

# **RF Test Report**

#### Foi

Applicant Name: DOKE COMMUNICATION (HK) LIMITED

Address: RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD

WANCHAI HK CHINA

EUT Name: Mobile Phone Brand Name: Blackview

Model Number: BV4800 (2+32)

**Issued By** 

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park,

Address: Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF231007R01804 Test Standards: 47 CFR Part 15E

Test Conclusion: Pass

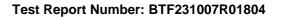
FCC ID: 2A7DX-BV4800-32

Test Date: 2023-10-09 to 2023-11-8

Date of Issue: 2023-11-13

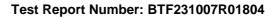
Prepared By:

Chris Liu / Project En


Date: 2023-11-

Approved By:

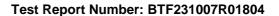
Ryan.CJ / EMC Manager


Date: 2023-11-13

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.






| Revision History |                                  |                                     |  |
|------------------|----------------------------------|-------------------------------------|--|
| Version          | Issue Date                       | Revisions Content                   |  |
| R_V0             | 2023-11-13                       | Original                            |  |
| Note: Once the I | revision has been made, then pre | vious versions reports are invalid. |  |





## **Table of Contents**

| 1 | INTE       | RODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5  |
|---|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | 1.1        | Identification of Testing Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5  |
|   | 1.2        | Identification of the Responsible Testing Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | 1.3        | Announcement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5  |
| 2 | PRO        | DDUCT INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6  |
|   | 2.1        | Application Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6  |
|   | 2.2        | Manufacturer Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6  |
|   | 2.3        | Factory Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6  |
|   | 2.4        | General Description of Equipment under Test (EUT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|   | 2.5        | Technical Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 3 | SUM        | MMARY OF TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|   | 3.1        | Test Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|   | 3.2<br>3.3 | Uncertainty of TestSummary of Test Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 4 |            | T CONFIGURATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|   | 4.1<br>4.2 | Test Equipment List Test Auxiliary Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|   | 4.2        | Test Modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 5 |            | LUATION RESULTS (EVALUATION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|   | 5.1        | Antenna requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|   | 3.1        | 5.1.1 Conclusion:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 6 | DAD        | DIO SPECTRUM MATTER TEST RESULTS (RF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 0 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|   | 6.1        | Conducted Emission at AC power line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|   |            | 6.1.1 E.U.T. Operation: 6.1.2 Test Setup Diagram: 6.1.2 Test Setup Dia |    |
|   |            | 6.1.3 Test Data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   | 6.2        | Duty Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|   |            | 6.2.1 E.U.T. Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|   |            | 6.2.2 Test Data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   | 6.3        | Maximum conducted output power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20 |
|   |            | 6.3.1 E.U.T. Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|   |            | 6.3.2 Test Data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   | 6.4        | Power spectral density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   |            | 6.4.1 E.U.T. Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|   | 0.5        | 6.4.2 Test Data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   | 6.5        | Emission bandwidth and occupied bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|   |            | 6.5.1 E.U.T. Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|   | 6.6        | Band edge emissions (Radiated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|   | 0.0        | 6.6.1 E.U.T. Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|   |            | 6.6.2 Test Setup Diagram:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|   |            | 6.6.3 Test Data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   | 6.7        | Undesirable emission limits (below 1GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31 |
|   |            | 6.7.1 E.U.T. Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|   |            | 6.7.2 Test Setup Diagram:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|   |            | 6.7.3 Test Data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   | 6.8        | Undesirable emission limits (above 1GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |





|   | 6.8.1     | E.U.T. Operation:               | 37 |
|---|-----------|---------------------------------|----|
|   |           | Test Data:                      |    |
| 7 | TEST SETU | P PHOTOS                        | 40 |
|   |           | FRUCTIONAL DETAILS (EUT PHOTOS) |    |
|   |           |                                 |    |



#### 1 Introduction

## 1.1 Identification of Testing Laboratory

| Company Name: | BTF Testing Lab (Shenzhen) Co., Ltd.                                   |
|---------------|------------------------------------------------------------------------|
| Address:      | F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou |
| Address.      | Community, Songgang Street, Bao'an District, Shenzhen, China           |
| Phone Number: | +86-0755-23146130                                                      |
| Fax Number:   | +86-0755-23146130                                                      |

#### 1.2 Identification of the Responsible Testing Location

| Company Name:            | BTF Testing Lab (Shenzhen) Co., Ltd.                                                                                                |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Address:                 | F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China |
| Phone Number:            | +86-0755-23146130                                                                                                                   |
| Fax Number:              | +86-0755-23146130                                                                                                                   |
| FCC Registration Number: | 518915                                                                                                                              |
| Designation Number:      | CN1330                                                                                                                              |

#### 1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.



#### 2 Product Information

## 2.1 Application Information

| Company Name: | DOKE COMMUNICATION (HK) LIMITED                                   |
|---------------|-------------------------------------------------------------------|
| Address:      | RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK<br>CHINA |

## 2.2 Manufacturer Information

|  | Company Name: | Shenzhen DOKE Electronic Co., Ltd                                                                      |
|--|---------------|--------------------------------------------------------------------------------------------------------|
|  | Address:      | 801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China. |

## 2.3 Factory Information

| Company Name: | Shenzhen DOKE Electronic Co., Ltd                                                                      |
|---------------|--------------------------------------------------------------------------------------------------------|
| Address:      | 801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China. |

## 2.4 General Description of Equipment under Test (EUT)

| EUT Name:          | Mobile Phone         |
|--------------------|----------------------|
| Test Model Number: | BV4800 (2+32)        |
| Hardware Version:  | HCT-M662MB-B2        |
| Software Version:  | BV4800_NEU_M662_V1.0 |

#### 2.5 Technical Information

| Power Supply:       | DC 3.85V form battery            |
|---------------------|----------------------------------|
| Operation Frequency | U-NII Band 1: 5.18~5.24 GHz      |
| Range               | U-NII Band 3: 5.745~5.825 GHz    |
| Frequency Block     | U-NII Band 1: 5.15~5.25 GHz      |
| Frequency Block     | U-NII Band 3: 5.725~5.85 GHz     |
|                     | 802.11a: 20 MHz                  |
| Channel Bandwidth   | 802.11n: 20 MHz, 40 MHz          |
|                     | 802.11ac: 20 MHz, 40 MHz, 80 MHz |
| Antenna Type:       | PIFA Antenna                     |
| Antenna Gain:       | -0.45 dBi                        |
| NI. I.              |                                  |

#### Note

<sup>#:</sup> The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

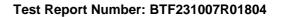


# 3 Summary of Test Results

#### 3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices


#### 3.2 Uncertainty of Test

| Item                                | Measurement Uncertainty |
|-------------------------------------|-------------------------|
| Conducted Emission (150 kHz-30 MHz) | ±2.64dB                 |

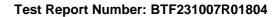
The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

## 3.3 Summary of Test Result

| Item                                                 | Standard        | Requirement                                                                                                                                                              | Result |
|------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Antenna requirement                                  | 47 CFR Part 15E | Part 15.203                                                                                                                                                              | Pass   |
| Conducted Emission at AC power line                  | 47 CFR Part 15E | 47 CFR Part 15.207(a)                                                                                                                                                    | Pass   |
| Maximum conducted output power                       | 47 CFR Part 15E | 47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i) | Pass   |
| Power spectral density                               | 47 CFR Part 15E | 47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i) | Pass   |
| Emission bandwidth and occupied bandwidth            | 47 CFR Part 15E | U-NII 1, U-NII 2A, U-NII 2C:<br>No limits, only for report use.<br>47 CFR Part 15.407(e)                                                                                 | Pass   |
| Channel Availability Check Time                      | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)(ii)                                                                                                                                             | Pass   |
| U-NII Detection Bandwidth                            | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)                                                                                                                                                 | Pass   |
| Statistical Performance Check                        | 47 CFR Part 15E | KDB 935210 D02, Clause 5.1<br>Table 2                                                                                                                                    | Pass   |
| Channel Move Time, Channel Closing Transmission Time | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)(iii)                                                                                                                                            | Pass   |
| Non-Occupancy Period Test                            | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)(iv)                                                                                                                                             | Pass   |
| DFS Detection Thresholds                             | 47 CFR Part 15E | KDB 905462 D02, Clause 5.2<br>Table 3                                                                                                                                    | Pass   |
| Band edge emissions (Radiated)                       | 47 CFR Part 15E | 47 CFR Part 15.407(b)(1)<br>47 CFR Part 15.407(b)(2)<br>47 CFR Part 15.407(b)(4)<br>47 CFR Part 15.407(b)(10)                                                            | Pass   |
| Undesirable emission limits (below 1GHz)             | 47 CFR Part 15E | 47 CFR Part 15.407(b)(9)                                                                                                                                                 | Pass   |
| Undesirable emission limits (above 1GHz)             | 47 CFR Part 15E | 47 CFR Part 15.407(b)(1)<br>47 CFR Part 15.407(b)(2)<br>47 CFR Part 15.407(b)(4)<br>47 CFR Part 15.407(b)(10)                                                            | Pass   |






# **Test Configuration**

# **Test Equipment List**

| Conducted Emission at AC power line |                   |             |              |            |              |  |  |
|-------------------------------------|-------------------|-------------|--------------|------------|--------------|--|--|
| Equipment                           | Manufacturer      | Model No    | Inventory No | Cal Date   | Cal Due Date |  |  |
| Pulse Limiter                       | SCHWARZBECK       | VTSD 9561-F | 00953        | 2022-11-24 | 2023-11-23   |  |  |
| Coaxial Switcher                    | SCHWARZBECK       | CX210       | CX210        | 2022-11-24 | 2023-11-23   |  |  |
| V-LISN                              | SCHWARZBECK       | NSLK 8127   | 01073        | 2022-11-24 | 2023-11-23   |  |  |
| LISN                                | AFJ               | LS16/110VAC | 16010020076  | 2023-02-23 | 2024-02-22   |  |  |
| EMI Receiver                        | ROHDE&SCHWA<br>RZ | ESCI3       | 101422       | 2022-11-24 | 2023-11-23   |  |  |

| Duty Cycle                                             |                                                             |           |              |            |              |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |
| RFTest software                                        | 1                                                           | V1.00     | 1            | 1          | 1            |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |

| Maximum conducted output power                         |                                                             |           |              |            |              |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |
| RFTest software                                        | /                                                           | V1.00     | 1            | /          | /            |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |

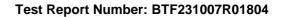




| Power spectral density                                 |                                                             |           |              |            |              |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |
| RFTest software                                        | 1                                                           | V1.00     | 1            | /          | /            |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |

| Emission bandwidth and occupied bandwidth              |                                                             |           |              |            |              |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |
| RFTest software                                        | 1                                                           | V1.00     | 1            | 1          | 1            |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |

| Channel Availability Check Time                        |                                                 |           |              |            |              |  |  |
|--------------------------------------------------------|-------------------------------------------------|-----------|--------------|------------|--------------|--|--|
| Equipment                                              | Manufacturer                                    | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |
| RFTest software                                        | 1                                               | V1.00     | /            | 1          | /            |  |  |
| RF Control Unit                                        | Techy                                           | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| RF Sensor Unit                                         | Techy                                           | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                         | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan Tongmen Electronic Technology Co., LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                 | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |



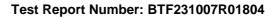



| U-NII Detection Bandwidth                              |                                                             |           |              |            |              |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |
| RFTest software                                        | 1                                                           | V1.00     | 1            | 1          | /            |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |

| Statistical Performance Check                          |                                                             |           |              |            |              |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |
| RFTest software                                        | 1                                                           | V1.00     | 1            | 1          | 1            |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |

| Channel Move Time, Channel Closing Transmission Time   |                                                             |           |              |            |              |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |
| RFTest software                                        | 1                                                           | V1.00     | 1            | 1          | 1            |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |

