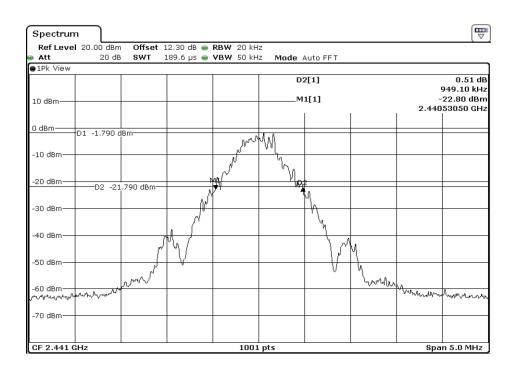
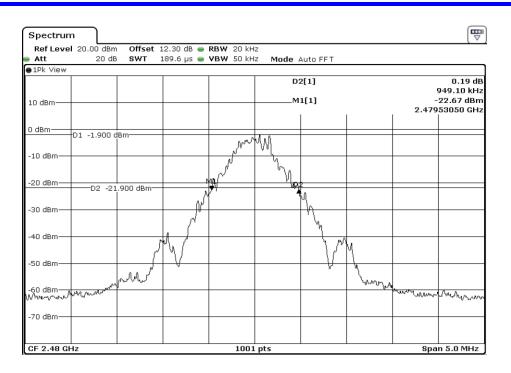

Appendix Data

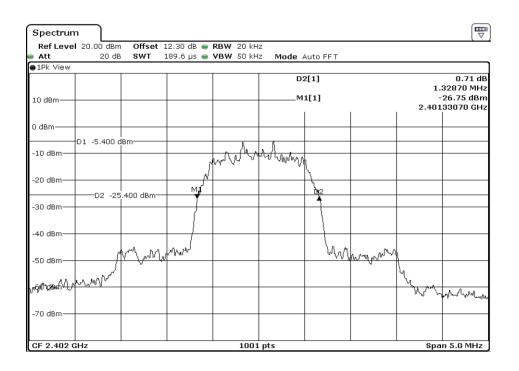
1. MINIMUM 20 DB BANDWIDTH	2
2. HOPPING FREQUENCY SEPARATION	8
3. NUMBER OF HOPPING CHANNELS	11
4. TIME OF OCCUPANCY	18
5. MAXIMUM PEAK OUTPUT POWER	24
6. 100 KHZ BANDWIDTH OUTSIDE THE FREQUENCY BAND	30
7.99% OCCUPIED BANDWIDTH	49



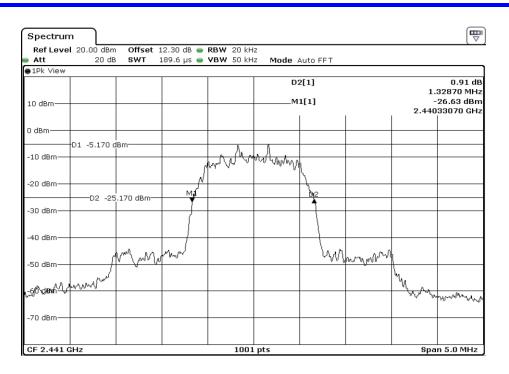
		Test Band		Bluetooth
		Antenna		Ant 1
	T	est Parameters for	Channel Band	dwidths
Test Item	No.	Mode	Channel	Verdict
	1	BDR	0	Pass
	2	BDR	39	Pass
	3	BDR	78	Pass
Minimum	4	2M-EDR	0	Pass
20 dB	5	2M-EDR	39	Pass
Bandwidth	6	2M-EDR	78	Pass
	7	3M-EDR	0	Pass
	8	3M-EDR	39	Pass
	9	3M-EDR	78	Pass

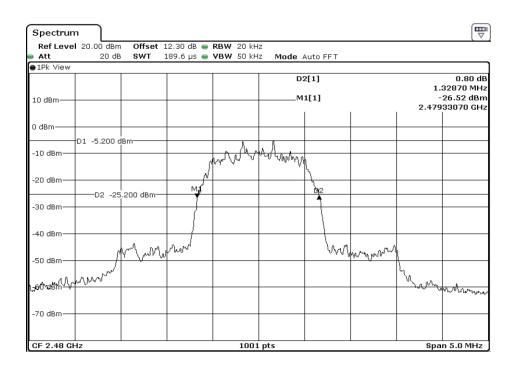


1	Minimum 20 dB Bandwidth

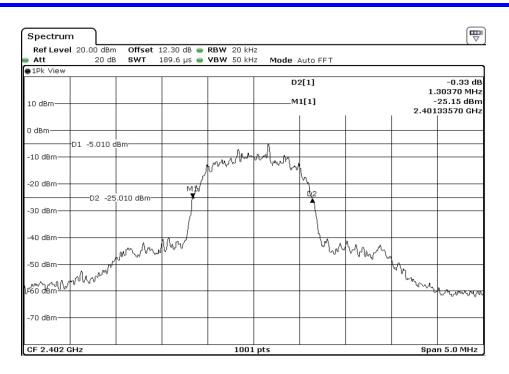


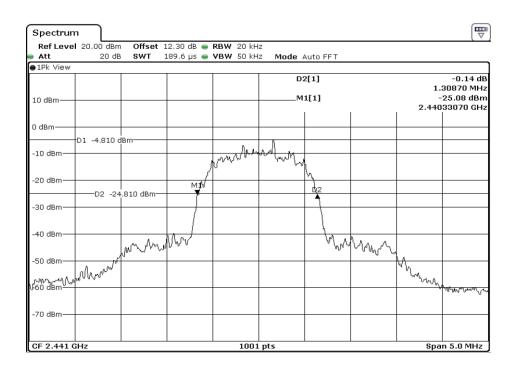
2	Minimum 20 dB Bandwidth




3	Minimum 20 dB Bandwidth

4	Minimum 20 dB Bandwidth

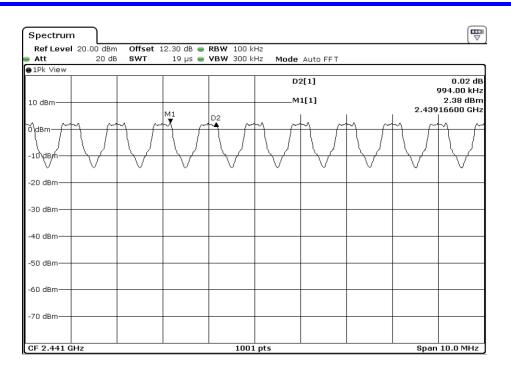




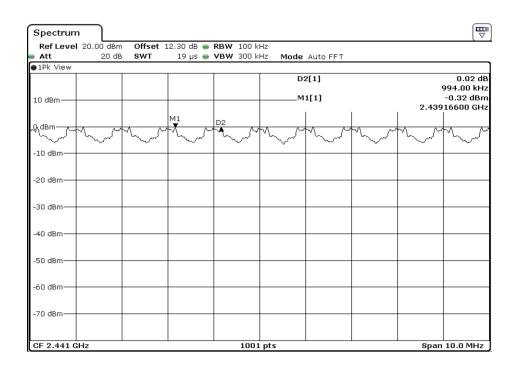
6	Minimum 20 dB Bandwidth

7	Minimum 20 dB Bandwidth

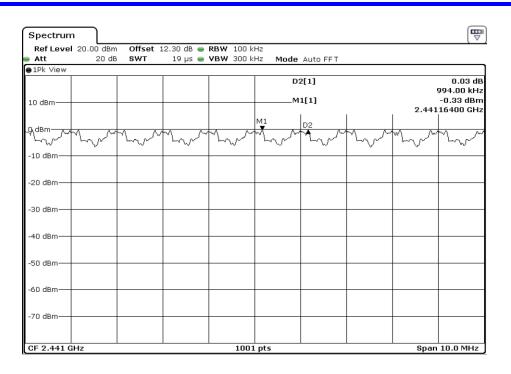
8	Minimum 20 dB Bandwidth


Ref Level 20.00 dBm Offset 12.30 dB RBW 20 kHz Att 20 dB SWT 189.6 μs VBW 50 kHz Mode Auto FFT ● 1Pk View	Spectrum	,)								
1Pk View 1										('
D2[1] -0.24 dl 10 dBm M1[1] -25.04 dBm 0 dBm 01 -4.850 dBm 2.47933570 GH -10 dBm 01 -4.850 dBm 0 -20 dBm 02 -24.850 dBm 0 -30 dBm 02 -24.850 dBm 0 -50 dBm 0 0 -50 dBm 0 0 -50 dBm 0 0		20 dB	SWT	189.6 µs 👄	VBW 50 kH	z Mode/	Auto FFT			
10 dBm	●1Pk View									
10 dBm M1[1] 25.04 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm						D	2[1]			-0.24 dB
2.47933570 GH 0 dBm 0 dBm -10 dBm -10 dBm -20 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -50 dBm <td></td>										
0 dBm 01 -4.850 dBm 01 -4.850 dBm 01 -4.850 dBm 02 -24.850 dBm 02	10 dBm					M	1[1]			
01 -4.850 dBm -4.850 dBm -10							ı		2.479	33570 GHz
01 -4.850 dBm -4.850 dBm -10										
-10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50	U dBm									
-20 dBm		D1 -4.850 d	Bm			6				
-20 dBm	-10 dBm				Ann	wall w				
-20 dBm				(L WWW "	· van h				
-30 dBm24,850 dBm24,85				/	0		h.			
-30 dBm -30 dBm -40 dBm -50	-20 dBm			MN			1			
-40 dBm -50 dBm -50 dBm -50 dBm -50 dBm		D2 -24	.850 dBm-				<u>B</u> 2			
-40 dBm -50 dBm -50 dBm -50 dBm -50 dBm	an dam			ļ			1			
	-40 dBm						<u></u>			
			In Am	MVV~			- V.N	14.00 0		
			ատտ	ſ			-0.	- 1°00/r L		
	-50 dBm	- nal							₩	
		ah m							ν _ν ν.	
	Lev Lev VM	40 V							When the	N. N. M.
	-00 ubiii									-1-000 001 10 00000
-70 dBm										
	-70 dBm									
CF 2.48 GHz 1001 pts Span 5.0 MHz	CF 2.48 GH	z		1	1001	pts	1		Spa	n 5.0 MHz

|--|

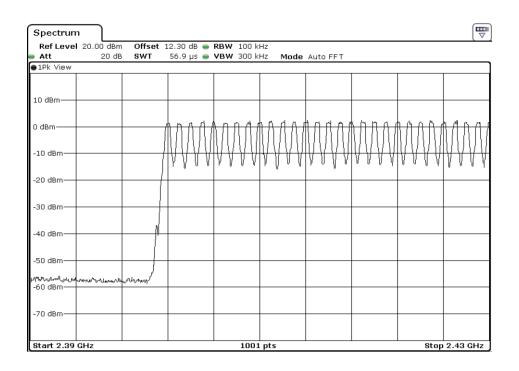


		Test Band		Bluetooth
		Antenna		Ant 1
	Te	est Parameters for	Channel Band	dwidths
Test Item	No.	Mode	Channel	Verdict
Hopping	1	BDR	39	Pass
Frequency	2	2M-EDR	39	Pass
Separation	3	3M-EDR	39	Pass

