 Subpart C §15.209
CLASSIFICATION	:	(DCD) Part 15 Low Power Transmitter Below 1705 kHz
TEST DATE(S)	:	Nov. 27, 2024 ~ Dec. 05, 2024

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

Table of Contents

His	tory	of this test report	3
Sur	nmai	ry of Test Result	4
		eral Description	
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Modification of EUT	5
	1.5	Test Location	6
	1.6	Test Software	6
	1.7	Applied Standards	6
2	Test	t Configuration of Equipment Under Test	7
	2.1	Test Mode	7
	2.2	Connection Diagram of Test System	7
	2.3	Support Unit used in test configuration and system	8
3	Test	t Result	9
	3.1	20dB and 99% Occupied Bandwidth Measurement	9
	3.2	Radiated Emission Measurement	11
	3.3	AC Conducted Emission Measurement	
	3.4	Antenna Requirements	23
4	List	of Measuring Equipment	24
5	Mea	surement Uncertainty	25
Арр	bend	ix A. Setup Photographs	

History of this test report

Report No.	Version	Description	Issued Date
FR4N1814	01	Initial issue of report	Dec. 11, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	2.1049	20dB Bandwidth	Reporting Only	-
3.1	2.1049	99% Occupied Bandwidth	Reporting Only	-
3.2	15.209	Radiated Emission	Pass	Under limit 13.94 dB at 868.08 MHz
3.3	15.207	AC Conducted Emission	Pass	Under limit 22.05 dB at 0.50 MHz
3.4	15.203	Antenna Requirements	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

OnePlus Technology (Shenzhen) Co., Ltd.

18C02, 18C03, 18C04, and 18C05, Shum Yip Terra Building, Binhe Avenue North, Futian District, Shenzhen, Guangdong, P.R. China

1.2 Manufacturer

OnePlus Technology (Shenzhen) Co., Ltd.

18C02, 18C03, 18C04, and 18C05, Shum Yip Terra Building, Binhe Avenue North, Futian District, Shenzhen, Guangdong, P.R. China

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Power Bank			
Brand Name	ONEPLUS			
Model Name	MPBV01			
FCC ID	2ABZ2-MPBV01			
SN Code	Conducted: 0631446000011EAU000689 Radiation/Conduction: 0631446000011EAU001033			
HW Version	REV07			
SW Version	0x1C22			
WPT Frequency Range	111 ~ 148.5kHz			
WPT Type of Modulation	ASK			
WPT Antenna Type	Loop Antenna			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

1.5 Test Location

Sporton International Inc. (ShenZhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc.	Sporton International Inc. (ShenZhen)				
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595					
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.			
	TH01-SZ	TH01-SZ CN1256				
Test Firm	Sporton International Inc. (ShenZhen)					
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City, Guangdong Province 518103 People's Republic of China TEL: +86-755-86066985					
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.			
	CO02-SZ ; 03CH05-SZ	CN1256	421272			

1.6 Test Software

Item	Site	Manufacture	Name	Version
1.	03CH05-SZ	AUDIX	E3	6.2009-8-24
2.	CO02-SZ	AUDIX	E3	6.120613b

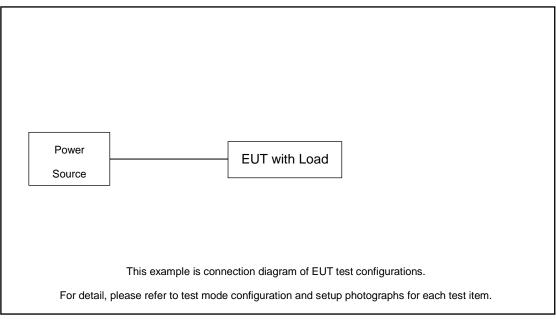
1.7 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.209, §15.207
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

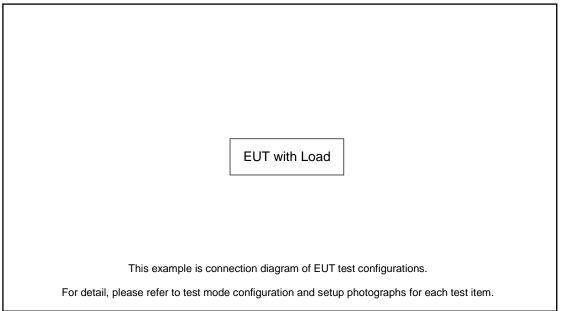
Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2 Test Configuration of Equipment Under Test


2.1 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 1000 MHz).
- b. AC power line Conducted Emission was tested under maximum output power.