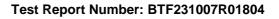





| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER | Rohde & Schwarz | CMW500 | 161997     | 2022-11-24 | 2023-11-23 |
|--------------------------------------------|-----------------|--------|------------|------------|------------|
| MXA Signal Analyzer                        | KEYSIGHT        | N9020A | MY50410020 | 2022-11-24 | 2023-11-23 |

| Non-Occupancy Period Test                              |                                                             |           |              |            |              |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |
| RFTest software                                        | 1                                                           | V1.00     | 1            | 1          | /            |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |

| DFS Detection Thresholds                               |                                                             |                       |                     |            |              |  |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------------------|---------------------|------------|--------------|--|--|--|
| Equipment                                              | Manufacturer                                                | Manufacturer Model No |                     | Cal Date   | Cal Due Date |  |  |  |
| RFTest software                                        | 1                                                           | V1.00                 | 1                   | /          | /            |  |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1              | 1                   | 2022-11-24 | 2023-11-23   |  |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2              | 1                   | 2022-11-24 | 2023-11-23   |  |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A               | ZZ-K02A 20210928007 |            | 2023-11-23   |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c             | 20211026123         | 2022-11-24 | 2023-11-23   |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500                | 161997              | 2022-11-24 | 2023-11-23   |  |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A                | MY50410020          | 2022-11-24 | 2023-11-23   |  |  |  |


| Band edge emissions (Radiated) |              |                     |              |            |              |  |  |  |  |
|--------------------------------|--------------|---------------------|--------------|------------|--------------|--|--|--|--|
| Equipment                      | Manufacturer | Model No            | Inventory No | Cal Date   | Cal Due Date |  |  |  |  |
| Coaxial cable Multiflex 141    | Schwarzbeck  | N/SMA 0.5m          | 517386       | 2023-03-24 | 2024-03-23   |  |  |  |  |
| Preamplifier                   | SCHWARZBECK  | BBV9744             | 00246        | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RE Cable                       | REBES Talent | UF1-SMASMAM-1<br>0m | 21101566     | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RE Cable                       | REBES Talent | UF2-NMNM-10m        | 21101570     | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RE Cable                       | REBES Talent | UF1-SMASMAM-1<br>m  | 21101568     | 2022-11-24 | 2023-11-23   |  |  |  |  |





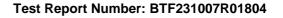
| RE Cable                    | REBES Talent      | UF2-NMNM-1m   | 21101576 | 2022-11-24 | 2023-11-23 |
|-----------------------------|-------------------|---------------|----------|------------|------------|
| RE Cable                    | REBES Talent      | UF2-NMNM-2.5m | 21101573 | 2022-11-24 | 2023-11-23 |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB      | 1        | 1          | 1          |
| Horn Antenna                | SCHWARZBECK       | BBHA9170      | 01157    | 2021-11-28 | 2023-11-27 |
| EMI TEST RECEIVER           | ROHDE&SCHWA<br>RZ | ESCI7         | 101032   | 2022-11-24 | 2023-11-23 |
| SIGNAL ANALYZER             | ROHDE&SCHWA<br>RZ | FSQ40         | 100010   | 2022-11-24 | 2023-11-23 |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB      | 1        | 1          | 1          |
| Broadband<br>Preamplilifier | SCHWARZBECK       | BBV9718D      | 00008    | 2023-03-24 | 2024-03-23 |
| Horn Antenna                | SCHWARZBECK       | BBHA9120D     | 2597     | 2022-05-22 | 2024-05-21 |
| EZ_EMC                      | Frad              | FA-03A2 RE+   | 1        | /          | 1          |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB      | 1        | 1          | 1          |
| Log periodic antenna        | SCHWARZBECK       | VULB 9168     | 01328    | 2021-11-28 | 2023-11-27 |

| Undesirable emission        | limits (below 1GH | z)                  |              |            |              |
|-----------------------------|-------------------|---------------------|--------------|------------|--------------|
| Equipment                   | Manufacturer      | Model No            | Inventory No | Cal Date   | Cal Due Date |
| Coaxial cable Multiflex 141 | Schwarzbeck       | N/SMA 0.5m          | 517386       | 2023-03-24 | 2024-03-23   |
| Preamplifier                | SCHWARZBECK       | BBV9744             | 00246        | 2022-11-24 | 2023-11-23   |
| RE Cable                    | REBES Talent      | UF1-SMASMAM-1<br>0m | 21101566     | 2022-11-24 | 2023-11-23   |
| RE Cable                    | REBES Talent      | UF2-NMNM-10m        | 21101570     | 2022-11-24 | 2023-11-23   |
| RE Cable                    | REBES Talent      | UF1-SMASMAM-1<br>m  | 21101568     | 2022-11-24 | 2023-11-23   |
| RE Cable                    | REBES Talent      | UF2-NMNM-1m         | 21101576     | 2022-11-24 | 2023-11-23   |
| RE Cable                    | REBES Talent      | UF2-NMNM-2.5m       | 21101573     | 2022-11-24 | 2023-11-23   |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB            | 1            | 1          | 1            |
| Horn Antenna                | SCHWARZBECK       | BBHA9170            | 01157        | 2021-11-28 | 2023-11-27   |
| EMI TEST RECEIVER           | ROHDE&SCHWA<br>RZ | ESCI7               | 101032       | 2022-11-24 | 2023-11-23   |
| SIGNAL ANALYZER             | ROHDE&SCHWA<br>RZ | FSQ40               | 100010       | 2022-11-24 | 2023-11-23   |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB            | 1            | 1          | 1            |
| Broadband<br>Preamplilifier | SCHWARZBECK       | BBV9718D            | 80000        | 2023-03-24 | 2024-03-23   |
| Horn Antenna                | SCHWARZBECK       | BBHA9120D           | 2597         | 2022-05-22 | 2024-05-21   |
| EZ_EMC                      | Frad              | FA-03A2 RE+         | - /          | 1          | /            |
| POSITIONAL SKET             |                   | PCI-GPIB            | 1            | 1          | 1            |
| Log periodic antenna        | SCHWARZBECK       | VULB 9168           | 01328        | 2021-11-28 | 2023-11-27   |





| Undesirable emission        | limits (above 1GH | lz)                         |          |            |              |  |
|-----------------------------|-------------------|-----------------------------|----------|------------|--------------|--|
| Equipment                   | Manufacturer      | turer Model No Inventory No |          |            | Cal Due Date |  |
| Coaxial cable Multiflex 141 | Schwarzbeck       | N/SMA 0.5m                  | 517386   | 2023-03-24 | 2024-03-23   |  |
| Preamplifier                | SCHWARZBECK       | BBV9744                     | 00246    | 2022-11-24 | 2023-11-23   |  |
| RE Cable                    | REBES Talent      | UF1-SMASMAM-1<br>0m         | 21101566 | 2022-11-24 | 2023-11-23   |  |
| RE Cable                    | REBES Talent      | UF2-NMNM-10m                | 21101570 | 2022-11-24 | 2023-11-23   |  |
| RE Cable                    | REBES Talent      | UF1-SMASMAM-1<br>m          | 21101568 | 2022-11-24 | 2023-11-23   |  |
| RE Cable                    | REBES Talent      | UF2-NMNM-1m                 | 21101576 | 2022-11-24 | 2023-11-23   |  |
| RE Cable                    | REBES Talent      | UF2-NMNM-2.5m               | 21101573 | 2022-11-24 | 2023-11-23   |  |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB                    | 1        | 1          | 1            |  |
| Horn Antenna                | SCHWARZBECK       | BBHA9170                    | 01157    | 2021-11-28 | 2023-11-27   |  |
| EMI TEST RECEIVER           | ROHDE&SCHWA<br>RZ | ESCI7                       | 101032   | 2022-11-24 | 2023-11-23   |  |
| SIGNAL ANALYZER             | ROHDE&SCHWA<br>RZ | FSQ40                       | 100010   | 2022-11-24 | 2023-11-23   |  |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB                    | 1        | 1          | 1            |  |
| Broadband<br>Preamplilifier | SCHWARZBECK       | BBV9718D                    | 00008    | 2023-03-24 | 2024-03-23   |  |
| Horn Antenna                | SCHWARZBECK       | BBHA9120D                   | 2597     | 2022-05-22 | 2024-05-21   |  |
| EZ_EMC                      | Frad              | FA-03A2 RE+                 | 1        | 1          | 1            |  |
| POSITIONAL SKET             |                   | PCI-GPIB                    | 1        | 1          | 1            |  |
| Log periodic antenna        | SCHWARZBECK       | VULB 9168                   | 01328    | 2021-11-28 | 2023-11-27   |  |




# 4.2 Test Auxiliary Equipment

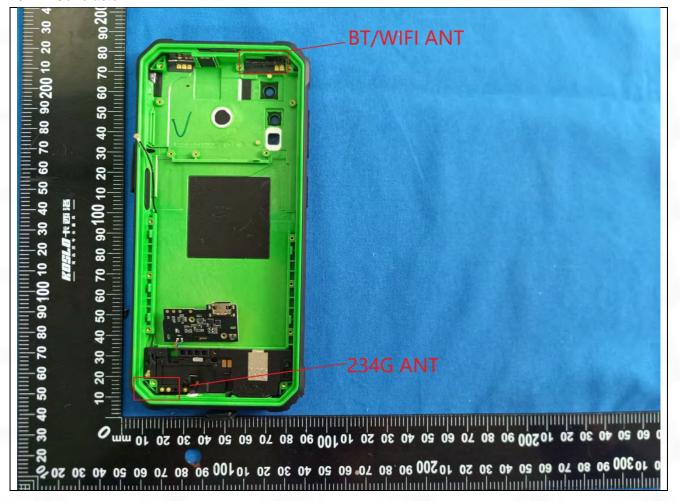
The EUT was tested as an independent device.

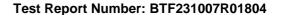
## 4.3 Test Modes

| No. | Test Modes       | Description                                                                                                                                                                                                                                                           |
|-----|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TM1 | 802.11a mode     | Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.              |
| TM2 | 802.11n mode     | Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. |
| ТМ3 | 802.11ac mode    | Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. Only the data of worst case is recorded in the report.                                                                                               |
| TM4 | Normal Operating | Keep the EUT works in normal operating mode and connect to companion device                                                                                                                                                                                           |






## 5 Evaluation Results (Evaluation)


#### 5.1 Antenna requirement

Test Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

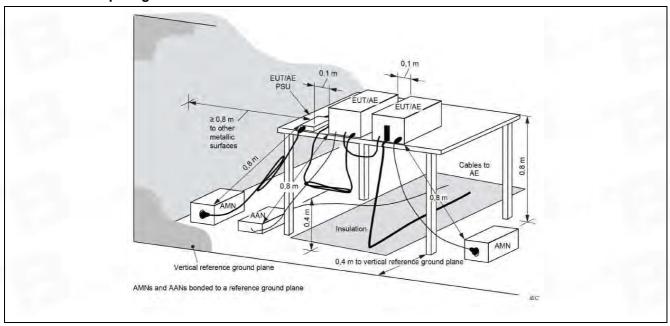
#### 5.1.1 Conclusion:

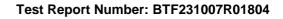






# 6 Radio Spectrum Matter Test Results (RF)

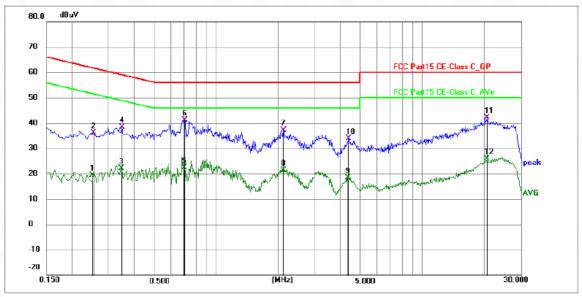

## 6.1 Conducted Emission at AC power line


| Test Requirement: | 47 CFR Part 15.207(a)                   |                                                                                                                                    |                 |  |  |  |  |  |  |
|-------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|
| Test Method:      |                                         | Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices |                 |  |  |  |  |  |  |
| Test Limit:       | Frequency of emission (MHz)             | Conducted limit (dB Quasi-peak                                                                                                     | μV)<br>Average  |  |  |  |  |  |  |
|                   | 0.15-0.5<br>0.5-5                       | 66 to 56*<br>56                                                                                                                    | 56 to 46*<br>46 |  |  |  |  |  |  |
|                   | 5-30 *Decreases with the logarithm of t | 60<br>he frequency.                                                                                                                | 50              |  |  |  |  |  |  |