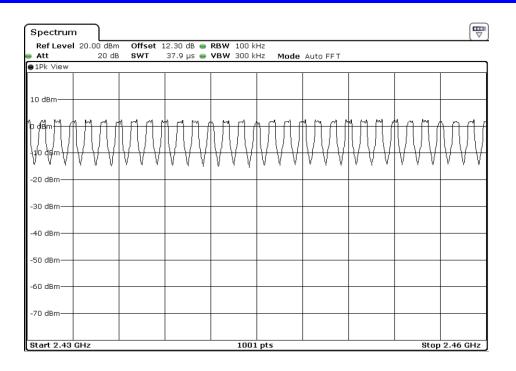


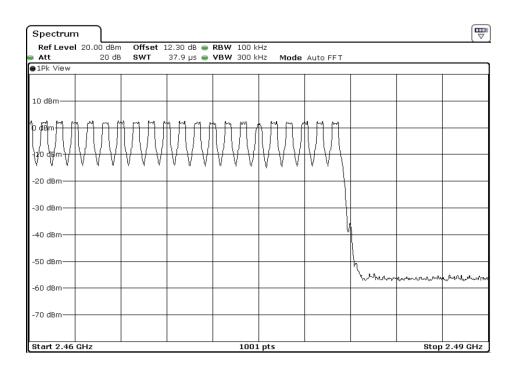
2	Hopping Frequency Separation

	3	Hopping Frequency Separation
--	---	------------------------------

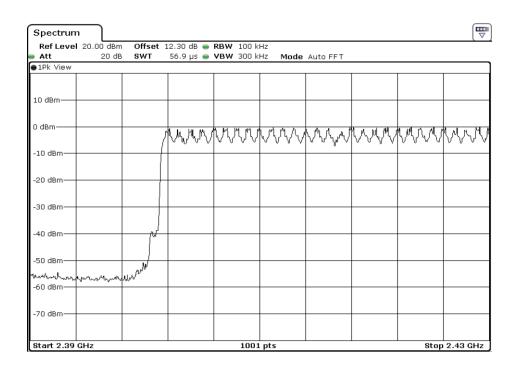


		Test Band		Bluetooth
		Antenna		Ant 1
Test Parameters for Channel Bandwidths		dwidths		
Test Item	No.	Mode	Channel	Verdict
Number Of	1	BDR	-	Pass
Hopping	2	2M-EDR	-	Pass
Channels	3	3M-EDR	-	Pass

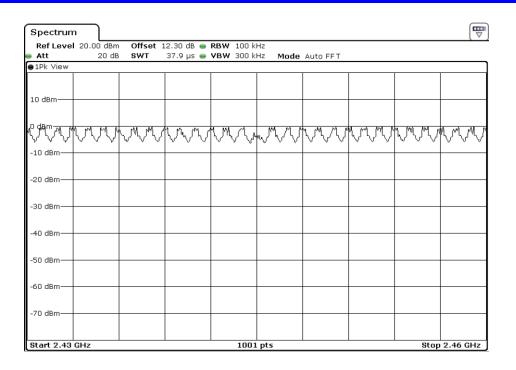

Spectrum	
Ref Level 20.00 dBm Offset 12.30 dB 🖷 RBW 100 kHz	
) Att 20 dB SWT 94.8 μs 👄 VBW 300 kHz Mode Auto FFT	
●1Pk View	
10 dBm-	
◦₩₽₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	1
- 2013년 1월 10년 10년 11년 11년 11년 11년 11년 11년 11년 11년	
╶┼╣ ┢╣╬╘╫╔╗╔╔╗╔╗╗╔╗╗╗╗╗╗╗╗╗╗╗╗╗╗╗╗╗╗╗╗╝╝╗╗╝╝╝╝╝╝╝	$\left\{ - \right\}$
-20 dBm	+
-B0 dBm	
140 dBm	
450 dBm	
	1
-60 dBm	
-70 dBm	
Start 2.4 GHz 1001 pts Stop 2.4835	GHz


1	Number Of Hopping Channels

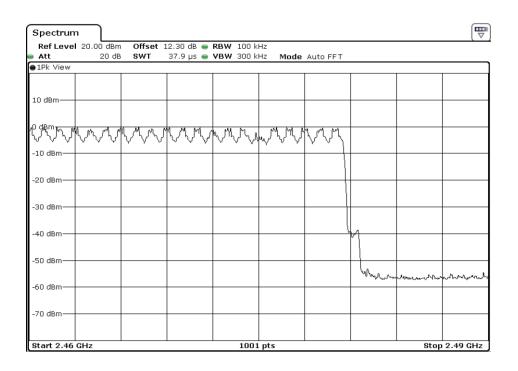
1	l .1	Number Of Hopping Channels



1.3	Number Of Hopping Channels

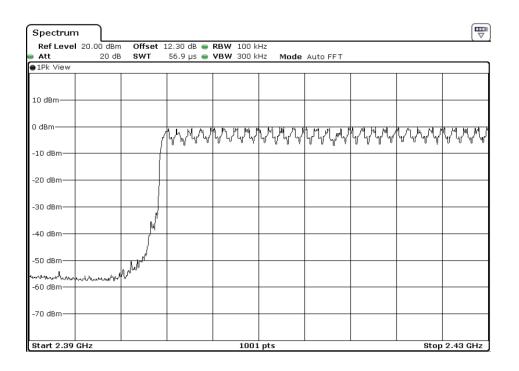

Spectrum)						
Ref Level 20.00	DdBm Offset 1	.2.30 dB 👄 RBW 1	00 kHz				
Att 🗧	20 dB SWT	94.8 µs 👄 VBW 3	00 kHz Mode	Auto FFT			
●1Pk View							
10 dBm							
	wwwww	www.www	wwww	ANNIN I	AMAMA	MWW	www
-20 dBm							
-30 dBm							
∯40 dBm							¥
-60 dBm							444
-70 dBm							
Start 2.4 GHz		1	.001 pts			Stop 2.	4835 GHz

2 Number Of Hopping Channels

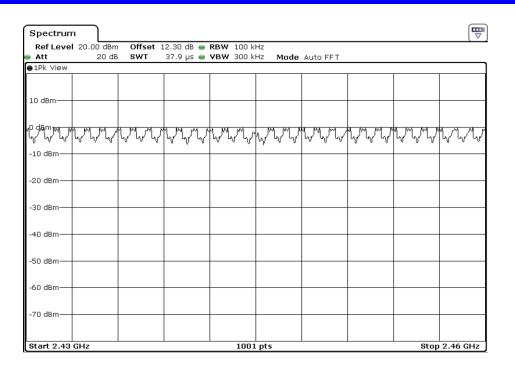


|--|

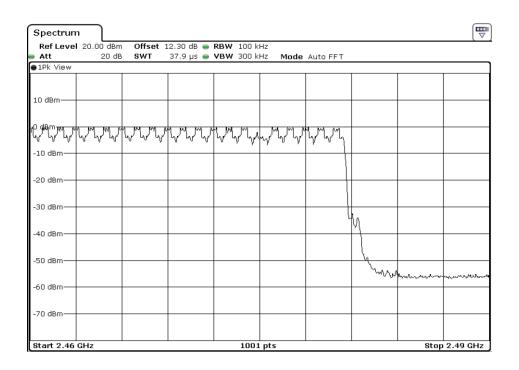
2.2	Number Of Hopping Channels



	I	2.3	Number Of Hopping Channels
--	---	-----	----------------------------


Spectrum	
Ref Level 20.00 dBm Offset 12.30 dB 🖷 RBW 100 kHz	
🛢 Att 20 dB SWT 94.8 μs 🖷 VBW 300 kHz Mode Auto FFT	
●1Pk View	
10 dBm	
°, ABARDONADA AND AND AND AND AND AND AND AND AND	wwwwwww
-10 dBm	
-20 dBm	
-BO dBm	<u> </u>
-50 dBm-	
-60 dBm-	
-70 dBm	
Start 2.4 GHz 1001 pts	Stop 2.4835 GHz

3 Number Of Hopping Channels



3.1 Number Of Hopping Channels

3.2	Number Of Hopping Channels
0.1	

|--|

		Test Band		Bluetooth								
		Ant 1										
Test Parameters for Channel Bandwidths												
Test Item	No.	Mode	Verdict									
	1	BDR	39	Pass								
	2	BDR	39	Pass								
	3	BDR	39	Pass								
	4	2M-EDR	39	Pass								
Time Of Occupancy	5	2M-EDR	39	Pass								
occupancy	6	2M-EDR	39	Pass								
	7	3M-EDR	39	Pass								
	8	3M-EDR	39	Pass								
	9	3M-EDR	39	Pass								