Test Items	Function Type			
AC Conducted Emission	Mode 1: EUT Wireless Charging to Load + USB Cable (EUT Charging from Adapter)			
Radiated Emission	Mode 1: EUT Wireless Charging to Load			


2.2 Connection Diagram of Test System

For Conducted Emission:

For Radiated Emission:

2.3 Support Unit used in test configuration and system

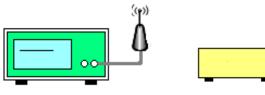
Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Adapter	N/A	G9BR1 LPS	N/A	N/A	N/A
2.	Load	N/A	N/A	N/A	N/A	N/A

3 Test Result

3.1 20dB and 99% Occupied Bandwidth Measurement

3.1.1 Limit of 20dB and 99% Occupied Bandwidth

Reporting only, 99% OBW shall not located within 15.205 restricted bands.


3.1.2 Measuring Instruments

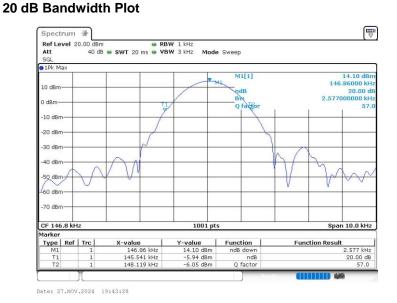
See list of measuring equipment of this test report.

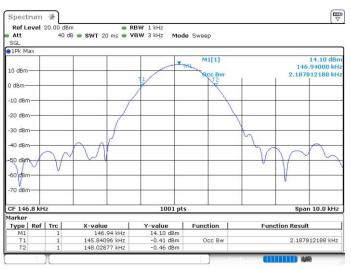
3.1.3 Test Procedures

- 1. The 20dB bandwidth is measured with a spectrum analyzer connected via a receiver antenna placed near the EUT while wirelessly charging a charging board.
- 2. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
- 3. Measure and record the results in the test report.

3.1.4 Test Setup

Spectrum Analyzer


EUT


3.1.5 Test Result of 20dB and 99% Bandwidth

Test Engineer :	He Oingebong	Ter	nperature :	24~26°C
	Fe Qingsheng		lative Humidity :	50~53%
Occupied Bandwidth (kHz)			Fr	equency (kHz)
20dB Bandwidth(KHz)				2.58
99% Bandwidth(KHz)				2.19

Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW

99% Occupied Bandwidth Plot

Date: 27.NOV.2024 19:45:03

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2ABZ2-MPBV01

3.2 Radiated Emission Measurement

3.2.1 Limit of Radiated Emission

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Receiver Parameter	Setting
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

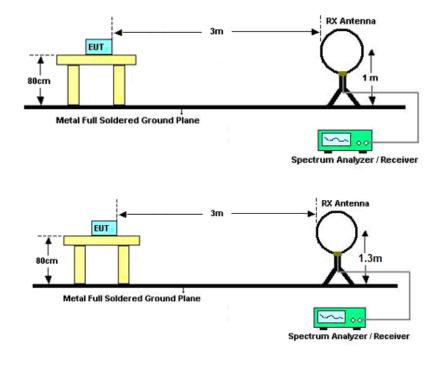
For radiated emissions from 9kHz to 1GHz test distance is 3m

For 9kHz ~ 30MHz

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 3. specific line $(dB\mu V/m) = 20 \log Emission level (\mu V/m)$
- 4. Limit line = specific limits $(dB\mu V/m)$ + distance extrapolation factor.

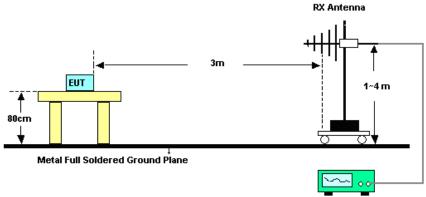
3.2.2 Measuring Instruments

See list of measuring equipment of this test report.


3.2.3 Measuring Instrument Setting

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission for three EUT orthogonal planes, and adjusting the measurement antenna height and polarization. A pre-amp and a high pass filter are used for this test in order to get the good signal level.