#### 6.1.1 E.U.T. Operation:

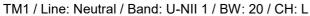
| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.5 °C   |
| Humidity:              | 50.6 %    |
| Atmospheric Pressure:  | 1010 mbar |

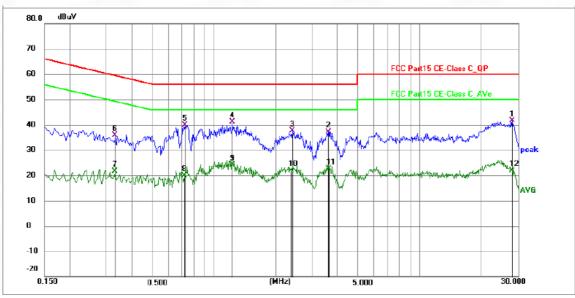
#### 6.1.2 Test Setup Diagram:



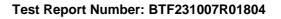






#### 6.1.3 Test Data:


TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L




| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|-------------------|----------------|-----------------|-----------------|----------------|----------|-----|--------|
| 1   | 0.2519             | 8.77              | 10.59          | 19.36           | 51.69           | -32.33         | AVG      | Р   |        |
| 2   | 0.2534             | 25.53             | 10.59          | 36.12           | 61.64           | -25.52         | QP       | Р   |        |
| 3   | 0.3462             | 11.44             | 10.60          | 22.04           | 49.05           | -27.01         | AVG      | Р   |        |
| 4   | 0.3480             | 27.80             | 10.60          | 38.40           | 59.01           | -20.61         | QP       | Р   |        |
| 5   | 0.6990             | 11.75             | 10.73          | 22.48           | 46.00           | -23.52         | AVG      | Р   |        |
| 6 * | 0.7035             | 30.47             | 10.73          | 41.20           | 56.00           | -14.80         | QP       | Р   |        |
| 7   | 2.1120             | 26.45             | 10.69          | 37.14           | 56.00           | -18.86         | QP       | Р   |        |
| 8   | 2.1120             | 10.68             | 10.69          | 21.37           | 46.00           | -24.63         | AVG      | Р   |        |
| 9   | 4.3395             | 7.50              | 10.76          | 18.26           | 46.00           | -27.74         | AVG      | Р   |        |
| 10  | 4.3845             | 23.07             | 10.76          | 33.83           | 56.00           | -22.17         | QP       | Р   |        |
| 11  | 20.5575            | 31.06             | 11.03          | 42.09           | 60.00           | -17.91         | QP       | Р   |        |
| 12  | 20.5575            | 14.92             | 11.03          | 25.95           | 50.00           | -24.05         | AVG      | Р   |        |







| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|----------------|----------------|-----------------|-----------------|----------------|----------|-----|--------|
| 1   | 28.0680            | 30.66          | 11.07          | 41.73           | 60.00           | -18.27         | QP       | Р   |        |
| 2   | 3.5970             | 26.44          | 10.72          | 37.16           | 56.00           | -18.84         | QP       | Р   |        |
| 3   | 2.4045             | 27.01          | 10.70          | 37.71           | 56.00           | -18.29         | QP       | Р   |        |
| 4 * | 1.2300             | 30.25          | 10.76          | 41.01           | 56.00           | -14.99         | QP       | Р   |        |
| 5   | 0.7215             | 29.13          | 10.73          | 39.86           | 56.00           | -16.14         | QP       | Р   |        |
| 6   | 0.3300             | 25.20          | 10.60          | 35.80           | 59.45           | -23.65         | QP       | Р   |        |
| 7   | 0.3300             | 11.13          | 10.60          | 21.73           | 49.45           | -27.72         | AVG      | Р   |        |
| 8   | 0.7170             | 9.12           | 10.73          | 19.85           | 46.00           | -26.15         | AVG      | Р   |        |
| 9   | 1.2255             | 13.44          | 10.76          | 24.20           | 46.00           | -21.80         | AVG      | Р   |        |
| 10  | 2.3909             | 11.10          | 10.70          | 21.80           | 46.00           | -24.20         | AVG      | Р   |        |
| 11  | 3.6194             | 11.85          | 10.72          | 22.57           | 46.00           | -23.43         | AVG      | Р   |        |
| 12  | 28.0680            | 10.87          | 11.07          | 21.94           | 50.00           | -28.06         | AVG      | Р   |        |





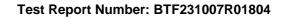
# 6.2 Duty Cycle

| Test Requirement: | All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.                                                                                                                                                                                             |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10-2013 section 12.2 (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test Limit:       | No limits, only for report use.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Procedure:        | <ul> <li>i) Set the center frequency of the instrument to the center frequency of the transmission.</li> <li>ii) Set RBW &gt;= EBW if possible; otherwise, set RBW to the largest available value.</li> <li>iii) Set VBW &gt;= RBW.</li> <li>iv) Set detector = peak.</li> <li>v) The zero-span measurement method shall not be used unless both RBW and VBW are &gt; 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.</li> </ul> |

## 6.2.1 E.U.T. Operation:

| Operating Environment: |           |  |
|------------------------|-----------|--|
| Temperature:           | 25.5 °C   |  |
| Humidity:              | 50.6 %    |  |
| Atmospheric Pressure:  | 1010 mbar |  |

#### 6.2.2 Test Data:


Please Refer to Appendix for Details.





#### 6.3 Maximum conducted output power

| 6.3 Maximum conducted output power                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                    | 47 CFR Part 15.407(a)(1)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                    | 47 CFR Part 15.407(a)(1)(ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| To the December of                                                 | 47 CFR Part 15.407(a)(1)(iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Test Requirement:                                                  | 47 CFR Part 15.407(a)(1)(iv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                    | 47 CFR Part 15.407(a)(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                    | 47 CFR Part 15.407(a)(3)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Test Method:                                                       | ANSI C63.10-2013, section 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                    | For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                    | conducted output power over the frequency band of operation shall not exceed 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                    | W provided the maximum antenna gain does not exceed 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                    | If transmitting antennas of directional gain greater than 6 dBi are used, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                                                    | maximum conducted output power shall be reduced by the amount in dB that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                    | directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                    | elevation angle above 30 degrees as measured from the horizon must not exceed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                                                    | 125 mW (21 dBm).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                    | 120 1111 (21 42111).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                                                    | For an indoor access point operating in the band 5.15-5.25 GHz, the maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                    | conducted output power over the frequency band of operation shall not exceed 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                    | W provided the maximum antenna gain does not exceed 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                    | If transmitting antennas of directional gain greater than 6 dBi are used, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                                                    | maximum conducted output power shall be reduced by the amount in dB that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                    | directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                    | gg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                    | For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                                                    | maximum conducted output power over the frequency band of operation shall not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                                                    | exceed 1 W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                    | Fixed point-to-point U-NII devices may employ antennas with directional gain up to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                    | 23 dBi without any corresponding reduction in the maximum conducted output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                    | power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Toot Limits                                                        | For fixed point-to-point transmitters that employ a directional antenna gain greater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| than 23 dBi, a 1 dB reduction in maximum conducted output power is |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                                                    | each 1 dB of antenna gain in excess of 23 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                    | Fixed, point-to-point operations exclude the use of point-to-multipoint systems,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                    | omnidirectional applications, and multiple collocated transmitters transmitting the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                                                    | same information. The operator of the U-NII device, or if the equipment is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                    | professionally installed, the installer, is responsible for ensuring that systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                    | employing high gain directional antennas are used exclusively for fixed,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                    | point-to-point operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                                                    | For client devices in the 5.15-5.25 GHz band, the maximum conducted output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                    | power over the frequency band of operation shall not exceed 250 mW provided the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                                                    | maximum antenna gain does not exceed 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                    | If transmitting antennas of directional gain greater than 6 dBi are used, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                                                    | maximum conducted output power shall be reduced by the amount in dB that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                    | directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                    | For the F OF F OF CITE and F 47 F 70F CITE hands the manifest of the second of the sec |  |  |  |  |  |
|                                                                    | For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                    | power over the frequency bands of operation shall not exceed the lesser of 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                    | mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                    | If transmitting antennas of directional gain greater than 6 dBi are used, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                                                    | maximum conducted output power shall be reduced by the amount in dB that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                    | directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |



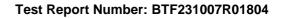


|                     | For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                     | If transmitting antennas of directional gain greater than 6 dBi are used, the                                               |
|                     | maximum conducted output power shall be reduced by the amount in dB that the                                                |
|                     | directional gain of the antenna exceeds 6 dBi.                                                                              |
|                     | However, fixed point-to-point U-NII devices operating in this band may employ                                               |
|                     | transmitting antennas with directional gain greater than 6 dBi without any                                                  |
|                     | corresponding reduction in transmitter conducted power. Fixed, point-to-point                                               |
|                     | operations exclude the use of point-to-multipoint systems, omnidirectional                                                  |
|                     | applications, and multiple collocated transmitters transmitting the same                                                    |
|                     | information. The operator of the U-NII device, or if the equipment is professionally                                        |
|                     | installed, the installer, is responsible for ensuring that systems employing high gain                                      |
|                     |                                                                                                                             |
|                     | directional antennas are used exclusively for fixed, point-to-point operations.                                             |
|                     | Method SA-1                                                                                                                 |
|                     | a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.                                                     |
|                     | b) Set RBW = 1 MHz.                                                                                                         |
|                     | c) Set VBW >= 3 MHz.                                                                                                        |
|                     | d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing                                            |
|                     | <= RBW / 2, so                                                                                                              |
|                     | that narrowband signals are not lost between frequency bins.)                                                               |
|                     | e) Sweep time = auto.                                                                                                       |
|                     | f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.                               |
|                     |                                                                                                                             |
|                     | g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to                                          |
|                     | enable triggering only on full power pulses. The transmitter shall operate at maximum power control                         |
|                     | level for the                                                                                                               |
| Procedure:          | entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF                                        |
| Flocedule.          | intervals) or                                                                                                               |
|                     | at duty cycle >= 98%, and if each transmission is entirely at the maximum power                                             |
|                     | control level,                                                                                                              |
|                     | then the trigger shall be set to "free run."                                                                                |
|                     | h) Trace average at least 100 traces in power averaging (rms) mode.                                                         |
|                     | i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW                                                |
|                     | of the signal                                                                                                               |
|                     | using the instrument's band power measurement function, with band limits set                                                |
|                     | equal to the                                                                                                                |
|                     | EBW or OBW band edges. If the instrument does not have a band power function,                                               |
|                     | then sum the                                                                                                                |
|                     | spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB                                              |
|                     | EBW or 99%                                                                                                                  |
|                     | OBW of the spectrum.                                                                                                        |
| C24 FILT Operations | OBIT OF AID SPOORWITE                                                                                                       |

#### 6.3.1 E.U.T. Operation:

| Operating Environment: |           |  |
|------------------------|-----------|--|
| Temperature:           | 25.5 °C   |  |
| Humidity:              | 50.6 %    |  |
| Atmospheric Pressure:  | 1010 mbar |  |

#### 6.3.2 Test Data:


Please Refer to Appendix for Details.