Spectr	um																					
Ref Le	vel :	20.00	dBm	O	ffset	12.3	30 di	в 😑	RB	W 1 M⊦	Ιz											
👄 Att		20) dB	😑 S1	ΥT	1	5 m	s 😑	٧B	W 1 M⊦	łz											
TRG: VIE)																					
●1Pk Vie	W																					
												D	3	[1]								0.00 dB
																					1.2	550 ms
10 dBm-		м	1 D2	-	_							N	11	[1]								45 dBm
	-		<u>, D</u> a	D	3					-	⊢	л г		. г	_						2,5	<u>0</u> 00 ms
0 dBm—			Ť										T					1				
-10 dBm-									+				T					\square	\square			
-20 dBm-									+				T					\square	\square			
													Ш									
- 30 dBm	††Ţ₽	RG -30	.000) dBm-					+				t					1				
-40 dBm-	+++		-1				+		+				t					+	+		+	
h h	. 11	shead		Juli - Carlor	4			, I-will		W. Haland		when the	Ľ	lation	- []	4 H Lung	ليا ا	hale		white		
-50°4Bm	# M	th ar Phyl	- 10	vi	dilo.	(p)pixaj		te alta	MIN			INN - ANDRY	$^{+}$	un nu lui	- '	40. J.M.046	0	- pasque	1 .	<u>ww.ikiw</u>	A.	MM
-60 dBm-						<u> </u>							t		-			+				
-70 dBm-	-					<u> </u>							t		_			+				
CF 2.44	1 GH	Iz				-				1001	nt	s	1					-			1	5 ms/
Marker						_	_	_		2001								_		_	-	
	Pof	Trc		v-	value		1		v -	value		Fund	-+ i	on I			Fun	ctio	n Pe	scult		1
M1	Kel	1				2.51	ms		1 -	2.45 dB	m	Fund		on			i an	crui	T KE	;suit		
D2	M1	1				30.0				-0.33 0												
D3	M1	1				255 1				-0.00 0												

1	Time Of Occupancy
---	-------------------

Specti Ref Le						_	₩ 1 MHz								[₩
Att		20) dB 😑 🕯	SWT	15 m	s 👄 VB1	W 1 MHz								
TRG: VI															
● 1Pk Vie 10 dBm-	ew -	м	1	D2	D3				3[1] 1[1]					2.50 2.4	.04 di 00 m: 5 dBn
0 dBm—	\Rightarrow		'	- <u>A</u>	- F				<u>п</u>			+ +		2.50	00 m
-10 dBm				_							\rightarrow				
-20 dBm	+			_											
- 30 dBm		RG -30	.000 dBn	n										+	
-40 dBm	++		_	<u> </u>										-	
-50 dBm	<u> </u> 4	hund		اليها	nyan		Whatin		lastrada	l l	և	hours			wy wy wy
-60 dBm	_		_												
-70 dBm	_		_												
CF 2.44	F1 GH	z					1001 pt	s						1.5	ms/
1arker															
Type	Ref	Trc	X	(-value	2.5 ms		z.45 dBm	Func	tion		Fun	ction	Resu	t	
M1 D2	M1	1			2.5 ms .64 ms		-0.34 dB								
D3	M1	1			2.5 ms		-0.04 dB								

2	Time Of Occupancy

Spect	rum						
Ref L	evel :	20.00	dBm Offset 12.30	dB 👄 RBW 1 MHz			(•
Att		20) dB 😑 SWT 15 r	ns 👄 VBW 1 MHz			
TRG: VI	D						
●1Pk Vi	ew						
					D3[1]		0.00 dE
10 40							3.7600 m
10 dBm			M1		M1[1]		2.45 dBr
0 40	_						<u>3.74</u> 50 m
0 dBm—				T			
-10 dBm	<u>ا</u> ــــ						
-20 dBm	<u> </u>						
-30 dBrr			.000 dBm				
SO GDI	· [''	(0 -30					
-40 dBm	<u> </u>						
-50 dBm	ι <u> </u>		- Hughanger	lige Humber			- hukhara
-60 dBrr	<u>ا</u> -۱						
-70 dBm	n						
CF 2.4	41 GH	z		1001 pt	s		1.5 ms/
Marker							-
Туре	Ref	Trc	X-value	Y-value	Function	Function	Result
M1 D2	M1	1	3.745 ms 2.9 ms	2.45 dBm -0.36 dB			
D2	M1 M1	1	2.9 ms 3.76 ms	-0.36 dB			
	1411	1	3.70 ms	-0.00 uB		1	

3 Time Of Occupancy	
---------------------	--

Spect	rum																				
Ref Le	evel :								BW 1 M												
Att		2	0 dB	😑 S'	wт	1	5 ms (• •	BW 1 M	Hz											
TRG: VI	_																				
●1Pk Vi	ew							_													
											N	11	[1]								25 dBr
10 dBm·	_					-		+		+											'450 m 0.18 d
				м	1						D	Z	[1]								0.18 a 95.0 μ
ന്¢Bm—			~		1 .D2		<u>m</u>	+		┢┈		ተ	· · · · ·	-~~	1	-	-	-~	۳		
					l Ť	1 1			ł												
-10 dBm	\ + ++				\vdash	+	+	++		+	+	+		$\left \right $		\vdash	+	+		\vdash	
-20 dBm	+++				\vdash	+		+	_	+	+	+		$\left \right $			+	+	-	\vdash	
-3¢ dBm	ιHή	RG -30) dBm-		+	_	+	_	+	+	+	<u> </u>			\vdash	+	+	<u> </u>	\vdash	-
-4¢ dBm	 		+		\vdash	+	+	++		+	+	+	<u> </u>	\vdash	<u> </u>	\vdash	+-	+	+	\vdash	+
4		uhand		L			L		ليها العلمة				L huge ye		ويديدوها		L		when		Ι.
-50/88H	ru r	ብር ርጉሥት የ	<u> </u>	ul Maria	<u>u</u> vy	MANIN	ha /%	rodiný i	- William	4	hy himsel	+	V. Partie		<u>المهارية المالية</u>	بل ليعر	ither way	h	WAL-PT	ll and	Lind ^{ra} wa
-60 dBm	<u>۱</u>		-			-		+		+		$^+$					+			-	
-70 dBm	+-י					-		+		+		t			<u> </u>		+				
CF 2.44	41 GH	Iz				-		-	100	1 pt	ts	-								1	.5 ms/
Aarker																					
Type	Ref	Trc	1	x-	valu	е	1	Y	'-value		Fund	ti	ion (Fur	ctio	n R	esult		
M1		1				745 r	ns	<u> </u>	-0.25 d	Bm											
D2	M1	1			З	95.0	JS		-0.18	dB											
D3	M1	1			1.	255 r	ns		-0.03	dB											

4	Time Of Occupancy

Spect	rum											
Ref L	evel	20.00 dB	m Offset	12.30 d	B 👄 RBW 1 MH:	z						
👄 Att		20 d	ib 👄 SWT	15 m	is 😑 VBW 1 MH:	z						
TRG: VI	ID											
●1Pk Vi	ew											
						D	3[1]				0	.01 dB
											2.51	50 ms
10 dBm	-					M	1[1]				-0.2	7 dBm
				M1	D2 D3						4.99	00 ms
-0°0876°		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		T and	A A		n					
							11					
-10 dBn	n-++		+	++-				++-			_	
-20 dBm	n		+									
- 30 dBrr		RG -30.0										
00 000	° Iï	0 -00.0										
-40 dBn	.											
-40 UBI	' TT	.										
FO JD-		L Yuah		Hund	the work		երհատ	1	L.	www		July note
-50 dBn	n-+"	an Nand		1442	All Manual		114 · 10144		fix.u	5940 W		ter znánk
-60 dBn	n			-								
-70 dBn	n		_					_			_	
05.0.4	11.01	-										
CF 2.4	41 GH	12			1001	prs					1.5	ms/
Marker					4							
Туре	Ref	Trc	X-value		Y-value	Func	tion		Func	tion Res	sult	
M1		1		.99 ms	-0.27 dBr							
D2	M1	1		655 ms	-0.33 d							
D3	M1	1	2.	515 ms	0.01 d	B						

5	Time Of Occupancy
5	inite of occupancy

Spect	rum													
Ref Le	evel :				RBW 1 M									
Att		20) dB 😑 SWT	15 ms 🧉	VBW 1 M	Hz								
TRG: VI														
●1Pk Vi	вw													
							D3[1]					-0.	40 di
													3.76	00 m
10 dBm·						+	M1	[1]					-0.25	5 dBr
					'	11						-	7.49	50 m
ല വജന്നഘ		-100 A			<u> </u>	T.Con		فسرحه بالعالمين	4		- Contraction			
					1 1									
-10 dBm						+								
-20 dBm						+					<u> </u>			
-30 dBm	н Тғ	RG -30	.000 dBm + +			-					<u> </u>			
-40 dBm														
10 0.011	.													
-50 dBm			Un the last		երհան	1.				Haller	ļ			when
-50 abii	'								Ĩ					1 1
60 JD														
-60 dBm														
-70 dBm						+								
CF 2.44	11 CH	7			100	1 pts							15	ms/
Marker	TT GI	£.			100	r prs							1.5	
	Def	Trc	X-value	1	Y-value	1	Functi				Euro	ction Res		
Type M1	Ker	1rc 1		95 ms	-0.25 d		Functi	un			Fun	ction kes	uit	
D2	M1	1		95 ms .9 ms	-0.25 u									
D2	M1 M1	1		76 ms	-0.01									
03	IM T	1	3.	70 ms	-0.40	ub								

6	Time Of Occupancy

Spectrur	n					
Ref Leve Att TRG: VID	20.00 dB 20 d		dB 👄 RBW 1 MHz ns 👄 VBW 1 MHz			
●1Pk View						
10 dBm				D3[1] M1[1]		0.00 dB 1.2450 ms -0.24 dBm
-origan			┝──┟┍┉┓──┟┉	<u>ויין וו</u> ין ו		2.5050 ms
-10 dBm						
-20 dBm						
- 30 dBm	TRG -30.0	 00 dBm				
-40 dBm						
-songerna	hitering	halumana haluma	where where	whenter whereas	playered hard half	menil legtranse
-60 dBm—						
-70 dBm—						
CF 2.441 (GHz		1001 p	ts		1.5 ms/
Marker						
Type Re		X-value	Y-value	Function	Function Resu	lt
M1	1	2.505 ms	-0.24 dBm			
	11 1 11 1	375.0 µs 1.245 ms	1.19 dB 0.00 dB			