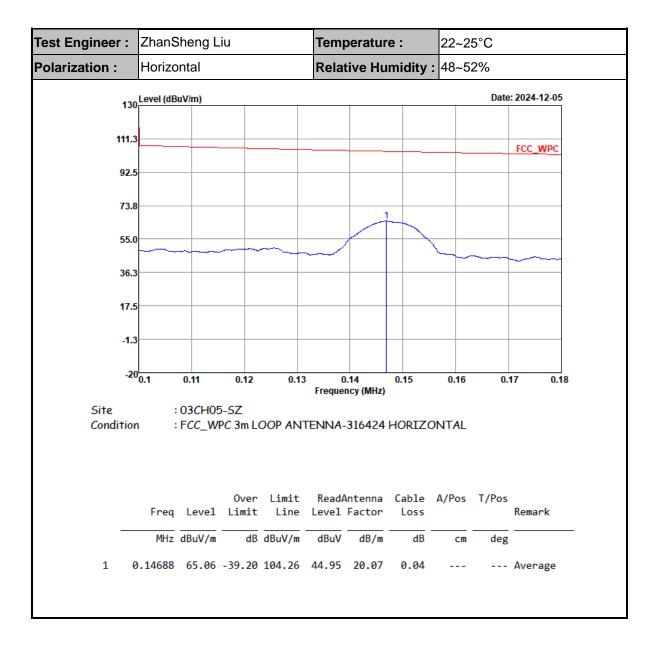
3.2.4 Test Setup of Radiated Emission


For radiated emissions below 30MHz

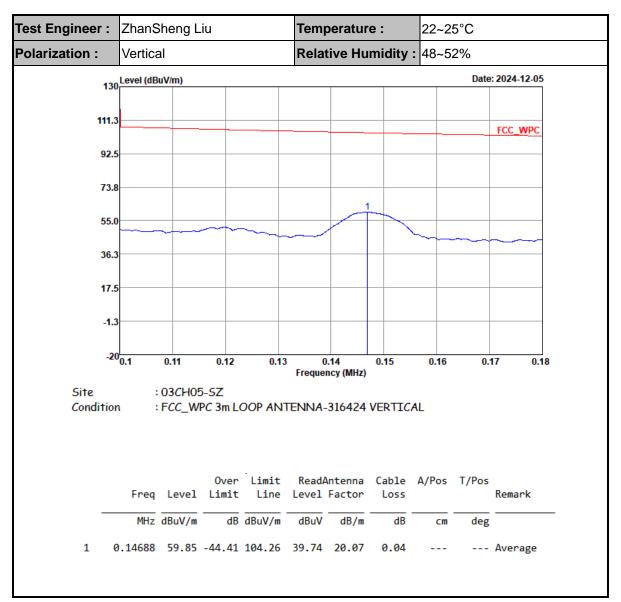
Note:

- 1. There is a comparison data of both open-field test site and alternative test site semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.
- Tested for radiated below 30 MHz using a loop antenna in accordance with C63.10, the antenna was positioned in three antenna orientations: horizontal, vertical, and ground-parallel three polarization's, the worst case is horizontal & vertical polarization, test data of two mode was reported.