### 6.4 Power spectral density

| 6.4 Power spectral | density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                    | 47 CFR Part 15.407(a)(1)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    | 47 CFR Part 15.407(a)(1)(ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Test Requirement:  | 47 CFR Part 15.407(a)(1)(iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| ·                  | 47 CFR Part 15.407(a)(1)(iv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                    | 47 CFR Part 15.407(a)(2)<br>47 CFR Part 15.407(a)(3)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Test Method:       | ANSI C63.10-2013, section 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                    | For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                    | directional gain of the antenna exceeds 6 dBi.  For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Test Limit:        | For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.  Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.  Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. |  |  |  |  |
|                    | For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.  If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                    | For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.  If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                    | For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.  If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |



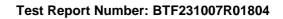


|            | conducted power.                                                                                  |
|------------|---------------------------------------------------------------------------------------------------|
|            | Fixed, point-to-point operations exclude the use of point-to-multipoint systems,                  |
|            | omnidirectional applications, and multiple collocated transmitters transmitting the               |
|            | same information. The operator of the U-NII device, or if the equipment is                        |
|            | professionally installed, the installer, is responsible for ensuring that systems                 |
|            | employing high gain directional antennas are used exclusively for fixed,                          |
|            | point-to-point operations.                                                                        |
|            | a) Create an average power spectrum for the EUT operating mode being tested by                    |
|            | following the                                                                                     |
|            | instructions in 12.3.2 for measuring maximum conducted output power using a                       |
|            | spectrum                                                                                          |
|            | analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their |
|            | respective alternatives) and apply it up to, but not including, the step labeled,                 |
|            | "Compute                                                                                          |
|            | power" (This procedure is required even if the maximum conducted output power                     |
|            | measurement was performed using the power meter method PM.)                                       |
|            | b) Use the peak search function on the instrument to find the peak of the spectrum.               |
|            | c) Make the following adjustments to the peak value of the spectrum, if applicable:               |
|            | 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty               |
|            | cycle, to the peak of the spectrum.                                                               |
|            | 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7,                  |
|            | add                                                                                               |
| Procedure: | 1 dB to the final result to compensate for the difference between linear averaging                |
| Procedure. | and                                                                                               |
|            | power averaging.                                                                                  |
|            | d) The result is the PPSD.                                                                        |
|            | e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to     |
|            | satisfy the 1 MHz measurement bandwidth specified by some regulatory                              |
|            | authorities. This                                                                                 |
|            | requirement also permits use of resolution bandwidths less than 1 MHz "provided                   |
|            | that the                                                                                          |
|            | measured power is integrated to show the total power over the measurement                         |
|            | bandwidth" (i.e.,                                                                                 |
|            | 1 MHz). If measurements are performed using a reduced resolution bandwidth and                    |
|            | integrated                                                                                        |
|            | over 1 MHz bandwidth, the following adjustments to the procedures apply:                          |
|            | 1) Set RBW >= 1 / T, where T is defined in 12.2 a).                                               |
|            | 2) Set VBW >= [3 × RBW].                                                                          |
|            | 3) Care shall be taken such that the measurements are performed during a period                   |
|            | of continuous transmission or are corrected upward for duty cycle.                                |
|            |                                                                                                   |

#### 6.4.1 E.U.T. Operation:

| · ·                    |           |
|------------------------|-----------|
| Operating Environment: |           |
| Temperature:           | 25.5 °C   |
| Humidity:              | 50.6 %    |
| Atmospheric Pressure:  | 1010 mbar |

### 6.4.2 Test Data:


Please Refer to Appendix for Details.



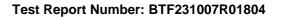
6.5 Emission bandwidth and occupied bandwidth

| 6.5 Emission band    | dwidth and occupied bandwidth                                                                    |  |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Requirement:    | U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.                                     |  |  |  |  |  |
| Toot i toquironionii | U-NII 3, U-NII 4: 47 CFR Part 15.407(e)                                                          |  |  |  |  |  |
| Test Method:         | ANSI C63.10-2013, section 6.9.3 & 12.4                                                           |  |  |  |  |  |
| Tool Woulde.         | KDB 789033 D02, Clause C.2                                                                       |  |  |  |  |  |
|                      | U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.                                     |  |  |  |  |  |
| Test Limit:          | U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the                      |  |  |  |  |  |
|                      | minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.                               |  |  |  |  |  |
|                      | Emission bandwidth:                                                                              |  |  |  |  |  |
|                      | a) Set RBW = approximately 1% of the emission bandwidth.                                         |  |  |  |  |  |
|                      | b) Set the VBW > RBW.                                                                            |  |  |  |  |  |
|                      | c) Detector = peak.                                                                              |  |  |  |  |  |
|                      | d) Trace mode = max hold.                                                                        |  |  |  |  |  |
|                      | e) Measure the maximum width of the emission that is 26 dB down from the peak                    |  |  |  |  |  |
|                      | of the emission.                                                                                 |  |  |  |  |  |
|                      | Compare this with the RBW setting of the instrument. Readjust RBW and repeat                     |  |  |  |  |  |
|                      | measurement                                                                                      |  |  |  |  |  |
|                      | as needed until the RBW/EBW ratio is approximately 1%.                                           |  |  |  |  |  |
|                      | O a sumia di la aradoni della                                                                    |  |  |  |  |  |
|                      | Occupied bandwidth:                                                                              |  |  |  |  |  |
|                      | a) The instrument center frequency is set to the nominal EUT channel center                      |  |  |  |  |  |
|                      | frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times |  |  |  |  |  |
|                      | the OBW.                                                                                         |  |  |  |  |  |
|                      | b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of               |  |  |  |  |  |
|                      | the OBW,                                                                                         |  |  |  |  |  |
|                      | and VBW shall be approximately three times the RBW, unless otherwise specified                   |  |  |  |  |  |
|                      | by the                                                                                           |  |  |  |  |  |
|                      | applicable requirement.                                                                          |  |  |  |  |  |
|                      | c) Set the reference level of the instrument as required, keeping the signal from                |  |  |  |  |  |
|                      | exceeding the                                                                                    |  |  |  |  |  |
| Procedure:           | maximum input mixer level for linear operation. In general, the peak of the spectral             |  |  |  |  |  |
|                      | envelope                                                                                         |  |  |  |  |  |
|                      | shall be more than [10 log (OBW/RBW)] below the reference level. Specific                        |  |  |  |  |  |
|                      | guidance is given                                                                                |  |  |  |  |  |
|                      | in 4.1.5.2.                                                                                      |  |  |  |  |  |
|                      | d) Step a) through step c) might require iteration to adjust within the specified                |  |  |  |  |  |
|                      | range.                                                                                           |  |  |  |  |  |
|                      | e) Video averaging is not permitted. Where practical, a sample detection and single              |  |  |  |  |  |
|                      | sweep mode                                                                                       |  |  |  |  |  |
|                      | shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be |  |  |  |  |  |
|                      | used.                                                                                            |  |  |  |  |  |
|                      | f) Use the 99% power bandwidth function of the instrument (if available) and report              |  |  |  |  |  |
|                      | the measured                                                                                     |  |  |  |  |  |
|                      | bandwidth.                                                                                       |  |  |  |  |  |
|                      | g) If the instrument does not have a 99% power bandwidth function, then the trace                |  |  |  |  |  |
|                      | data points are                                                                                  |  |  |  |  |  |
|                      | recovered and directly summed in linear power terms. The recovered amplitude                     |  |  |  |  |  |
|                      | data points,                                                                                     |  |  |  |  |  |
|                      | beginning at the lowest frequency, are placed in a running sum until 0.5% of the                 |  |  |  |  |  |
|                      | total is reached;                                                                                |  |  |  |  |  |
|                      | that frequency is recorded as the lower frequency. The process is repeated until                 |  |  |  |  |  |
|                      | 99.5% of the                                                                                     |  |  |  |  |  |
|                      | total is reached; that frequency is recorded as the upper frequency. The 99%                     |  |  |  |  |  |

Test Report Number: BTF231007R01804



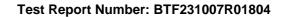



power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. c) Detector = Peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

#### 6.5.1 E.U.T. Operation:

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.5 °C   |
| Humidity:              | 50.6 %    |
| Atmospheric Pressure:  | 1010 mbar |

#### 6.5.2 Test Data:

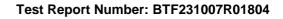

Please Refer to Appendix for Details.





# 6.6 Band edge emissions (Radiated)

|                   | 47 CFR Part 15.407(b)                                                                                                                                      | (1)                                                                                                                    |                                                                             |                                                                             |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| T                 | 47 CFR Part 15.407(b)                                                                                                                                      | 47 CFR Part 15.407(b)(2)                                                                                               |                                                                             |                                                                             |  |  |  |  |  |
| Test Requirement: |                                                                                                                                                            | 47 CFR Part 15.407(b)(4)                                                                                               |                                                                             |                                                                             |  |  |  |  |  |
|                   | 47 CFR Part 15.407(b)(10)                                                                                                                                  |                                                                                                                        |                                                                             |                                                                             |  |  |  |  |  |
| Test Method:      | ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6                                                                                                           |                                                                                                                        |                                                                             |                                                                             |  |  |  |  |  |
| TOST MICHIOG.     | For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the                                                                         |                                                                                                                        |                                                                             |                                                                             |  |  |  |  |  |
|                   | 5.15-5.35 GHz band sh                                                                                                                                      | nall not exceed an e.i.r.                                                                                              | p. of −27 dBm/M                                                             | IHz.                                                                        |  |  |  |  |  |
|                   | For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.             |                                                                                                                        |                                                                             |                                                                             |  |  |  |  |  |
|                   | For transmitters operat                                                                                                                                    | ting solely in the 5.725-                                                                                              | 5.850 GHz band                                                              | l:                                                                          |  |  |  |  |  |
|                   | All emissions shall be I                                                                                                                                   | imited to a level of −27                                                                                               | dBm/MHz at 75                                                               | MHz or more above                                                           |  |  |  |  |  |
|                   | or below the band edge                                                                                                                                     |                                                                                                                        |                                                                             |                                                                             |  |  |  |  |  |
|                   | below the band edge, a                                                                                                                                     |                                                                                                                        |                                                                             |                                                                             |  |  |  |  |  |
|                   | linearly to a level of 15                                                                                                                                  |                                                                                                                        |                                                                             |                                                                             |  |  |  |  |  |
|                   | from 5 MHz above or b                                                                                                                                      |                                                                                                                        | creasing linearly                                                           | to a level of 27                                                            |  |  |  |  |  |
|                   | dBm/MHz at the band                                                                                                                                        | edge.                                                                                                                  |                                                                             |                                                                             |  |  |  |  |  |
|                   | MHz                                                                                                                                                        | MHz                                                                                                                    | MHz                                                                         | GHz                                                                         |  |  |  |  |  |
|                   | 0.090-0.110                                                                                                                                                | 16.42-16.423                                                                                                           | 399.9-410                                                                   | 4.5-5.15                                                                    |  |  |  |  |  |
|                   | <sup>1</sup> 0.495-0.505                                                                                                                                   | 16.69475-16.69525                                                                                                      | 608-614                                                                     | 5.35-5.46                                                                   |  |  |  |  |  |
|                   | 2.1735-2.1905                                                                                                                                              | 16.80425-16.80475                                                                                                      | 960-1240                                                                    | 7.25-7.75                                                                   |  |  |  |  |  |
|                   | 4.125-4.128                                                                                                                                                | 25.5-25.67                                                                                                             | 1300-1427                                                                   | 8.025-8.5                                                                   |  |  |  |  |  |
|                   | 4.17725-4.17775                                                                                                                                            | 37.5-38.25                                                                                                             | 1435-1626.5                                                                 | 9.0-9.2                                                                     |  |  |  |  |  |
|                   | 4.20725-4.20775                                                                                                                                            | 73-74.6                                                                                                                | 1645.5-1646.                                                                | 9.3-9.5                                                                     |  |  |  |  |  |
|                   |                                                                                                                                                            |                                                                                                                        | 5                                                                           |                                                                             |  |  |  |  |  |
|                   | 6.215-6.218                                                                                                                                                | 74.8-75.2                                                                                                              | 1660-1710                                                                   | 10.6-12.7                                                                   |  |  |  |  |  |
|                   | 6.26775-6.26825                                                                                                                                            | 108-121.94                                                                                                             | 1718.8-1722.<br>2                                                           | 13.25-13.4                                                                  |  |  |  |  |  |
| Test Limit:       | 6.31175-6.31225                                                                                                                                            | 123-138                                                                                                                | 2200-2300                                                                   | 14.47-14.5                                                                  |  |  |  |  |  |
|                   | 8.291-8.294                                                                                                                                                | 149.9-150.05                                                                                                           | 2310-2390                                                                   | 15.35-16.2                                                                  |  |  |  |  |  |
|                   | 8.362-8.366                                                                                                                                                | 156.52475-156.525<br>25                                                                                                | 2483.5-2500                                                                 | 17.7-21.4                                                                   |  |  |  |  |  |
|                   | 8.37625-8.38675                                                                                                                                            | 156.7-156.9                                                                                                            | 2690-2900                                                                   | 22.01-23.12                                                                 |  |  |  |  |  |
|                   | 8.41425-8.41475                                                                                                                                            | 162.0125-167.17                                                                                                        | 3260-3267                                                                   | 23.6-24.0                                                                   |  |  |  |  |  |
|                   | 12.29-12.293                                                                                                                                               | 167.72-173.2                                                                                                           | 3332-3339                                                                   | 31.2-31.8                                                                   |  |  |  |  |  |
|                   | 12.51975-12.52025                                                                                                                                          | 240-285                                                                                                                | 3345.8-3358                                                                 | 36.43-36.5                                                                  |  |  |  |  |  |
|                   | 12.57675-12.57725<br>13.36-13.41                                                                                                                           | 322-335.4                                                                                                              | 3600-4400                                                                   | ( <sup>2</sup> )                                                            |  |  |  |  |  |
|                   | <sup>1</sup> Until February 1, 1999                                                                                                                        | ), this restricted band s                                                                                              | nall be 0.490-0.5                                                           | 510 MHz.                                                                    |  |  |  |  |  |
|                   | <sup>2</sup> Above 38.6                                                                                                                                    |                                                                                                                        |                                                                             |                                                                             |  |  |  |  |  |
|                   | The field strength of en exceed the limits show MHz, compliance with measurement instrume 1000 MHz, compliance based on the average 15.35apply to these me | n in § 15.209. At frequenthe limits in § 15.209shentation employing a Clewith the emission limit value of the measured | encies equal to o<br>all be demonstra<br>SPR quasi-peak<br>s in § 15.209sha | or less than 1000<br>ated using<br>a detector. Above<br>all be demonstrated |  |  |  |  |  |
|                   | Event as any district                                                                                                                                      | and and in this and a                                                                                                  | the excitation of                                                           |                                                                             |  |  |  |  |  |
|                   | Except as provided els                                                                                                                                     | ewhere in this subpart,                                                                                                | tne emissions fr                                                            | rom an intentional                                                          |  |  |  |  |  |