Spect	rum																Ē
Ref Le	evel :	20.00	dBm	Offset	12.30 0	ib 😑 I	RBW 1 MH	Ηz									
Att 🛛		2	0 dB 😑	SWT	15 n	ns 😑 '	VBW 1 MH	Ηz									
TRG: VI	_																
●1Pk Vi	ew																
									D3	8[1]							.64 d
10 dBm-																	50 m
10 00111									M:	L[1]							3 dBı 00 m
o abum		M	1	man R2	D3,m	e-rener	04974P4	more	way and an	4		and the second secon	4	-		2.49	UU m
				Ť	I ↑		Į										
-10 dBm) <u> </u>						_										
	. 11																
-20 dBm) <u> </u>				\vdash						+		-				
-30 dBm	⊢┼	RG -30).000 di	Bm-	\vdash		_			1						_	
-40 dBm)— 				\vdash		_						+			_	
		L					1.			11.							
-50 dBm	ı— <u> </u> ₩	What		ltin.	4ubuller		han the start of t	-		heredy	J		- Sugh	pulle	/	_	le a ^{la} dese
-60 dBm														<u> </u>		-	
-70 dBm			_											<u> </u>		+	
CF 2.44	41 GH	z					1001	lots						L		1.5	ms/
/larker																	
Type	Ref	Trc		X-valu	2	. ·	Y-value	1	Funct	ion		F	unc	tion	n Resul	it	
M1		1			2.49 ms		-0.93 dE	3m				· ·				••	
D2	M1	1			65 ms		0.68	dB									
D3	M1	1		2.	505 ms		0.64	dB									

8	Time Of Occupancy

Ref Level 20.00 dBm Offset 12.30 dB RBW 1 MHz TRG: VID 20 dB SWT 15 ms VBW 1 MHz TRG: VID ID ID ID ID ID 10 dBm ID ID <th>Spect</th> <th>rum</th> <th></th> <th>₩</th>	Spect	rum													₩
TRG: VID • 1Pk View 10 dBm -0.49 d -0.25 dBn -10 dBm M1 -20 dBm -0.25 dBn -20 dBm -0.49 d -30 dBm -0.49 d -0 dBm -0.25 dBn -20 dBm -0.49 d -0 dBm -0.49 d -0 dBm -0.25 dBn -20 dBm -0.40 d -0 d	Ref Le	evel :	20.00	dBm Offset	12.30 dB	● RBV	1 MHz								
● 1Pk View D3[1] -0.49 d 10 dBm	🛛 Att		20) dB 😑 SWT	15 ms	e vbv	V 1 MHz								
Dot dBm D3[1] -0.49 d 3.7500 m 0 dBm m1[1] -0.25 dBi 0 dBm m1[1] -0.25 dBi -10 dBm m1 m1[1] -20 dBm m1 m1 -30 dBm m1 m1 -30 dBm m1 m1 -70 dBm m1 m1	TRG: VI	D													
10 dBm	●1Pk Vi	e₩													
10 dBm								D	3[1]					-0.49	Ĵ dE
M111j -0.25 dBm -10 dBm <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.7500</td><td>) m:</td></t<>														3.7500) m:
OrdBymutures Activity of the maximum divides Conversion of the maximum divides -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -10 dBm -10 dBm -30 dBm TRG -30.000 dBm -10 dBm -40 dBm -10 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -10 dBm -60 dBm -10 dBm -10 dBm -10 dBm -70 dBm	10 dBm·							M	1[1]						
-20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -10 1 -50 dBm -50 dBm -70 d	-		NIN P. de BING				M1		la della base di a de la d		Г	3		7.5000	m
-20 dBm	-0.0RUU-		on the second b					y		4		F	Walter		
-30 dBm TRG -30.000 dBm Image: Constraint of the second of	-10 dBm	-				_								+	
-40 dBm -50 dBm -50 dBm -60 dBm -70	-20 dBm	-								_				+	
-50 dBm -60 dBm -70			RG -30).000 dBm		_									
-60 dBm -60 dBm Image: Constraint of the second se	-40 dBm	-				_								+	
-70 dBm Image: constraint of the second	-50 dBm	-		hum			un la serveri			ļ	uhunu	u			li Literation
CF 2.441 GHz 1001 pts 1.5 ms/ Marker Type Ref Tc X-value Y-value Function Function Result M1 1 7.5 ms -0.25 dBm D2 M1 1 2.895 ms 0.55 dB	-60 dBm	-													
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 7.5 ms -0.25 dBm D2 M1 1 2.895 ms 0.55 dB	-70 dBm	,												<u> </u>	
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 7.5 ms -0.25 dBm D2 M1 1 2.895 ms 0.55 dB															
Type Ref Trc X-value Y-value Function Function Result M1 1 7.5 ms -0.25 dBm -0.25 dBm <td></td> <td>41 GH</td> <td>Z</td> <td></td> <td></td> <td></td> <td>1001 pt</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.5 m</td> <td>is/</td>		41 GH	Z				1001 pt	5						1.5 m	is/
M1 1 7.5 ms -0.25 dBm D2 M1 1 2.895 ms 0.55 dB		5.6		N	- 1							-			
D2 M1 1 2.895 ms 0.55 dB		Ref		X-valu				Func	tion			Fun	ction Resu	iit	
		M1	-			-(
	D2	M1	1		3.75 ms		-0.49 dB								

-		
	9	Time Of Occupancy

		Bluetooth							
		Ant 1							
Test Parameters for Channel Bandwidths									
Test Item	st Item No. Mode Channel Verdict								
	1	BDR	0	Pass					
	2	BDR	39	Pass					
	3	BDR	78	Pass					
Maximum	4	2M-EDR	0	Pass					
Peak Output	5	2M-EDR	39	Pass					
Power	6	2M-EDR	78	Pass					
	7	3M-EDR	0	Pass					
	8	3M-EDR	39	Pass					
	9	3M-EDR	78	Pass					

Spectrum				
	Offset 12.30 dB 👄 R SWT 928.7 ns 👄 V		Auto FFT	<u> </u>
●1Pk View		M	1[1]	2.24 dBm
				2.40215480 GHz
10 dBm		M1		
0 dBm				
-10 dBm				
-20 dBm				
-20 0811				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				
CF 2.402 GHz		1001 pts		Span 5.0 MHz

Maximum	Peak	Output	Power	

Ref Level 20.00 dBm			
Att 20 dB	SWT 928.7 ns	VBW 5 MHz Mode Auto FFT	
1Pk View			
		M1[1]	2.42 dBr 2.44115480 GH
.0 dBm			
		M1	
) dBm			
10 dBm			
20 dBm			
30 dBm			
40 dBm			
50 dBm			
60 dBm			
70 dBm			

	Maximum Peak Output Power
--	---------------------------

Spectrum				
Ref Level 20.00 dBm Att 20 dB		Mode Auto FFT		,
●1Pk View		M1[1]	2.480	2.34 dBm 14990 GHz
10 dBm		и1		
0 dBm	 	¥		
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				
	1991			- E 0 Mile
CF 2.48 GHz	 1001 pt	s	spa	n 5.0 MHz

Maximum	Peak	Output	Power
IVIGAIIIIGIII	I Cak	output	1 0000

Ref Level 20.00		t 12.30 dB 👄					
	20 dB SWT	928.7 ns 👄	VBW 5 MH	z Mode	Auto FFT		
1Pk View				-			
				۳ ۱	М1[1]	2 402	1.54 dBr 11990 GH
10 dBm					1	2.402	
			L	M1			
D dBm							
-10 dBm							
-20 dBm					_		
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							

Maximum Peak Output Power

Spectrum					
RefLevel 20.00 dBm Att 20 dB	Offset 12.30 dB SWT 928.7 ns	RBW 2 MHz VBW 5 MHz	Mode Auto FFT		
●1Pk View					
			M1[1]	 1.7 2.4408801	0 dBm L0 GHz
10 dBm					
		M1			
0 dBm				 	
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm				 	
CF 2.441 GHz		1001	pts	Span 5.0	MHz

Ref Level 20.00		t 12.30 dB 👄					
	20 dB SWT	928.7 ns 👄	VBW 5 MHz	Mode Auto FFT			
1Pk View							1.65.45
				M1[1]		2.479	1.65 dBr 87510 GH
LO dBm							
			М1				
) dBm			¥				
						~	
							_
10 dBm							
20 dBm							
30 dBm							
40 dBm							
50 d0							
50 dBm							
60 dBm							
70 dBm							

Maximum Peak Output Power

	Auto FFT	x
	M1[1]	1.82 dBm 2.40200000 GHz
M1		
 ¥	+	
1001 pts		Span 5.0 MHz
		SWT 928.7 ns VBW 5 MHz Mode Auto FFT

Maximum	Peak	Output	Power

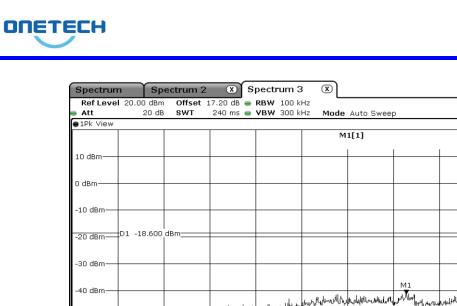
Ref Level 20.00 de			RBW 2 MHz				
Att 20	db SWT	928.7 ns 👄	VBW 5 MHz	Mode Au	to FFT		
1Pk View							
				M1	[1]	0.440	2.00 dBr 99500 GH
10 dBm						2.440	99300 GH
			M1				
0 dBm							
	-						
-10 dBm							
-20 dBm	_						
-30 dBm							
-30 0611							
-40 dBm	-						
-50 dBm							
-60 dBm							
-70 dBm							
, o ubiii							

Maximum Peak Output Power

SWT 928.7 n:	B 👄 RBW 2 MHz s 👄 VBW 5 MHz	Mode Auto FFT			
		M1[1]		2.4799	1.92 dBn 6000 GH
	M1				
				_	
			м1	м1	2.4799