For radiated emissions above 30MHz


Spectrum Analyzer / Receiver

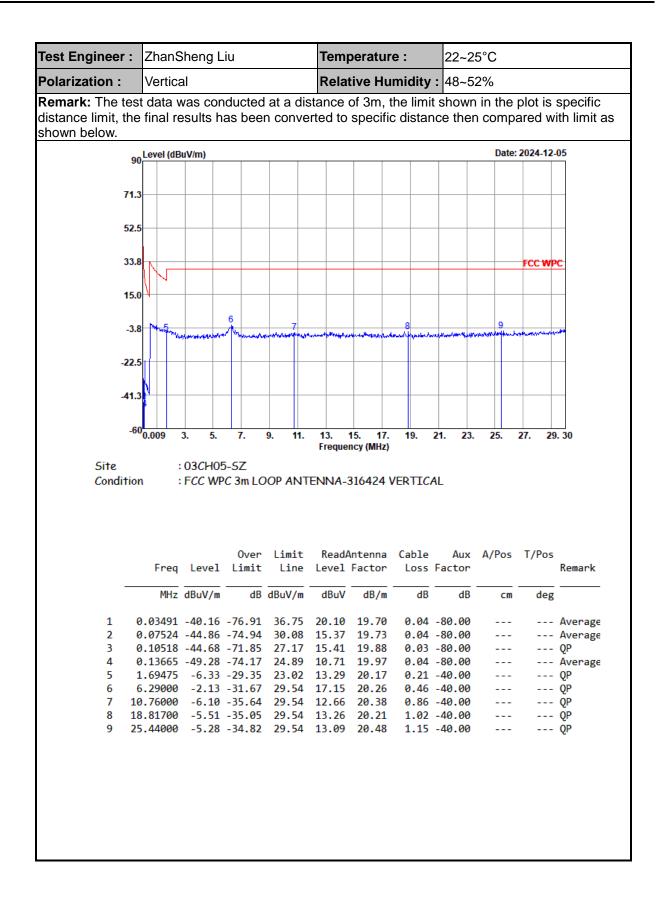
Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2ABZ2-MPBV01 Page Number : 12 of 25 Report Issued Date : Dec. 11, 2024 Report Version : 01 Report Template No.: BU5-FR15CWPC Version 2.4


3.2.5 Test Result of Fundamental Emission

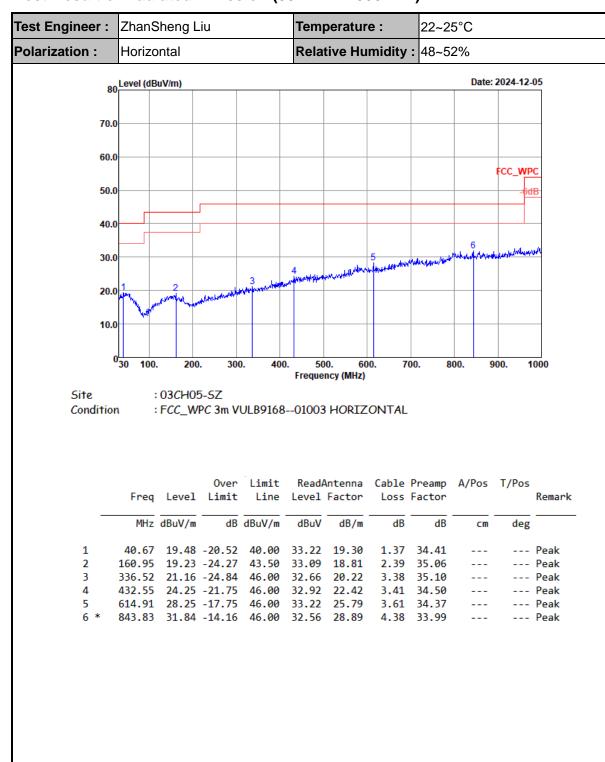
Frequency (MHz)	Level (dBuV/m) @3m	Distance Factor (dB)	Corrected level @30m (dBuV/m)	Over Limit (dB)	Limit Line (dBuV/m)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Remark	Pol/Phase
0.14688	65.06	80	-14.94	-39.2	24.26	44.95	20.07	0.04	AVG	Horizontal
0.14688	59.85	80	-20.15	-44.41	24.26	39.74	20.07	0.04	AVG	Vertical

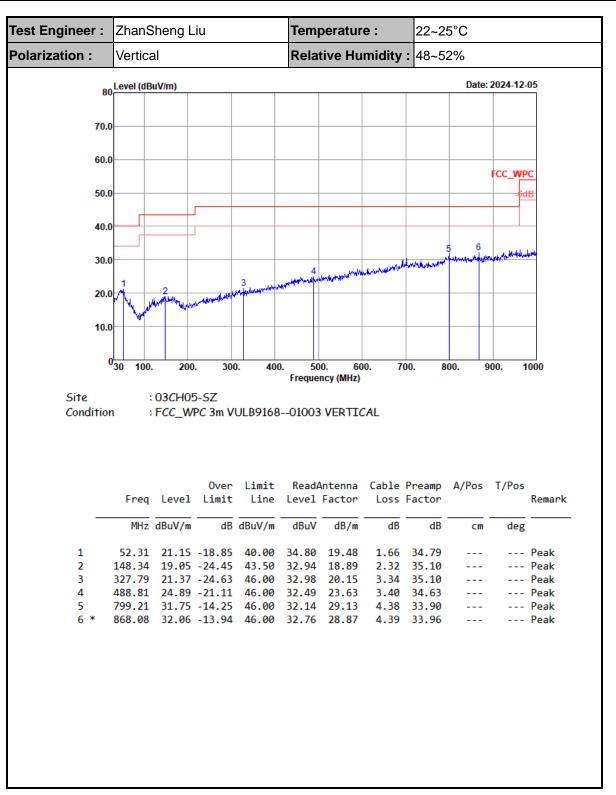
Note: The field strength is tested at 3m distance then convert to 30m by adding distance factor 40*log(d1/d2)