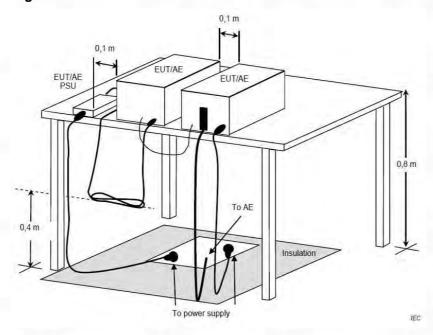


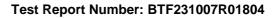



|            | radiator shall not exceed to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ne field strength levels speci                                 | fied in the following table:                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|            | Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Field strength                                                 | Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (microvolts/meter)                                             | distance                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                                              | (meters)                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|            | 0.009-0.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2400/F(kHz)                                                    | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|            | 0.490-1.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24000/F(kHz)                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|            | 1.705-30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|            | 30-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 **                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|            | 88-216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 150 **                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|            | 216-960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200 **                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|            | Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Procedure: | above the ground at a 3 m degrees to determine the pb. The EUT was set 3 met was mounted on the top of c. The antenna height is videtermine the maximum vipolarizations of the antenna d. For each suspected em the antenna was tuned to of below 30MHz, the anterwas turned from 0 degrees e. The test-receiver syster Bandwidth with Maximum f. If the emission level of the specified, then testing coureported. Otherwise the erre-tested one by one using in a data sheet.  g. Test the EUT in the lower transmitting mode, and for | s to 360 degrees to find the r<br>n was set to Peak Detect Ful | The table was rotated 360 on. ce-receiving antenna, which ower. meters above the ground to the horizontal and vertical urement. d to its worst case and then eters (for the test frequency neter) and the rotatable table maximum reading. Inction and Specified  OdB lower than the limit values of the EUT would be odB margin would be specified and then reported  nel, the Highest channel. Z axis positioning for hich it is the worst case. |  |  |  |
|            | Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious                                                                                                                                                                                                                                |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|            | emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.  3. As shown in this section, for frequencies above 1GHz, the field strength limits                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|            | not exceed the maximum pdB under any condition of than the average limit, only 4. The disturbance above                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                | shown in the report.<br>e harmonics were the                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |

## 6.6.1 E.U.T. Operation:

| Operating Environment: |         |  |  |
|------------------------|---------|--|--|
| Temperature:           | 25.5 °C |  |  |
| Humidity:              | 50.6 %  |  |  |




Atmospheric Pressure:

1010 mbar

## 6.6.2 Test Setup Diagram:





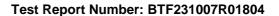


#### 6.6.3 Test Data:

Note: All the mode have been tested, and only the worst mode 802.11a are in the report UNII-1 20M 5180MHz Horizontal

|   |     | _                  | _                 |                  |                   |                   |                |          |     |
|---|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| N | No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| 1 | 1 * | 5148.180           | 78.47             | -27.25           | 51.22             | 74.00             | -22.78         | peak     | Р   |
| 2 | 2   | 5150.000           | 76.61             | -27.24           | 49.37             | 74.00             | -24.63         | peak     | Р   |

#### UNII-1 20M\_5180MHz\_Vertical


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1 * | 5145.060           | 85.28             | -27.25           | 58.03             | 74.00             | -15.97         | peak     | Р   |
| 2   | 5150.000           | 82.75             | -27.24           | 55.51             | 74.00             | -18.49         | peak     | Р   |

#### UNII-1 20M 5320MHz Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1 * | 5350.000           | 53.10             | 6.37             | 59.47             | 125.20            | -65.73         | peak     | Р   |
| 2   | 5460.000           | 41.99             | 6.57             | 48.56             | 125.20            | -76.64         | peak     | Р   |

#### UNII-1 20M\_5320MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1 * | 5350.000           | 61.49             | 4.63             | 66.12             | 125.20            | -59.08         | peak     | Р   |
| 2   | 5460.000           | 43.74             | 4.79             | 48.53             | 125.20            | -76.67         | peak     | Р   |

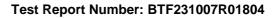




#### UNII-3 20M\_5745MHz\_Horizontal

| No.  | Frequency | Reading | Factor | Level    | Limit    | Margin | Detector | P/F |
|------|-----------|---------|--------|----------|----------|--------|----------|-----|
| INO. | (MHz)     | (dBuV)  | (dB/m) | (dBuV/m) | (dBuV/m) | (dB)   | Detector | 171 |
| 1    | 5650.000  | 87.72   | -31.86 | 55.86    | 68.20    | -12.34 | peak     | Р   |
| 2    | 5700.000  | 94.66   | -31.97 | 62.69    | 105.60   | -42.91 | peak     | Р   |
| 3    | 5720.000  | 95.56   | -32.03 | 63.53    | 110.8    | -47.27 | peak     | Р   |

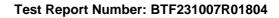
#### UNII-1 20M\_5745MHz\_Vertical


| No.  | Frequency | Reading | Factor | Level    | Limit    | Margin | Detector | P/F |
|------|-----------|---------|--------|----------|----------|--------|----------|-----|
| INO. | (MHz)     | (dBuV)  | (dB/m) | (dBuV/m) | (dBuV/m) | (dB)   | Detector | 171 |
| 1    | 5650.000  | 88.47   | -31.77 | 56.70    | 68.20    | -11.50 | peak     | Р   |
| 2    | 5700.000  | 95.41   | -31.88 | 63.53    | 105.60   | -42.07 | peak     | Р   |
| 3    | 5720.000  | 96.31   | -31.94 | 64.37    | 110.8    | -46.43 | peak     | Р   |

#### UNII-3 20M 5825MHz Horizontal

|     | _         | _       |        |          |          |        |          |     |
|-----|-----------|---------|--------|----------|----------|--------|----------|-----|
| No. | Frequency | Reading | Factor | Level    | Limit    | Margin | Detector | P/F |
|     | (MHz)     | (dBuV)  | (dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |          |     |
| 1   | 5850.000  | 87.98   | -31.90 | 56.08    | 122.20   | -66.12 | peak     | Р   |
| 2   | 5875.000  | 94.92   | -32.01 | 62.91    | 110.80   | -47.89 | peak     | Р   |
| 3   | 5925.000  | 95.82   | -32.07 | 63.75    | 68.20    | -4.45  | peak     | Р   |

## UNII-3 20M\_5825MHz\_Vertical

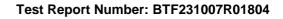

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5850.000           | 87.48             | -31.76           | 55.72             | 122.20            | -66.48         | peak     | Р   |
| 2   | 5875.000           | 94.42             | -31.87           | 62.55             | 110.80            | -48.25         | peak     | Р   |
| 3   | 5925.000           | 95.32             | -31.93           | 63.39             | 68.20             | -4.81          | peak     | Р   |





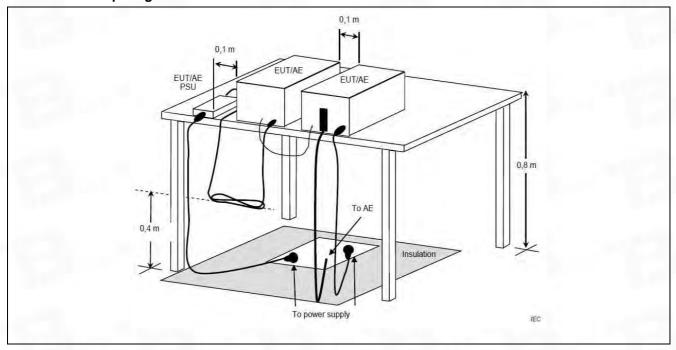
## 6.7 Undesirable emission limits (below 1GHz)

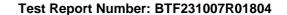
| Test Requirement: | 47 CFR Part 15.407(b)(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion 12.7.4, 12.7.5, 12.7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | limits set forth in § 15.20 Except as provided else                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | elow 1 GHz must comply with the comply with the complex subpart, the emised the field strength levels specifield strength                                                                                                                                                                                                                                                                                                                                                                       | ssions from an intentional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Limit:       | r requericy (Wiriz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (microvolts/meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | distance<br>(meters)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | 0.009-0.490<br>0.490-1.705<br>1.705-30.0<br>30-88<br>88-216<br>216-960<br>Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2400/F(kHz)<br>24000/F(kHz)<br>30<br>100 **<br>150 **<br>200 **<br>500                                                                                                                                                                                                                                                                                                                                                                                                                          | 300<br>30<br>30<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Procedure:        | Below 1GHz: a. For below 1GHz, the above the ground at a 3 degrees to determine the b. The EUT was set 3 o which was mounted on c. The antenna height is determine the maximum polarizations of the antend. For each suspected of the antenna was tuned of below 30MHz, the an was turned from 0 degree. The test-receiver sys Bandwidth with Maximum f. If the emission level of specified, then testing or reported. Otherwise the re-tested one by one us data sheet. g. Test the EUT in the loth. The radiation measur Transmitting mode, and i. Repeat above proced Remark: 1. Level= Read Level+ 12. Scan from 9kHz to 30 points marked on above testing, so only above pemissions from the radineed not be reported. 3. The disturbance belo | EUT was placed on the top of a meter semi-anechoic chamber the position of the highest radiator 10 meters away from the intest the top of a variable-height antor a varied from one meter to four an value of the field strength. Both are set to make the measurements are set to make the measurements are set to make the measurements are set to make the measurements. The elements was tuned to heights 1 mees to 360 degrees to find the internation was set to Peak Detect Full meters. | a rotating table 0.8 meters r. The table was rotated 360 ion. rference-receiving antenna, tenna tower. meters above the ground to th horizontal and vertical urement. det to its worst case and then eters (for the test frequency neter) and the rotatable table maximum reading. Inction and Specified OdB lower than the limit values of the EUT would be odB margin would be cified and then reported in a linel, the Highest channel. Z axis positioning for thich it is the worst case. Ureamp Factor OMHz was very low. The line could be found when amplitude of spurious ethan 20dB below the limit tharmonics were the highest |






- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

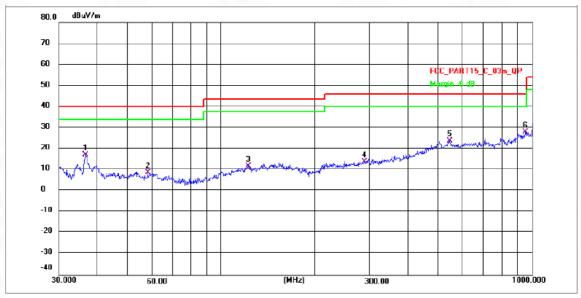

#### 6.7.1 E.U.T. Operation:


| Operating Env | ironment:         |    |  |  |
|---------------|-------------------|----|--|--|
| Temperature:  | 25.5 °C           |    |  |  |
| Humidity:     | 50.6 %            |    |  |  |
| Atmospheric F | ressure: 1010 mba | ar |  |  |





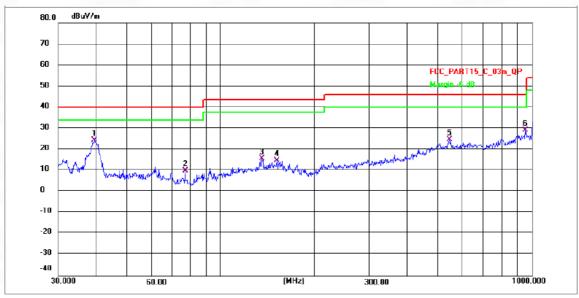
## 6.7.2 Test Setup Diagram:



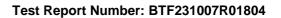





#### 6.7.3 Test Data:


Note: All the mode have been tested, and only the worst mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

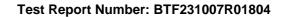



| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 36.7018            | 35.51             | -18.44           | 17.07             | 40.00             | -22.93         | QP       | Р   |
| 2   | 58.2030            | 26.94             | -18.20           | 8.74              | 40.00             | -31.26         | QP       | Р   |
| 3   | 122.1896           | 39.80             | -28.03           | 11.77             | 43.50             | -31.73         | QP       | Р   |
| 4   | 290.0172           | 39.39             | -25.51           | 13.88             | 46.00             | -32.12         | QP       | Р   |
| 5   | 543.2742           | 45.30             | -21.59           | 23.71             | 46.00             | -22.29         | QP       | Р   |
| 6 * | 952.0937           | 49.63             | -21.77           | 27.86             | 46.00             | -18.14         | QP       | Р   |



## TM1 / Polarization: Vertical / Band: U-NII 1 / BW: 20 / CH: L




| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1 * | 39.4371            | 44.94             | -20.54           | 24.40             | 40.00             | -15.60         | QP       | Р   |
| 2   | 76.7808            | 29.71             | -19.88           | 9.83              | 40.00             | -30.17         | QP       | Р   |
| 3   | 135.7440           | 24.30             | -8.64            | 15.66             | 43.50             | -27.84         | QP       | Р   |
| 4   | 151.5972           | 29.35             | -14.45           | 14.90             | 43.50             | -28.60         | QP       | Р   |
| 5   | 545.1826           | 36.40             | -11.61           | 24.79             | 46.00             | -21.21         | QP       | Р   |
| 6   | 953.7645           | 50.84             | -21.75           | 29.09             | 46.00             | -16.91         | QP       | Р   |





# 6.8 Undesirable emission limits (above 1GHz)

|                   | oda) emini noicenna                                                                | *                         |                   |                       |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------|---------------------------|-------------------|-----------------------|--|--|--|--|--|
|                   | 47 CFR Part 15.407(b)                                                              |                           |                   |                       |  |  |  |  |  |
| Test Requirement: | 47 CFR Part 15.407(b)                                                              |                           |                   |                       |  |  |  |  |  |
| root requirement. | 47 CFR Part 15.407(b)                                                              | ,                         |                   |                       |  |  |  |  |  |
|                   | 47 CFR Part 15.407(b)                                                              | )(10)                     |                   |                       |  |  |  |  |  |
| Test Method:      | ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6                                   |                           |                   |                       |  |  |  |  |  |
|                   | For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the |                           |                   |                       |  |  |  |  |  |
|                   | 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.                    |                           |                   |                       |  |  |  |  |  |
|                   | For transmitters opera                                                             | ting in the 5.25-5.35 GH  | Hz band: All emis | ssions outside of the |  |  |  |  |  |
|                   | 5.15-5.35 GHz band sl                                                              | nall not exceed an e.i.r. | p. of −27 dBm/N   | 1Hz.                  |  |  |  |  |  |
|                   |                                                                                    |                           |                   |                       |  |  |  |  |  |
|                   |                                                                                    | ting solely in the 5.725- |                   |                       |  |  |  |  |  |
|                   |                                                                                    | limited to a level of −27 |                   |                       |  |  |  |  |  |
|                   |                                                                                    | e increasing linearly to  |                   |                       |  |  |  |  |  |
|                   |                                                                                    | and from 25 MHz above     |                   |                       |  |  |  |  |  |
|                   |                                                                                    | .6 dBm/MHz at 5 MHz       |                   |                       |  |  |  |  |  |
|                   |                                                                                    | pelow the band edge in    | creasing linearly | to a level of 27      |  |  |  |  |  |
|                   | dBm/MHz at the band                                                                |                           |                   | 0.11                  |  |  |  |  |  |
|                   | MHz                                                                                | MHz                       | MHz               | GHz                   |  |  |  |  |  |
|                   | 0.090-0.110                                                                        | 16.42-16.423              | 399.9-410         | 4.5-5.15              |  |  |  |  |  |
|                   | 10.495-0.505                                                                       | 16.69475-16.69525         | 608-614           | 5.35-5.46             |  |  |  |  |  |
|                   | 2.1735-2.1905                                                                      | 16.80425-16.80475         | 960-1240          | 7.25-7.75             |  |  |  |  |  |
|                   | 4.125-4.128                                                                        | 25.5-25.67                | 1300-1427         | 8.025-8.5             |  |  |  |  |  |
|                   | 4.17725-4.17775                                                                    | 37.5-38.25                | 1435-1626.5       | 9.0-9.2               |  |  |  |  |  |
|                   | 4.20725-4.20775                                                                    | 73-74.6                   | 1645.5-1646.<br>5 | 9.3-9.5               |  |  |  |  |  |
|                   | 6.215-6.218                                                                        | 74.8-75.2 1660-1710       |                   | 10.6-12.7             |  |  |  |  |  |
|                   | 6.26775-6.26825                                                                    | 108-121.94                | 1718.8-1722.      | 13.25-13.4            |  |  |  |  |  |
|                   | 0.20775-0.20825                                                                    | 100-121.94                | 2                 | 13.23-13.4            |  |  |  |  |  |
|                   | 6.31175-6.31225                                                                    | 123-138                   | 2200-2300         | 14.47-14.5            |  |  |  |  |  |
| Test Limit:       | 8.291-8.294                                                                        | 149.9-150.05              | 2310-2390         | 15.35-16.2            |  |  |  |  |  |
|                   | 8.362-8.366                                                                        | 156.52475-156.525         | 2483.5-2500       | 17.7-21.4             |  |  |  |  |  |
|                   | 0.002-0.000                                                                        | 25                        | 2400.0-2000       | 17.7-21.4             |  |  |  |  |  |
|                   | 8.37625-8.38675                                                                    | 156.7-156.9               | 2690-2900         | 22.01-23.12           |  |  |  |  |  |
|                   | 8.41425-8.41475                                                                    | 162.0125-167.17           | 3260-3267         | 23.6-24.0             |  |  |  |  |  |
|                   | 12.29-12.293                                                                       | 167.72-173.2              | 3332-3339         | 31.2-31.8             |  |  |  |  |  |
|                   | 12.51975-12.52025                                                                  |                           | 3345.8-3358       | 36.43-36.5            |  |  |  |  |  |
|                   | 12.57675-12.57725                                                                  | 322-335.4                 | 3600-4400         | ( <sup>2</sup> )      |  |  |  |  |  |
|                   | 13.36-13.41                                                                        | 022 000.1                 | 0000 1100         | ( )                   |  |  |  |  |  |
|                   |                                                                                    |                           |                   |                       |  |  |  |  |  |
|                   | <sup>1</sup> Until February 1, 1999                                                | e, this restricted band s | hall be 0.490-0.5 | 510 MHz.              |  |  |  |  |  |
|                   | <sup>2</sup> Above 38.6                                                            |                           |                   |                       |  |  |  |  |  |
|                   |                                                                                    |                           |                   |                       |  |  |  |  |  |
|                   |                                                                                    | nissions appearing with   |                   |                       |  |  |  |  |  |
|                   | exceed the limits show                                                             | n in § 15.209. At freque  | encies equal to c | or less than 1000     |  |  |  |  |  |
|                   |                                                                                    | the limits in § 15.209sh  |                   |                       |  |  |  |  |  |
|                   |                                                                                    | entation employing a Cl   |                   |                       |  |  |  |  |  |
|                   |                                                                                    | with the emission limit   |                   |                       |  |  |  |  |  |
|                   |                                                                                    | value of the measured     | emissions. The    | provisions in §       |  |  |  |  |  |
|                   | 15.35apply to these m                                                              | easurements.              |                   |                       |  |  |  |  |  |
|                   | Except as provided els                                                             | ewhere in this subpart,   | the emissions for | rom an intentional    |  |  |  |  |  |
|                   |                                                                                    | ed the field strength lev |                   |                       |  |  |  |  |  |
|                   | Frequency (MHz)                                                                    | Field strength            |                   | Measurement           |  |  |  |  |  |
|                   | 1 104001103 (1711112)                                                              | . ioia onongan            |                   |                       |  |  |  |  |  |





|                    | (microvolts/meter)                 | distance                    |
|--------------------|------------------------------------|-----------------------------|
|                    |                                    | (meters)                    |
| 0.009-0.490        | 2400/F(kHz)                        | 300                         |
| 0.490-1.705        | 24000/F(kHz)                       | 30                          |
| 1.705-30.0         | 30                                 | 30                          |
| 30-88              | 100 **                             | 3                           |
| 88-216             | 150 **                             | 3                           |
| 216-960            | 200 **                             | 3                           |
| Above 960          | 500                                | 3                           |
| Above 1GHz:        |                                    |                             |
| a. For above 1GHz, | the EUT was placed on the top of   | a rotating table 1.5 meters |
|                    | t a 3 meter fully-anechoic chamber | •                           |

- above the ground at a 3 meter fully-anechoic chamber. The table was rotated  $360\,$ degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

## 6.8.1 E.U.T. Operation:

Procedure:

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.5 °C   |
| Humidity:              | 50.6 %    |
| Atmospheric Pressure:  | 1010 mbar |



Test Report Number: BTF231007R01804

# 6.8.2 Test Data:

Note:All of the mode had be tested, only the worse mode of 802.11a are show in the report: UNII-1\_20M\_5180MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1 * | 10438.873          | 85.47             | -24.49           | 60.98             | 74.00             | -13.02         | peak     | P   |
| 2   | 14255.157          | 80.36             | -21.14           | 59.22             | 74.00             | -14.78         | peak     | Р   |

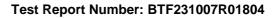
# UNII-1\_20M\_5180MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1 * | 10357.726          | 87.16             | -24.45           | 62.71             | 74.00             | -11.29         | peak     | Р   |
| 2   | 15546.413          | 82.97             | -21.51           | 61.46             | 74.00             | -12.54         | peak     | P   |

# UNII-1\_20M\_5200MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 10402.730          | 86.11             | -24.47           | 61.64             | 74.00             | -12.36         | peak     | Р   |
| 2 * | 15600.428          | 83.86             | -21.51           | 62.35             | 74.00             | -11.65         | peak     | Р   |

# UNII-1\_20M\_5200MHz\_Vertical


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 10390.709          | 85.35             | -24.47           | 60.88             | 74.00             | -13.12         | peak     | Р   |
| 2 * | 15600.428          | 82.83             | -21.51           | 61.32             | 74.00             | -12.68         | peak     | Р   |