9 Maximum Peak Output Pow

		Test Band		Bluetooth			
		Antenna		Ant 1			
	T	est Parameters for Channel Bandwidths					
Test Item	No.	Mode	Channel	Verdict			
	1	BDR	0	Pass			
	2	BDR	39	Pass			
	3	BDR	78	Pass			
	4	BDR	Hopping	Pass			
100 kHz	5	2M-EDR	0	Pass			
Bandwidth Outside The Frequency Band	6	2M-EDR	39	Pass			
	7	2M-EDR	78	Pass			
	8	2M-EDR	Hopping	Pass			
	9 3M-EDR		0	Pass			
	10	3M-EDR	39	Pass			
	11	3M-EDR	78	Pass			
	12	3M-EDR	Hopping	Pass			



Spectrum	Sp	ectrum 2	× s	pectrum 3	× ×				
			L2.30 dB 👄						
Att	20 dB	SWT	37.9 µs 👄	VBW 300 k	Hz Mode	Auto FFT			
●1Pk View					м	1[1]			54.91 dBm 00000 GHz
10 dBm									
	01 1.400 de	sm		ſ					
-10 dBm	D2 -18	.600 dBm							
-20 uBili									
-40 dBm				N	h				
-50 dBm									
، مر محمد م -60 dBm	munon	www.	man	1 W	<u>ل</u>	- Munner	man	mawar	mmmmm
-70 dBm									
CF 2.402 G	L1-7			1001	nte			Span	20.0 MHz

100 kHz Bandwidth Outside The Frequency Band

Spectrun	n Sp	ectrum 2	× s	pectrum 3	×				
	20.00 dBm 20 dB		_	RBW 100 k VBW 300 k			_		
● Att ●1Pk View	20 QB	SWT	24.7 ms 👅	YBW 300 K	Hz Mode	Auto Swee	2		
					M	1[1]	I		54.66 dBm 38030 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -18.600	dBm							
-30 dBm									
-40 dBm									
-50 dBm									M1
rleoicentum	onellikytetynewty	un halaithaaffadhaan	dyraybbay,	whenter	halahalaha deka	uitedrophatestration	haliptashishiniqtanis	Juran planing of the shall	HALLWY CHARY YOU HAVE
-70 dBm—									
Start 30.0	MHz			1001	pts			Sto	p 2.5 GHz

1.1	100 kHz Bandwidth Outside The Frequency Band
-----	--

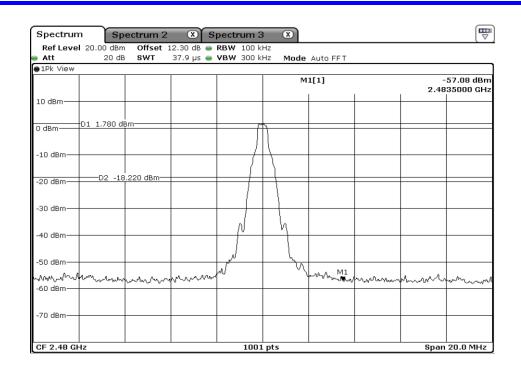
-40 dBm							М1		
-40 dBm				1 . Ibi.a.	the should be	pupliplicestudery	wert They Brief survey	waldell you when the	للرملط لمعاد ومعاد ومعالي والمعام والمع
-59.dApt	ale of the senting	Magaly Marine Marine	hahadshillenarthreth	ቍኯኯኯ ዀ					
nalltan.									
-60 dBm									
-70 dBm									
Start 2.5 G	Start 2.5 GHz 1001 pts Stop 26.5 GHz						26.5 GHz		

1.2 100 kHz Bandwidth Outside The Frequency Ba	nd
--	----

Spectrum	ı s	pectrum	2 🕱 S	pectrum 3	× ×				
Ref Level	20.00 dB	m Offset	12.30 dB 👄	RBW 100 k	Hz				
Att	20 d	IB SWT	37.9 µs 👄	VBW 300 k	Hz Mode	Auto FFT			
●1Pk View									
					м	1[1]		2.44	1.90 dBm 08400 GHz
10 dBm				M:					
0 dBm	D1 1.900	dġm		<u>↓ ₹</u>	<u></u>				
-10 dBm—		0.100 d0m							
-20 dBm	2 - 1	.8.100 dBm-							
-30 dBm									
-40 dBm				μ <i>γ</i>	<u> </u>				
50 40									
-50 dBm	wanne		Jurren	and the second	, v	hundry	mmhr	man and a street	and the same
-60 dBm									v 14.4000
-70 dBm									
CF 2.441 G	Hz			1001	pts			Span	20.0 MHz

2
2

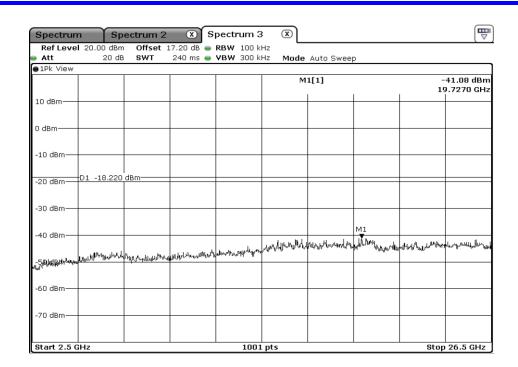
100 kHz Bandwidth Outside The Frequency Band


-41.29 dBm 19.9670 GHz

Spectrum	n Sp	ectrum 2	×s	pectrum 3	×				ſ	₩)
	20.00 dBm		_	RBW 100 ki						
Att	20 dB	SWT	24.7 ms 👄	VBW 300 ki	Hz Mode	Auto Swee)			_
●1Pk View					м	1[1]		-	54.53 dE	3m
									30380 G	
10 dBm										-
0 dBm										+
-10 dBm—										
-20 dBm	D1 -18.100	dBm								
-20 00111										
-30 dBm										
-40 dBm										Η
-50 dBm									М1 Т	
ulawangan yaku	egilitadese lander	youther the second	the hilds from the	Werk Ward water	yundahil when	while and shore wife	ulununulunuu	www.color.autoralistication	yudukana	JK446
-70 dBm										-
Start 30.0	MHz			1001	pts	I		Sto	p 2.5 GH	IZ

Spectrum	ר ר Sp	ectrum 2	×s	pectrum 3	× ×				
	20.00 dBm		_	RBW 100 k					
Att 1Pk View	20 dB	SWT	240 ms 👄	VBW 300 k	Hz Mode	Auto Swee	p		
ULL VIEW					м	1[1]			40.54 dBm 9.9910 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -18.100	dBm							
-30 dBm									
-40 dBm -5Ձակերերություն Դություն		1		• I	www.handha	PallonManushrandr	M1 When when when when when when when when w	with the with	withunder
-5.QualBattannel	heren de la serie de la ser La serie de la s	here and a second	yidadharradharradharradharradharradharradharradharradharradharradharradharradharradharradharradharradharradharra An an	KAMAKINDA. A A					
-60 dBm									
-70 dBm									
Start 2.5 G	Hz			1001	. pts			Stop	26.5 GHz

2.2	100 kHz Bandwidth Outside The Frequency Band
-----	--



ONETECH

3

Spectrun	n Sp	ectrum 2	× s	pectrum 3	× ×				
	1 20.00 dBm		12.30 dB 🔵						
Att 1Pk View	20 dB	SWT	24.7 ms 👄	VBW 300 k	Hz Mode	Auto Swee	0		
JIFK VIOW					м	1[1]	1		54.69 dBm 31120 GHz
10 dBm									
0 dBm									
-10 dBm—									
-20 dBm	D1 -18.220	dBm							
-30 dBm									
-40 dBm—									
-50 dBm									M1 Tula controll
waterstation	<mark>ար հեղին եր հերովել</mark>	ԱրդոՄոլիմի4ու-դիԴև-հլ,41		Mallhauthan	kkhuurraallu	hthe provided and the second	hollinderaliser	h,belidyn runnar dir	արուտութույստ
-70 dBm									
Start 30.0	MHz	1	1	1001	pts	1	1	Sto	p 2.5 GHz

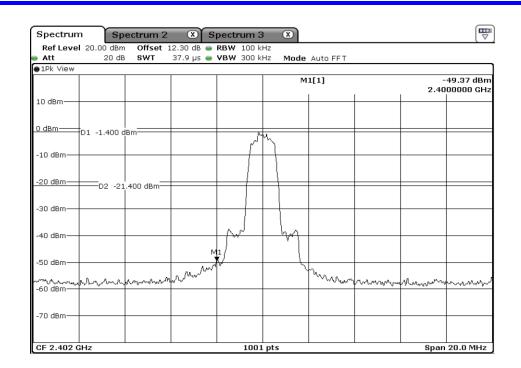
3.1	100 kHz Bandwidth Outside The Frequency Band
-----	--

ONETECH

3.2 100 kHz Bandwidth Outside The Freque	ncy Band
--	----------

Spectrum		Spectrum 2	×s	pectrum 3	×				
Ref Level				RBW 100 k					
Att	20	dB SWT 23	27.5 µs 👄	VBW 300 k	Hz Mode	Auto FFT			
●1Pk View									
					M	3[1]			2.54 dBm
10 dBm						1[1]			58780 GHz 55.68 dBm
					M3	1[1]			00000 GHz
0 dBm D	1 2.540) dBm	dddal y f f y f f f f f f f f f	n and a market a state of the s	adamarritts () and ba	AND THE ACTIVITY	1		
-10 dBm			TI KANGADAN I	<u>Mahan www.whallina</u>	aanhiinteattimmaddaa	onalinaliality and add	η		
-20 dBm	—D2 ·	-17.460 dBm					-		
-30 dBm		ľ							
-40 dBm									
-50 dBm		м					10		
المعديد المعاد							M2	away when	the Alternation Links
-60 dBm	Mandal-Anger"	www.uuuyonland						annad suburda	all a findly have
-70 dBm									
05.0.441.01	-			1001	nte				00.0 ML
CF 2.441 GH	12			1001	prs			span 2	200.0 MHz
Marker	Trc	V. uslus	1	V. uslus	Func	tion 1	Fund	tion Result	
Type Ref M1	1	X-value	4 GHz	<u>Y-value</u> -55.68 dB		uon	Func	aion Result	
M2	1		5 GHz	-56.29 dB					
M3	1	2.4587		2.54 dB					