Note:


- 1. Level @3m (dBµV/m) = Read Level @3m (dBµV) + Antenna Factor(dB/m) + Cable Loss(dB).
- 2. Corrected Level @30m (dB μ V/m) = Level @3m (dB μ V/m) Distance extrapolation factor (dB).
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- 4. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m).

3.2.6 Test Result of Radiated Emission (9kHz ~ 30MHz)


Polarization : Remark: The te distance limit, th shown below. 9 71	st data v	vas con	-1			Temperature :			22~25°C		
distance limit, th shown below. 9	e final re		ماريمة مرا	Horizontal			Relative Humidity :		48~52%		
71	90 Level (dE										
71		uV/m)							Date:	2024-12-	05
52	.3										_
52											
	.5										
33	.8									FCC WP	c
15	.0 4										
-3	.8 5		6 • 1		7	-	han an de Local de Jou	8	بدوالموسية المراجع	And begins at the	
-22	.5										_
-41	.3										_
-	⁶⁰ 0.009	3. 5.	7.	9. 11.		15. 17. ncy (MHz)	19.	21. 23.	25.	27. 29	. 30
Conditio	on :	FCC WP	C 3m LC	OOP ANT	ENNA-3	316424	HORIZO	ONTAL			
				·							
	Freq	Level	Over Limit	Limit Line		ntenna Factor		Aux Factor	A/Pos	T/Pos	Remark
_		Level dBuV/m	Limit						A/Pos cm	T/Pos 	Remark
-	MHz 0.03634	dBuV/m	Limit dB -76.71	Line dBuV/m 36.40	Level dBuV 19.95	Factor dB/m 19.70	Loss 	Factor 		deg	Average
2	MHz 0.03634 0.07854	dBuV/m -40.31 -40.86	Limit dB -76.71 -70.56	Line dBuV/m 36.40 29.70	Level dBuV 19.95 19.37	Factor dB/m 19.70 19.74	Loss dB 0.04 0.03	Factor dB -80.00 -80.00		deg	Average Average
	MHz 0.03634 0.07854 0.10686	dBuV/m -40.31 -40.86 -42.48	Limit 	Line dBuV/m 36.40	Level dBuV 19.95 19.37 17.61	Factor dB/m 19.70 19.74 19.88	Loss dB 0.04 0.03 0.03	Factor 		deg	Average Average
2 3 4 5	MHz 0.03634 0.07854 0.10686 0.13890 1.66515	dBuV/m -40.31 -40.86 -42.48 -48.58 -5.51	Limit dB -76.71 -70.56 -69.51 -73.33 -28.69	Line dBuV/m 36.40 29.70 27.03 24.75 23.18	Level dBuV 19.95 19.37 17.61 11.39 14.11	Factor dB/m 19.70 19.74 19.88 19.99 20.17	Loss dB 0.04 0.03 0.03 0.04 0.21	Factor 	cm	deg 	Average Average QP Average QP
2 3 4 5 6	MHz 0.03634 0.07854 0.10686 0.13890 1.66515 6.38000	dBuV/m -40.31 -40.86 -42.48 -48.58 -5.51 -1.71	Limit dB -76.71 -70.56 -69.51 -73.33 -28.69 -31.25	Line dBuV/m 36.40 29.70 27.03 24.75 23.18 29.54	Level dBuV 19.95 19.37 17.61 11.39 14.11 17.55	Factor dB/m 19.70 19.74 19.88 19.99 20.17 20.27	Loss dB 0.04 0.03 0.03 0.04 0.21 0.47	Factor dB -80.00 -80.00 -80.00 -80.00 -40.00 -40.00	 	deg	Average Average QP Average QP QP QP
2 3 4 5 6 7 1	MHz 0.03634 0.07854 0.10686 0.13890 1.66515 6.38000 12.03200	dBuV/m -40.31 -40.86 -42.48 -48.58 -5.51 -1.71 -5.42	Limit dB -76.71 -70.56 -69.51 -73.33 -28.69 -31.25 -34.96	Line dBuV/m 36.40 29.70 27.03 24.75 23.18 29.54 29.54	Level dBuV 19.95 19.37 17.61 11.39 14.11 17.55 13.35	Factor dB/m 19.70 19.74 19.88 19.99 20.17 20.27 20.35	Loss dB 0.04 0.03 0.03 0.04 0.21 0.47 0.88	Factor dB -80.00 -80.00 -80.00 -80.00 -40.00 -40.00 -40.00	 	deg 	Average Average QP Average QP QP QP
2 3 4 5 6 7 1 8 2	MHz 0.03634 0.07854 0.10686 0.13890 1.66515 6.38000	dBuV/m -40.31 -40.86 -42.48 -48.58 -5.51 -1.71 -5.42 -5.13	Limit dB -76.71 -70.56 -69.51 -73.33 -28.69 -31.25 -34.96 -34.67	Line dBuV/m 36.40 29.70 27.03 24.75 23.18 29.54 29.54 29.54	Level dBuV 19.95 19.37 17.61 11.39 14.11 17.55 13.35 13.42	Factor dB/m 19.70 19.74 19.88 19.99 20.17 20.27 20.35 20.39	Loss dB 0.04 0.03 0.03 0.04 0.21 0.47 0.88 1.06	Factor dB -80.00 -80.00 -80.00 -80.00 -40.00 -40.00	 	deg	Average Average QP Average QP QP QP QP


Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2ABZ2-MPBV01

3.2.7 Test Result of Radiated Emission (30MHz ~ 1000MHz)

3.3 AC Conducted Emission Measurement

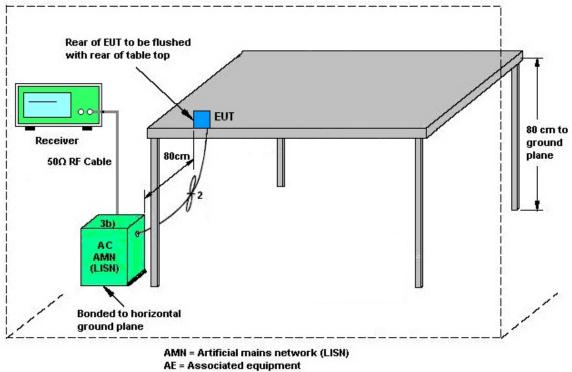
3.3.1 Limits of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

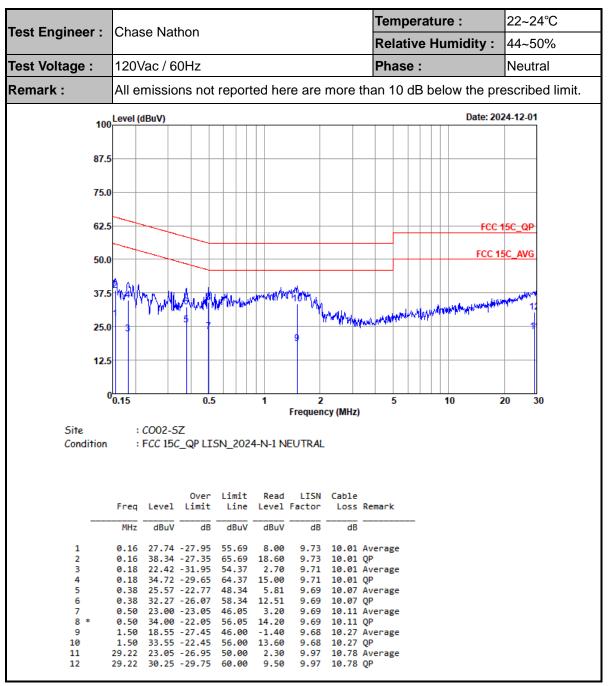
3.3.2 Measuring Instruments


See list of measuring equipment of this test report.