# UNII-1\_20M\_5240MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1 * | 10438.873          | 84.47             | -24.49           | 59.98             | 74.00             | -14.02         | peak     | Р   |
| 2   | 14255.157          | 80.36             | -21.14           | 59.22             | 74.00             | -14.78         | peak     | Р   |
| 3   | 17028.299          | 76.23             | -18.17           | 58.06             | 74.00             | -15.94         | peak     | Р   |

### UNII-1\_20M\_5240MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 10444.910          | 83.40             | -24.49           | 58.91             | 74.00             | -15.09         | peak     | Р   |
| 2 * | 15659.157          | 81.13             | -21.53           | 59.60             | 74.00             | -14.40         | peak     | Р   |





# UNII-3\_20M\_5745MHz\_Horizontal

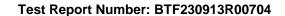
| - 1 |      |           |         |        |           |              |        |          |     |
|-----|------|-----------|---------|--------|-----------|--------------|--------|----------|-----|
|     | No.  | Frequency | Reading | Factor | Level     | Limit        | Margin | Detector | P/F |
|     | INO. | (MHz)     | (dBuV)  | (dB/m) | (dBuV/m)  | (dBuV/m)     | (dB)   | Detector | F/F |
|     | 1    | 11490.000 | 82.87   | -24.07 | 58.80     | 74.00        | -15.20 | peak     | Р   |
|     | 2    | 17235.000 | 78.17   | -20.72 | 57.45     | 74.00        | -16.55 | peak     | Р   |
| ,   |      |           |         | UNII-3 | 20M 5745N | /Hz Vertical |        |          |     |

| No.  | Frequency | Reading | Factor | Level    | Limit    | Margin | Detector | P/F |
|------|-----------|---------|--------|----------|----------|--------|----------|-----|
| INO. | (MHz)     | (dBuV)  | (dB/m) | (dBuV/m) | (dBuV/m) | (dB)   | Detector | F/F |
| 1    | 11490.000 | 83.55   | -24.04 | 59.51    | 74.00    | -14.49 | peak     | Р   |
| 2    | 17235.000 | 78.85   | -20.69 | 58.16    | 74.00    | -15.84 | peak     | Р   |

# UNII-3\_20M\_5785MHz\_Horizontal

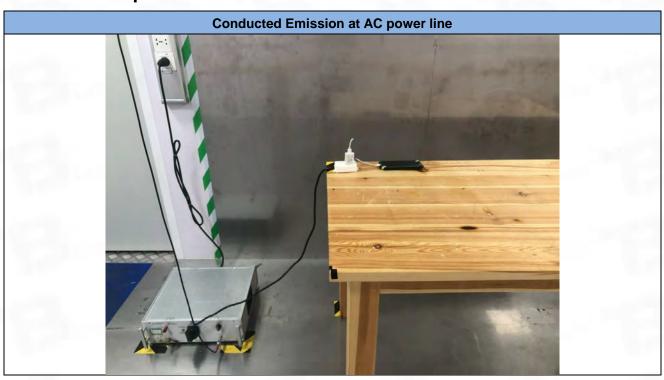
| No.  | Frequency | Reading | Factor | Level    | Limit    | Margin | Detector | P/F  |
|------|-----------|---------|--------|----------|----------|--------|----------|------|
| INO. | (MHz)     | (dBuV)  | (dB/m) | (dBuV/m) | (dBuV/m) | (dB)   | Detector | 17/1 |
| 1    | 11570.000 | 81.09   | -23.28 | 57.81    | 74.00    | -16.19 | peak     | Р    |
| 2    | 17355.000 | 76.39   | -19.93 | 56.46    | 74.00    | -17.54 | peak     | Р    |

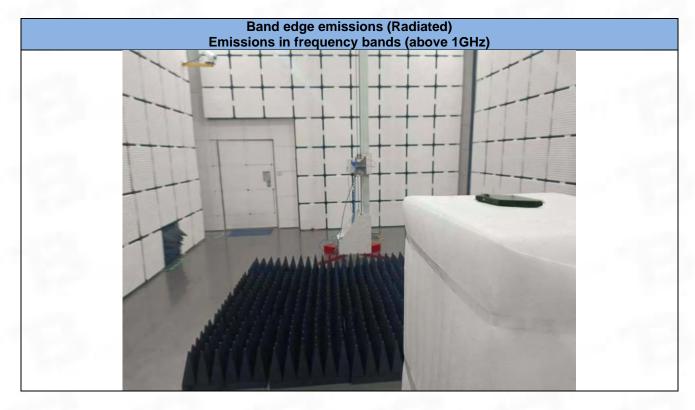
# UNII-3\_20M\_5785MHz\_Vertical

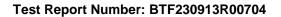

| No. | 570       | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|-----------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 11750.000 | 81.46             | -23.13           | 58.33             | 74.00             | -15.67         | peak     | Р   |
| 2   | 17355.000 | 76.76             | -19.78           | 56.98             | 74.00             | -17.02         | peak     | Р   |

# UNII-3\_20M\_5825MHz\_Horizontal

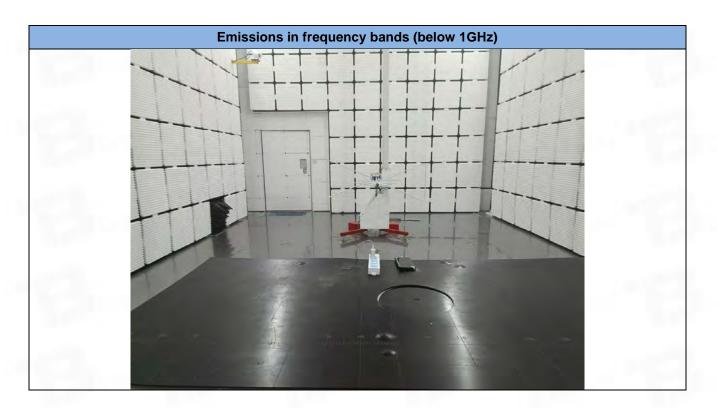
| No.  | Frequency | Reading | Factor | Level    | Limit    | Margin | Detector | P/F |
|------|-----------|---------|--------|----------|----------|--------|----------|-----|
| INO. | (MHz)     | (dBuV)  | (dB/m) | (dBuV/m) | (dBuV/m) | (dB)   | Detector | 171 |
| 1    | 11650.000 | 80.67   | -23.37 | 57.30    | 74.00    | -16.70 | peak     | Р   |
| 2    | 17475.000 | 75.97   | -20.02 | 55.95    | 74.00    | -18.05 | peak     | Р   |

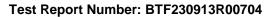

# UNII-3\_20M\_5825MHz\_Vertical


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 11650.000          | 81.21             | -23.28           | 57.93             | 74.00             | -16.07         | peak     | Р   |
| 2   | 17475.000          | 76.51             | -19.93           | 56.58             | 74.00             | -17.42         | peak     | Р   |