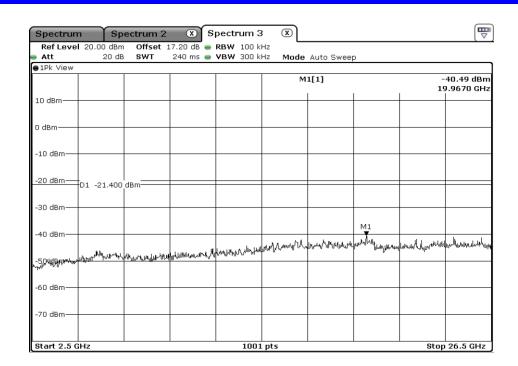
4	100 kHz Bandwidth Outside The Frequency Band


Spectrum	n Sp	ectrum 2	× s	pectrum 3	×					⊽
	20.00 dBm			RBW 100 k						
Att	20 dB	SWT	24.7 ms 👄	VBW 300 k	Hz Mode	Auto Swee	2			_
●1Pk View										
					м	1[1]			55.02 dB 36800 GI	
10 dBm										-
0 dBm									N ^N N	<u>4</u> 1
-10 dBm										
-20 dBm	D1 -17.460	dBm								+
-30 dBm										+
-40 dBm										+
-50 dBm									M1	+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	«الوالةيونيدر من العقونيو	and the property of the second s	logoff for far far and a start of the second starting of the second start of the secon	whytherestrations	houthouthanout	+ alongen aller	white Mr. of a floor white	oliloseun,nahorpatr	UL-Adably!	_
-70 dBm										
Start 30.0	MHz			1001	pts			Sto	p 2.5 GH	z

4.1	100 kHz Bandwidth Outside The Frequency Band
-----	----------------------------------------------

Spectrum	Spe	ectrum 2	×s	pectrum 3	× ×				
Ref Level 20		Offset 1	_	RBW 100 ki					
Att 1Pk View	20 dB	SWT	240 ms 👄	<b>VBW</b> 300 ki	Hz Mode	Auto Swee	0		
DIPK VIEW					м	1[1]			41.41 dBm 9.9430 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm-D1	-17.460	dBm							
-30 dBm									
-40 dBm	de se			e, a star star tablekka	Awallware	, Koren Judit, Juan, M	M1 -u ^{kafu} uluuluuluu	peruhater planet Nilledy	huildy-theogenthane
150 alger under	HANNAUMUNU	uuraanan ka	phelipher rector that is	Writelli March 1977					
-60 dBm									
-70 dBm									
Start 2.5 GHz				1001	pts			Stop	26.5 GHz

4.2	100 kHz Bandwidth


00 kHz Bandwidth Outside The Frequency Band



5

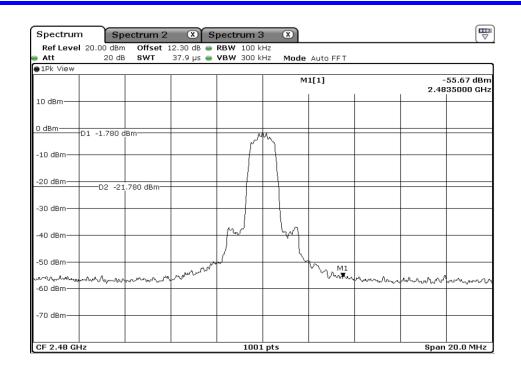
Spectrun	n Sp	ectrum 2	× s	pectrum 3	× ×					
Ref Leve Att	20.00 dBm 20 dB		.2.30 dB 😑 24.7 ms 😑			Auto Swee	D			
●1Pk View				1						
					м	1[1]			54.88 c 33840	
10 dBm										
0 dBm										
-10 dBm—										
-20 dBm	D1 -21.400	dBm								_
-30 dBm										_
-40 dBm										_
-50 dBm									M1	
historication	للبرياقية الترجير بمنعة علمك	ht willing the second second	uthilichighterite	hhadallada daya hala	have been a subserved and the second s	HENG COMPANY	worddalladau	uch Milyan working	phalmal	կլիկու
-70 dBm										
Start 30.0	MHz			1001	pts			Sto	p 2.5 G	Hz

	5.1	100 kHz Bandwidth Outside The Frequency Band
--	-----	----------------------------------------------



Spectrum	Spectrum 2	× Spec	trum 3:	×			
Ref Level 20.00 d		2.30 dB 👄 RB\					
Att 20	dB SWT	37.9 µs 👄 VBN	W BUUK	Hz Mode	Auto FFT		
UTER VIEW				м	1[1]		-1.36 dBm 08200 GHz
10 dBm							
0 dBm			M1				
DI -1.30			. "M	a l			
-10 dBm							
			- [ ]	1			
-20 dBm							
-20 dbiii D2	-21.360 dBm						
-30 dBm							
			~~/	5.00			
-40 dBm			w				
		1/					
-50 dBm							
-60 dBm	ALL MARKEN AND	2 mart and and and			where an	 www.www	
-60 dBm	- and a contraction of the	-			W*P	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	WANNEL WANNEL CON
-70 dBm	_						
CF 2.441 GHz			1001	pts		Span	20.0 MHz

6




Spectrun	n Sp	ectrum 2	× s	pectrum 3	× ×				ſ	₩)
	20.00 dBm		_	<b>RBW</b> 100 k						
Att	20 dB	SWT	24.7 ms 😑	<b>VBW</b> 300 k	Hz Mode	Auto Swee	2			_
●1Pk View										
					м	1[1]			54.98 dE	
						I	ı	2.	31370 G	HZ
10 dBm										—
										- 1
0 dBm										
0 UBIII										
-10 dBm										$\vdash$
00 48-5										
-20 dBm	D1 -21.360	dBm								Ħ
-30 dBm										$\square$
-40 dBm										H
-50 dBm										
									M1	
Lotale	I		بالمتلحية المحمد الطبا	hall the second	ستنابيت	يرينا والمنابع	dan Bassid Isr	والمقافليها وحدار البابقان	الموقانيل مرادر إول	ubilu
L-6846000	<u>hiling qaraya</u> tayayayayayayayayaya	uuuum uuum	Market Allow - 1940 - 19	առու ուս ուս ուս երեզմիվ	-Windford And	and all find the solution of	rdinfratarradou	part-op-0-0-0000000		-
-70 dBm										
-70 0011										
										- 1
Pt aut 20.0	MLIS			1001	nte				n 2 5 CL	
atan 30.0	tart 30.0 MHz 1001 pts Stop 2.5 GHz									

6.1	100 kHz Bandwidth Outside The Frequency Band
-----	----------------------------------------------

Spectrum	n Sp	ectrum 2	×s	pectrum 3	: X				
Ref Level Att	20.00 dBm 20 dB		_	<b>RBW</b> 100 ki <b>VBW</b> 300 ki		Auto Cureo	-		
ALL 1Pk View	20 UB	3111	240 ms 🖷	YDW JUUK	nz Mode	Auto Swee	þ		
					м	1[1]			41.21 dBm 9.9670 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -21.360	dBm							
-30 dBm									
-40 dBm					withit	wyndfallallaun	M1 white hashes	ullhumbhaneral	uwww.
J.Z.R.V.d.B.Atvabuub	hter and the second of the sec	lubarypy, bhay	didaubationalite-My-aMu	unakryptin	× 1				
-60 dBm									
-70 dBm									
Start 2.5 G	Hz			1001	pts			Stop	26.5 GHz

6.2	100 kHz Bandwidth Outside The Frequency Band
-----	----------------------------------------------



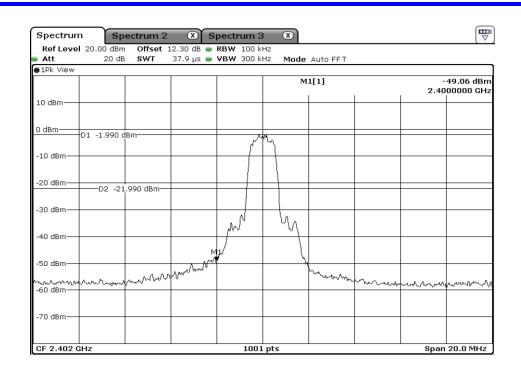
7 100 kHz Bandwidth Outside The Frequency Ban	1
-----------------------------------------------	---

Spectrum Spectrum	2 🗴 Spectrum	3 8	
RefLevel 20.00 dBm Offse Att 20 dB SWT	t 12.30 dB  RBW 100 24.7 ms  VBW 300		
Plpk View	24.7 IIIS 🖶 VBW 300	KHZ MOUE AUTO SWEE	р 
		M1[1]	-54.62 dBm 2.33590 GHz
10 dBm			
0 dBm			
-10 dBm			
-20 dBm-D1 -21.780 dBm-			
-30 dBm			
-40 dBm			
-50 dBm			M1
LaterQueetElletathatelponertaantermenter	of the produced on the second state of the second	And white for the second and strate of the second and the second se	haupersedently are and a stranger and the stranger and
-70 dBm			
Start 30.0 MHz	100	1 pts	Stop 2.5 GHz

7.1	100 kHz Bandwidth Outside The Frequency Band
-----	----------------------------------------------

Spectrun	n Sp	ectrum 2	x s	pectrum 3	3 X)				
	20.00 dBm 20 dB			<b>RBW</b> 100 k <b>VBW</b> 300 k			_		
Att 1Pk View	20 UB	SWT	240 ms 👄	<b>YBW</b> 300 K	HZ Mode	Auto Swee	p		
					м	1[1]			40.29 dBm 9.7030 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -21.780	dBm							
-30 dBm									
-40 dBm							м1 Т.,		
-40 dBm  -5թ.գլջր <del>։/\/</del>	wheeld	hander	www.	waystand and	put the well the	hardad and a strain of the	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	plant interview	ulling siveler ⁱⁿ lyi
-60 dBm									
-70 dBm	<u> </u>								
Start 2.5 0	Hz			1001	nts			Stor	26.5 GHz