3.3.3 Test Procedure

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.3.4 Test Setup


- EUT = Equipment under test
- ISN = Impedance stabilization network

Toot Engineer .	Chase Nether		Temperature :	22~24°C	
Test Engineer :	Chase Nathon		Relative Humidity :	44~50%	
Test Voltage :	120Vac / 60Hz		Phase :	Line	
Remark :	All emissions not	reported here are m	ore than 10 dB below the p	rescribed limit.	
100	Level (dBuV)		Date: 2	024-12-01	
87.5					
75.0					
62.5					
02.5				:15C_QP	
50.0			FCC	15C_AVG	
37.5	Man Mar Mar A	He a warman ton a			
	A A A A A A A A A A A A A A A A A A A		relitionshappeners the statement of the state of the statement of the stat	12	
25.0	3 5	9		11	
12.5					
U	0.15 0.5	1 2 Frequency	5 10 (MHz)	20 30	
Site Condition	: CO02-5Z				
Condition		5N_2024-L-1 LINE			
	Over Freq Level Limit	Limit Read LISN C Line Level Factor	able Loss Remark		
	MHz dBuV dB	dBuV dBuV dB	dB		
1	0.15 27.18 -28.56		0.01 Average		
2	0.15 38.68 -27.06 0.20 22.30 -31.46		0.01 QP 0.02 Average		
4	0.20 36.20 -27.56				
5	0.31 20.76 -29.12		0.05 Average		
6 7	0.31 29.96 -29.92 0.61 23.38 -22.62		0.05 QP 0.13 Average		
8	0.61 32.68 -23.32				
9	1.49 18.31 -27.69	46.00 -1.60 9.64 1	0.27 Average		
10 * 11	1.49 33.01 -22.99				
	27.86 17.65 -32.35 27.86 28.85 -31.15		0.77 Average 0.77 QP		
			¥.		

3.3.5 Test Result of AC Conducted Emission

Note:

- 1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

3.4 Antenna Requirements

3.4.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.4.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 09, 2024	Nov. 27, 2024	Apr. 08, 2025	Conducted (TH01-SZ)
EMI Test Receiver	R&S	ESR7	102261	9kHz~7GHz	Apr. 09, 2024	Dec. 05, 2024	Apr. 08, 2025	Radiation (03CH05-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jul. 27, 2024	Dec. 05, 2024	Jul. 26, 2025	Radiation (03CH05-SZ)
Bilog Antenna	TeseQ	CBL6112D	35408	30MHz-2GHz	Aug. 20, 2023	Dec. 05, 2024	Aug. 19, 2025	Radiation (03CH05-SZ)
Amplifier	EM Electronics	EM330	060756	0.01Hz ~3000MHz	Apr. 09, 2024	Dec. 05, 2024	Apr. 08, 2025	Radiation (03CH05-SZ)
AC Power Source	APC	AFV-S-600	F11905001 3	N/A	Oct. 14, 2024	Dec. 05, 2024	Oct. 13, 2025	Radiation (03CH05-SZ)
Turn Table	EMEC	T-200-S-1	060925-T	0~360 degree	NCR	Dec. 05, 2024	NCR	Radiation (03CH05-SZ)
Antenna Mast	EMEC	MBS-400-1	060927	1 m~4 m	NCR	Dec. 05, 2024	NCR	Radiation (03CH05-SZ)
EMI Receiver	R&S	ESR7	102297	9kHz~7GHz;	Jul. 03, 2024	Dec. 01, 2024	Jul. 02, 2025	Conduction (CO02-SZ)
AC LISN	R&S	ENV216	101499	9kHz~30MHz	Jul. 03, 2024	Dec. 01, 2024	Jul. 02, 2025	Conduction (CO02-SZ)
AC Power Source	CHROMA	61601	616010002 470	100Vac~250Vac	Dec.25, 2022	Dec. 01, 2024	Dec. 24, 2024	Conduction (CO02-SZ)

NCR: No Calibration Required

5 Measurement Uncertainty

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Occupied Channel Bandwidth	±0.012 MHz

Uncertainty of AC Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.5dB
of 95% (U = 2Uc(y))	2.500

Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.5dB
--	-------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.2dB
of 95% (U = 2Uc(y))	4.20 B

----- THE END ------