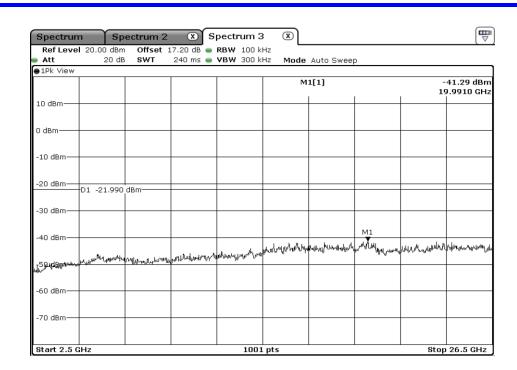
Spectrum		Spectrum 2	×s	pectrum 3	X				
Ref Level 🗄			2.30 dB 😑	RBW 100 kH	lz				
Att 🗧	20	dB <b>SWT</b> 23	27.5 µs 😑	<b>VBW</b> 300 kH	z Mode	Auto FF	т		
●1Pk View									
					M	3[1]			-0.17 dBm
10 10-									66170 GHz
10 dBm					M	1[1]			54.44 dBm
						MЗ		2.4	00000 GHz
0 dBm D	1 -0.17	0 dBm	ւծքի դիկելել է		الليا والماليا الله	والمرالية المرالية	l.uk.		
		i r	MINIPOOL AND	ak she will be a first when	A. New Mitter (Mitter Industry)	mannearmath	UNIT OF THE OWNER OF		
-10 dBm							-		
20 dBm	D2 -	20.170 dBm 🕂							
-30 dBm									
-40 dBm							_		
-50 dBm		Ma							
							12		han an a
-60 dBm	n nakan /n	malladytums					acher man	Wery Wohnerrow	Paladon-adraded and production
oo abiii									
-70 dBm									
-/0 ubiii									
CF 2.441 GH	lz			1001	pts		•	Span 2	00.0 MHz
Marker									
Type   Ref	Trc	X-value		Y-value	Func	tion	Fund	tion Result	1
M1	1	2.	4 GHz	-54.44 dBr	n				
M2	1	2.483		-57.03 dBr					
M3	1	2.4661	7 GHz	-0.17 dBr	n				


0	100 kHz Bandwidth Outside The Frequency Band
0	Too knz Bandwidth Outside The Frequency Band



Spectrum	ı Sp	ectrum 2	× s	pectrum 3	×				ſ	▽
	20.00 dBm			RBW 100 k						
Att	20 dB	SWT	24.7 ms 👄	<b>VBW</b> 300 k	Hz Mode	Auto Swee	p			_
●1Pk View										
					M	1[1]			55.20 dE	
						I	I	z.	38770 G	ΗZ
10 dBm										
0 dBm										
									V	W4
-10 dBm-										
-10 dBm										
-20 dBm	D1 -20.170	dBm								-+
-30 dBm										
-30 übiii										
-40 dBm										+
-50 dBm										
									M	- U
~south <u>~uu</u>	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	a hand a shall be	and the subme	when many	والمالية المحمد الم	بمتبار المحمالة للمقابسين	الماسيم المحمد المراجع	ulab-gliperreport-two	www.l	٩
℠ℰ℗ⅆℇⅈℾ℠℠	Caleston Del Polone a	NAT TOOLS								-
-70 dBm										_
Start 30.0	MHz			1001	pts			Sto	p 2.5 GH	iz j

Spectrum	n (Sp	ectrum 2	×s	pectrum 3	: (X)				
	20.00 dBm			<b>RBW</b> 100 k					
Att 1Pk View	20 dB	SWT	240 ms 👄	<b>VBW</b> 300 k	Hz Mode	Auto Swee	p		
					м	1[1]			40.52 dBm 9.9910 GHz
10 dBm									
0 dBm									
-10 dBm									
- 20 dBm	D1 -20.170	dBm							
-30 dBm							M1		
-40 dBm	Lawassian Juran Mar	Addread and the state of the st	and the second	walkingtherelying	, when the second	_{ՠՠ} ֈֈֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠ	with My water	a fred the set of the	unthrolownerw, d
-60 dBm									
-70 dBm									
Start 2.5 G	Hz		1	1001	pts			Stop	26.5 GHz


8.2	100 kHz Bandwidth Outside The Frequency Band
-----	----------------------------------------------



9

Spectrun	n Sp	ectrum 2	× s	pectrum 3	×				
Ref Level	20.00 dBm 20 dB		.2.30 dB 😑 24.7 ms 😑			Auto Swee	2		
●1Pk View	20 40	0111		<b>1011</b> 000 k	ne mode	A010 3000	,		
					M	1[1]			54.55 dBm 36800 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm—	D1 -21.990	dBm							
-30 dBm									
-40 dBm									
-50 dBm									M1
nisjówstertillunt,	un and the land	a youll Which the application of the	ig-brow-lblbanistd	enternationalitana	ggaddenild alabha	peril periodes and a stability	have hovedput	Handlagh, ward ward	nshahatsiya harkasiya
-70 dBm									
Start 30.0	MHz			1001	pts			Sto	p 2.5 GHz

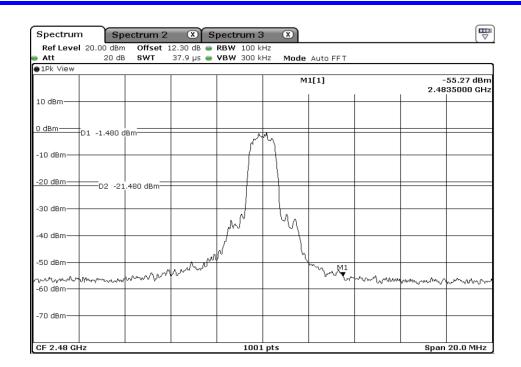
	9.1	100 kHz Bandwidth Outside The Frequency Band
--	-----	----------------------------------------------



9.2	100 kHz Bandwidth Outside The Frequency Band

Spectrum Spectrum 2	Spectrum 3	×	
	12.30 dB 👄 RBW 100 kHz		\$\$
Att 20 dB SWT	37.9 µs 👄 <b>VBW</b> 300 kHz	Mode Auto FFT	
●1Pk View			
		M1[1]	-1.65 dBm 2.4411800 GHz
10 dBm			
0 dBm	M1		
D1 -1.650 dBm	1		
-10 dBm	ſ		
-10 0811			
-20 dBm D2 -21.650 dBm-			
-30 dBm		+ $+$ $+$	
	M	WA	
-40 dBm			
-50 dBm		ⁱ n	
	Mar I	Thurs I	
-50 dBm	l l	i www	man
-00 uBm			
-70 dBm			
CF 2.441 GHz	1001 pt		Span 20.0 MHz

10


ONETECH



Spectrum	n Sp	ectrum 2	× S	pectrum 3	×				ſ	₹
	20.00 dBm			RBW 100 k						
Att 1Pk View	20 dB	SWT	24.7 ms 👄	<b>VBW</b> 300 k	HZ Mode	Auto Swee	0			_
LLK VIEW					м	1[1]			54.89 dE 36800 G	
10 dBm										
0 dBm										
-10 dBm—										$\square$
-20 dBm	D1 -21.650	dBm								$\models$
-30 dBm										
-40 dBm										
-50 dBm									M1	
uppertextext	,,,,Lfr. all Mirgaliumarium	n invindency 714	aduation and the second s	hunder and the second	والمهالة الإستانية والمعالية والمساحية والمساحية والمساحة والمساحة والمساحة والمساحة والمساحة والمساحة والمساحة	philippedratestry transfer	mayboods. What is the set	un thread a faith	<b>પ્ર</b> ત્વાન-જુવીદી ⁴ 94	l Weley
-70 dBm										_
Start 30.0	MHz			1001	pts			Sto	p 2.5 GH	Iz

Spectrum	n Sp	ectrum 2	x s	pectrum 3	s x				
	20.00 dBm		_	<b>RBW</b> 100 k					
Att	20 dB	SWT	240 ms 👄	<b>VBW</b> 300 k	Hz Mode	Auto Swee	0		
●1Pk View									
					м	1[1]			40.64 dBm 9.9190 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -21.650	_dBm							
-30 dBm									
-40 dBm					الحيال مانتخاف	بة مستقاطعيناه يك	M1 เหนื่มไป	a Maraadoodos	ر يىمىلىرىسىلىر
-40 dBm	manhhullout	[Net]Liperal Las Arethy	yoluyalerayan Ayyor	hard and a start and a start a start and a start	hondon a a ca	- ooe or of p a	m mynem	աստի (համի օր	
-60 dBm									
-70 dBm									
Start 2.5 G	Hz			1001	pts			Stop	26.5 GHz

10.	2	100 kHz Bandwidth Outside The Frequency Band
-----	---	----------------------------------------------



11	100 kHz Bandwidth Outside The Frequency Band
----	----------------------------------------------

Spectrum	n Sp	ectrum 2	× s	pectrum 3	×				
	20.00 dBm		12.30 dB 🔵						
Att 1Pk View	20 dB	SWT	24.7 ms 👄	<b>VBW</b> 300 k	Hz Mode	Auto Swee	0		
					м	1[1]	1		55.12 dBm 35320 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -21.480	dBm							
-30 dBm									
-40 dBm									
-50 dBm									M1
whither	azana i i philippilioniki	<u>n heim Muhanddal</u>	haannan an ann an an ann an an ann an an	WWW.HUMMALADYA	harrythalpro-sulphone	annaprodatifyrida	cheeningentragetertuilig	hyperphysiological	no-locatestan
-70 dBm									
Start 30.0	MHz			1001	. pts			Sto	p 2.5 GHz

	11.1	100 kHz Bandwidth Outside The Frequency Band
--	------	----------------------------------------------

Spectrum	n Sp	ectrum 2	x s	pectrum 3	3 X)				
Ref Level Att	20.00 dBm 20 dB		_	<b>RBW</b> 100 k <b>VBW</b> 300 k		Auto Swee	n		
●1Pk View					in induc	Hato onco	2		
					м	1[1]			40.87 dBn 9.7750 GH
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -21.480	dBm							
-30 dBm									
-40 dBm							м1 Т.		
ടെ പറംഷിക്ഷം	when the product of the	Muumulinpert	Lasylverrowthat	, ull official and a second second	at application and a	hopertradium with	willing the way the way	hullilahuunu ⁿ sadi	uruhanuha
-Harringen a	•								
-60 dBm									
-70 dBm									
Start 2.5 G	Hz			1001	nts			Stor	26.5 GHz

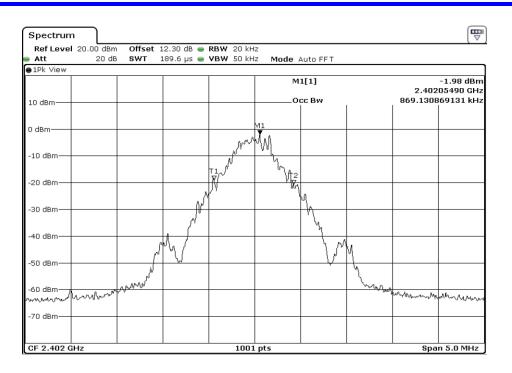
Spectrum										
Ref Level	20.00 dBr	n Offset 1	2.30 dB 👄	RBW 1	00 kHz					
Att	20 di	B <b>SWT</b> 2	27.5 µs 👄	<b>VBW</b> 3	00 kHz	Mode	Auto FFT			
IPk View										
						M	3[1]			-0.14 dBm
10 dBm										60180 GHz
TO GBU							1[1]			49.91 dBm
						M	ł	1	2.4	00000 GHz
	01 -0.140	dBm	Արեվրեկենն	Mahaliku	unhank	նկկկկի	ատեսների	ι.		
10 40			vii (p 0	. r		.0 . 4441	. a sthe			
-10 dBm										
00 10-										
20 dBm	D2 -2	0.140 dBm								
-30 dBm										
		1 6						1		
-40 dBm										
		M						l.		
-50 dBm		l J						M12		
welwerk protong to a	عاويدهم والارادي والارجا	in mouran strate						M12 Some Market	all may all the say all all as	on the and the second and
-60 dBm										
-70 dBm										
CF 2.441 GHz 1001 pts Span 200.0 MHz										
Marker										
	Trc	X-value	1	Y-valı	ie	Func	tion	Fund	tion Result	1
M1	1		4 GHz		1 dBm					
M2	1		5 GHz		7 dBm					
M3	1	2.4601	8 GHz	-0.1	4 dBm					

12	100 kHz Bandwidth Outside The Frequency Band

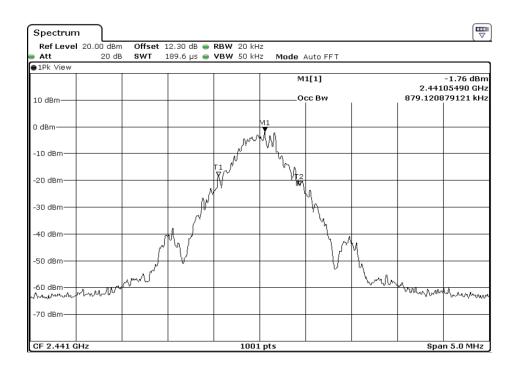


Spectrum	sp	ectrum 2	×							
	20.00 dBm		.2.30 dB 🔵							
Att	20 dB	SWT	24.7 ms 😑	<b>VBW</b> 300 k	Hz Mode	Auto Swee	p			
●1Pk View					м	1[1]			54.28 ( 35810	
10 dBm										
0 dBm										щ
-10 dBm										
- 20 dBm	D1 -20.140	dBm								
-30 dBm										
-40 dBm										
-50 dBm									м1 Т.	
uled all miles	hallallallad	hrumatun hindren hi	paymentalloheld	eventer about the star	munumu	and the many	enerthetterenter	للمراجزة والمعدية والمعالمة والمعالمة والمعالمة والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية وال	-Woneer-W	
-70 dBm										
,										
Start 30.0	Start 30.0 MHz 1001 pts Stop 2.5 GHz								Hz	

12.1 100 kHz Ban	width Outside The Frequency Band
------------------	----------------------------------

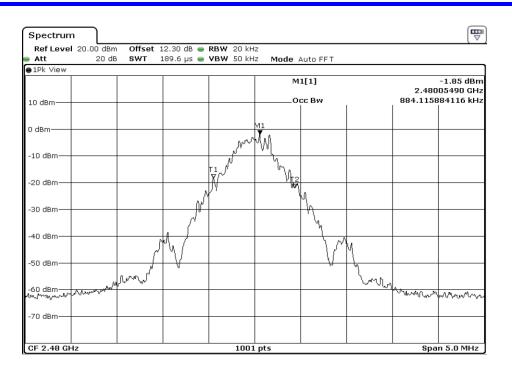

Spectrum	n Sp	ectrum 2	x s	pectrum 3	3 ∞				
	20.00 dBm		_	RBW 100 k					
Att	20 dB	SWT	240 ms 👄	<b>VBW</b> 300 k	Hz Mode	Auto Swee	p		
●1Pk View				1					
					M	1[1]			39.41 dBm 9.7270 GHz
10 dBm									
0 dBm									
-10 dBm									
	D1 -20.140	dBm							
-30 dBm							М1		
-40 dBm എൽഷങ്ഷി ^{ക്കും}					white	umphraphral de	where hyper	alder-type ^d yleggale ^{ensela} ysie	hanthangeleanger
√5®rd8nH <u>Huu</u> k	ynlanger ^{gel dil} hyngelynn	Munulphat	paliniticititi	սվուկպոլը է օրու			, , , , , , , , , , , , , , , , , , ,		
-60 dBm									
-70 dBm									
, o abiii									
Start 2.5 G	Hz		I	1001	pts		I	Stop	26.5 GHz

	12.2	100 kHz Bandwidth Outside The Frequency Band
--	------	----------------------------------------------

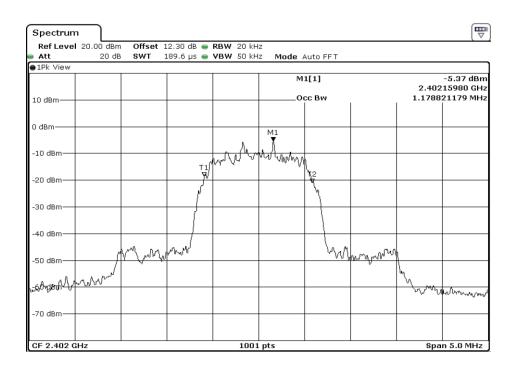



			Bluetooth		
		Ant 1			
Test Parameters for Channel Bandwidths					
Test Item	No.	Mode	Channel	Verdict	
	1	BDR	0	Pass	
	2	BDR	39	Pass	
	3	BDR	78	Pass	
99 %	4	2M-EDR	0	Pass	
Occupied	5	2M-EDR	39	Pass	
Bandwidth	6	2M-EDR	78	Pass	
	7	3M-EDR	0	Pass	
	8	3M-EDR	39	Pass	
	9	3M-EDR	78	Pass	



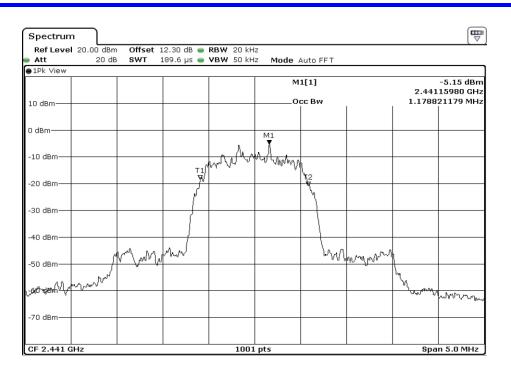


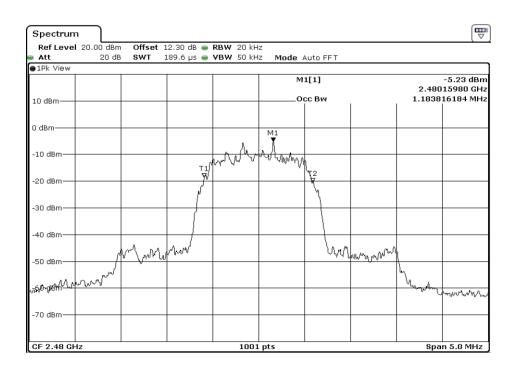

1	99 % Occupied Bandwidth




2	99 % Occupied Bandwidth

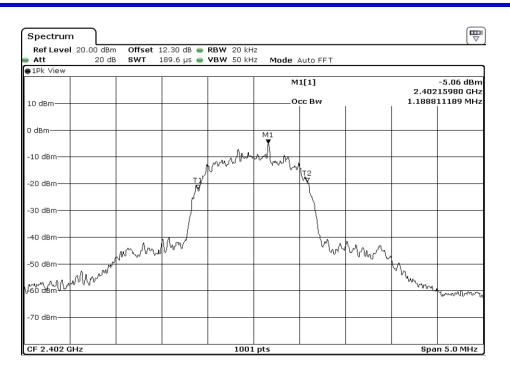






3	99 % Occupied Bandwidth



4	99 % Occupied Bandwidth



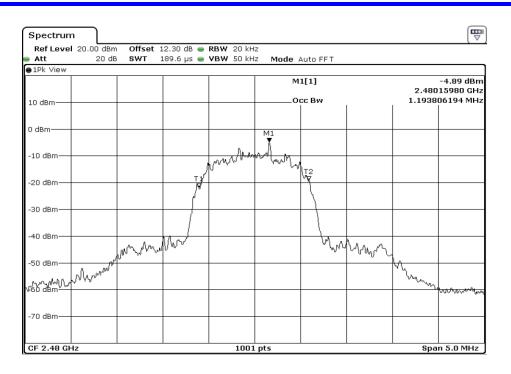






6	99 % Occupied Bandwidth






7	99 % Occupied Bandwidth



8	99 % Occupied Bandwidth





9	99 % Occupied Bandwidth