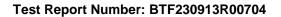


#### 7 **Test Setup Photos**





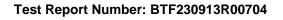










# **EUT Constructional Details (EUT Photos)**

Please refer to the test report NO. BTF231007R01801



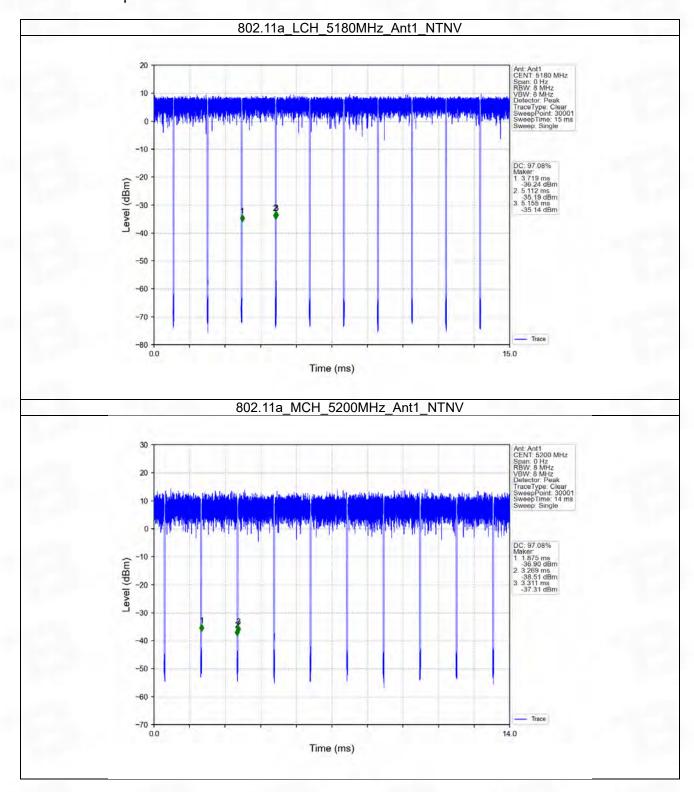


# **Appendix**

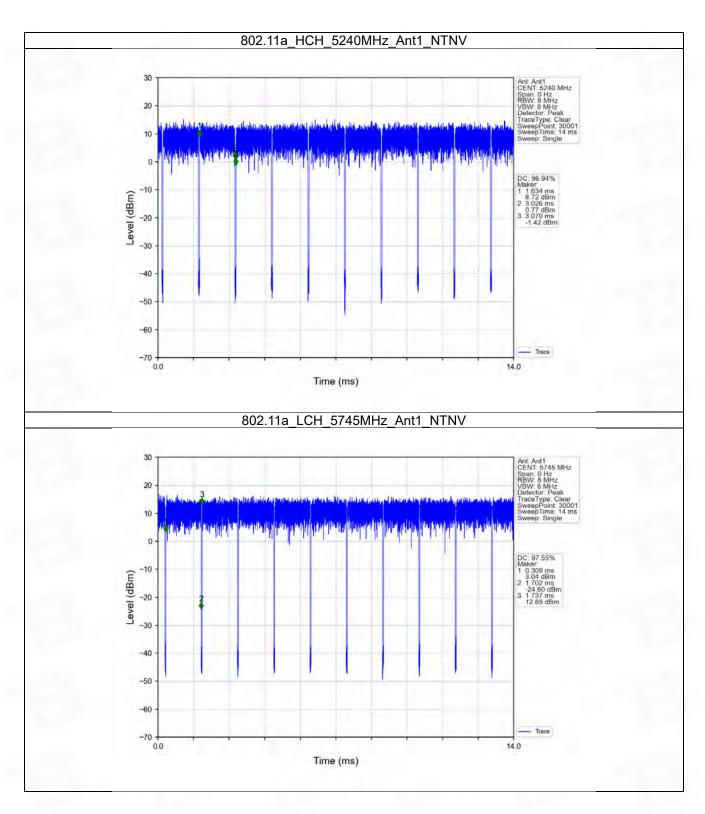




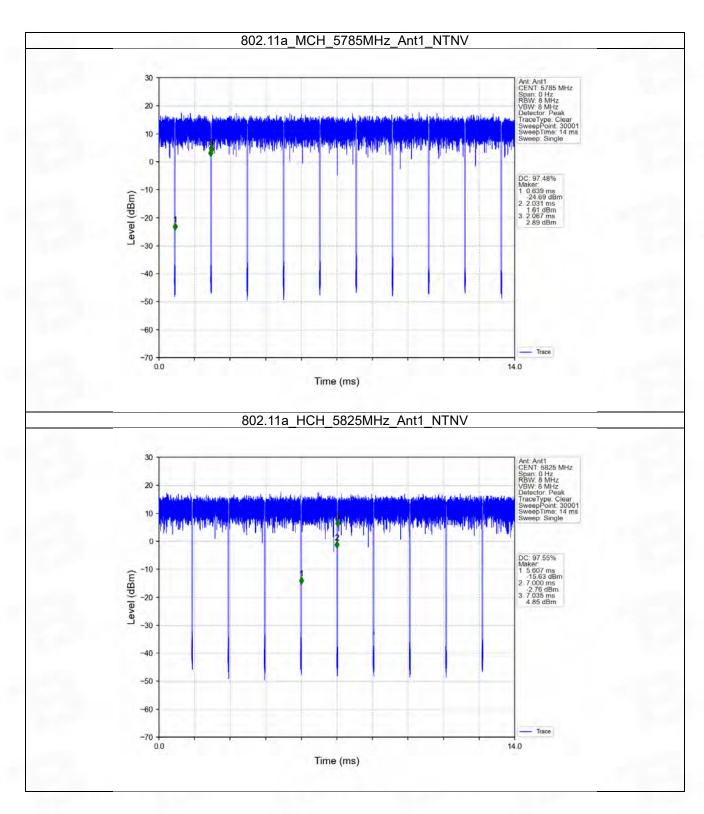
# 1. Duty Cycle


# 1.1 Ant1

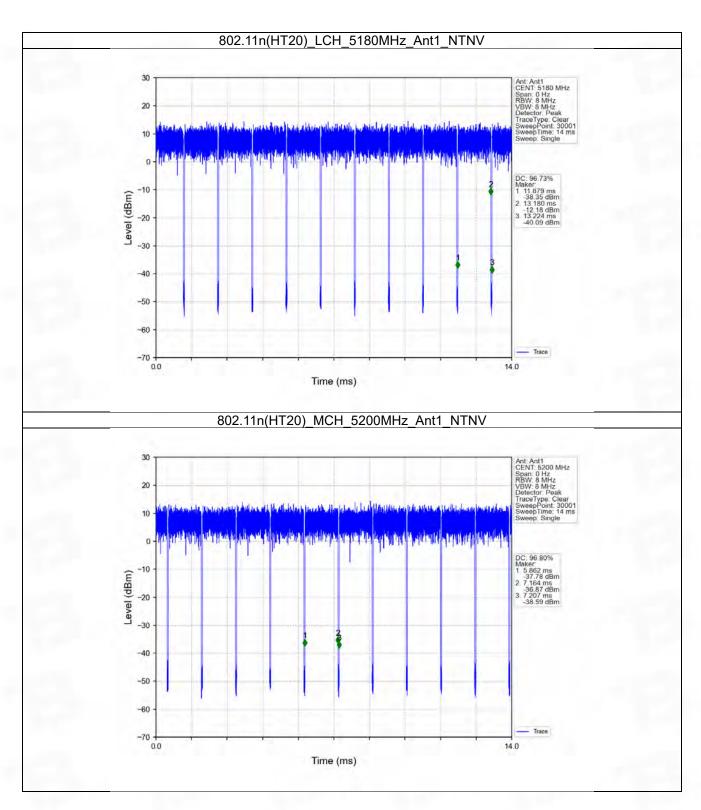
# 1.1.1 Test Result


|                     |      |           |       |        | Ant1       |                        |               |
|---------------------|------|-----------|-------|--------|------------|------------------------|---------------|
| Mode                | TX   | Frequency | T_on  | Period | Duty Cycle | Duty Cycle             | Max. DC       |
| Mode                | Type | (MHz)     | (ms)  | (ms)   | (%)        | Correction Factor (dB) | Variation (%) |
| 802.11a             | SISO | 5180      | 1.394 | 1.436  | 97.08      | 0.13                   | 0.03          |
|                     |      | 5200      | 1.394 | 1.436  | 97.08      | 0.13                   | 0.03          |
|                     |      | 5240      | 1.392 | 1.436  | 96.94      | 0.14                   | 0.03          |
| 002.11a             |      | 5745      | 1.393 | 1.428  | 97.55      | 0.11                   | 0.03          |
|                     |      | 5785      | 1.392 | 1.428  | 97.48      | 0.11                   | 0.03          |
|                     |      | 5825      | 1.393 | 1.428  | 97.55      | 0.11                   | 0.07          |
|                     | SISO | 5180      | 1.301 | 1.345  | 96.73      | 0.14                   | 0.10          |
|                     |      | 5200      | 1.302 | 1.345  | 96.80      | 0.14                   | 0.03          |
| 802.11n             |      | 5240      | 1.300 | 1.344  | 96.73      | 0.14                   | 0.03          |
| (HT20)              |      | 5745      | 1.301 | 1.337  | 97.31      | 0.12                   | 0.07          |
|                     |      | 5785      | 1.300 | 1.336  | 97.31      | 0.12                   | 0.04          |
|                     |      | 5825      | 1.300 | 1.336  | 97.31      | 0.12                   | 0.03          |
|                     | SISO | 5190      | 0.648 | 0.692  | 93.64      | 0.29                   | 0.03          |
| 802.11n             |      | 5230      | 0.649 | 0.693  | 93.65      | 0.28                   | 0.07          |
| (HT40)              |      | 5755      | 0.648 | 0.683  | 94.88      | 0.23                   | 0.03          |
|                     |      | 5795      | 0.649 | 0.683  | 95.02      | 0.22                   | 0.03          |
|                     | SISO | 5180      | 1.314 | 1.356  | 96.90      | 0.14                   | 0.03          |
|                     |      | 5200      | 1.314 | 1.357  | 96.83      | 0.14                   | 0.03          |
| 802.11ac            |      | 5240      | 1.313 | 1.356  | 96.83      | 0.14                   | 0.03          |
| (VHT20)             |      | 5745      | 1.312 | 1.348  | 97.33      | 0.12                   | 0.03          |
|                     |      | 5785      | 1.312 | 1.348  | 97.33      | 0.12                   | 0.07          |
|                     |      | 5825      | 1.314 | 1.348  | 97.48      | 0.11                   | 0.07          |
| 802.11ac<br>(VHT40) | SISO | 5190      | 1.313 | 1.357  | 96.76      | 0.14                   | 0.03          |
|                     |      | 5230      | 0.652 | 0.696  | 93.68      | 0.28                   | 0.04          |
|                     |      | 5755      | 0.653 | 0.687  | 95.05      | 0.22                   | 0.03          |
|                     |      | 5795      | 0.652 | 0.687  | 94.91      | 0.23                   | 0.07          |
| 802.11ac            | SISO | 5210      | 0.324 | 0.368  | 88.04      | 0.55                   | 0.07          |
| (VHT80)             | 3130 | 5775      | 0.249 | 0.284  | 87.68      | 0.57                   | 0.04          |

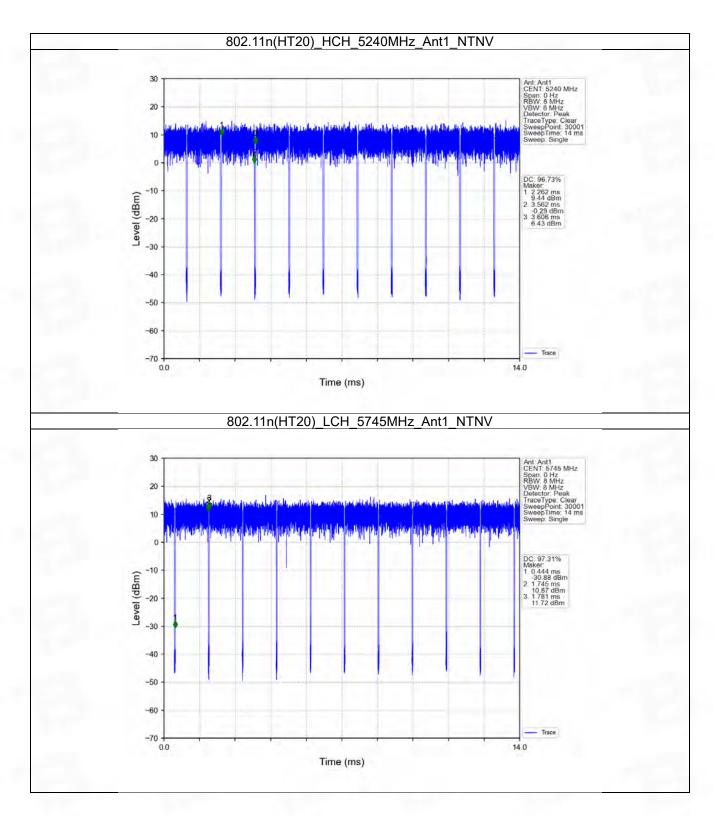



# 1.1.2 Test Graph

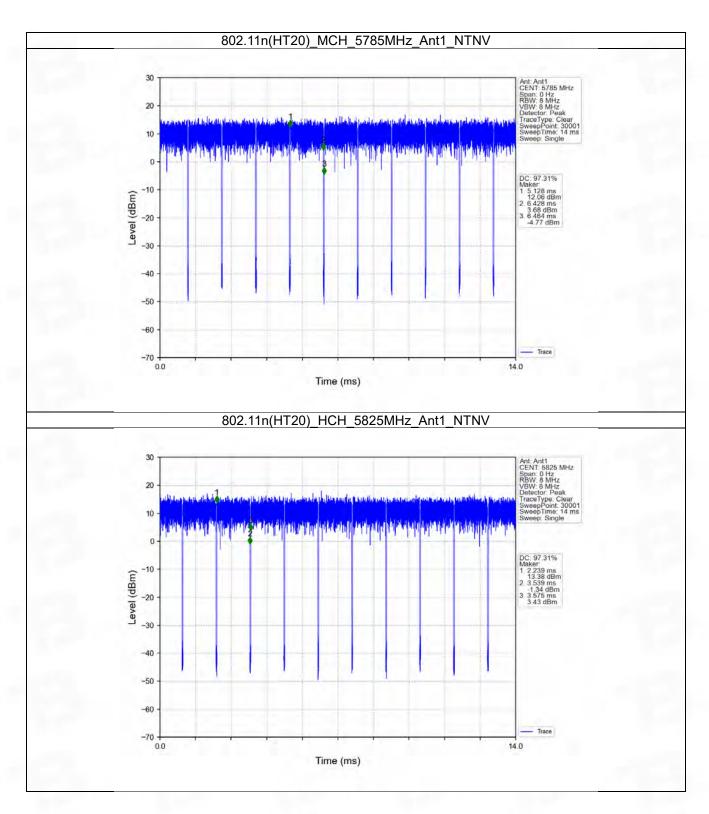




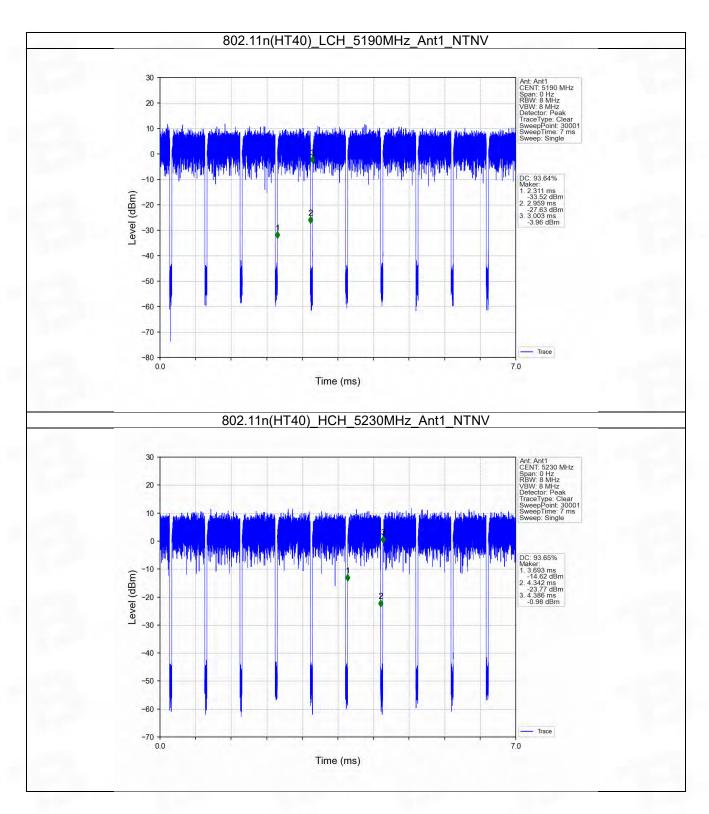


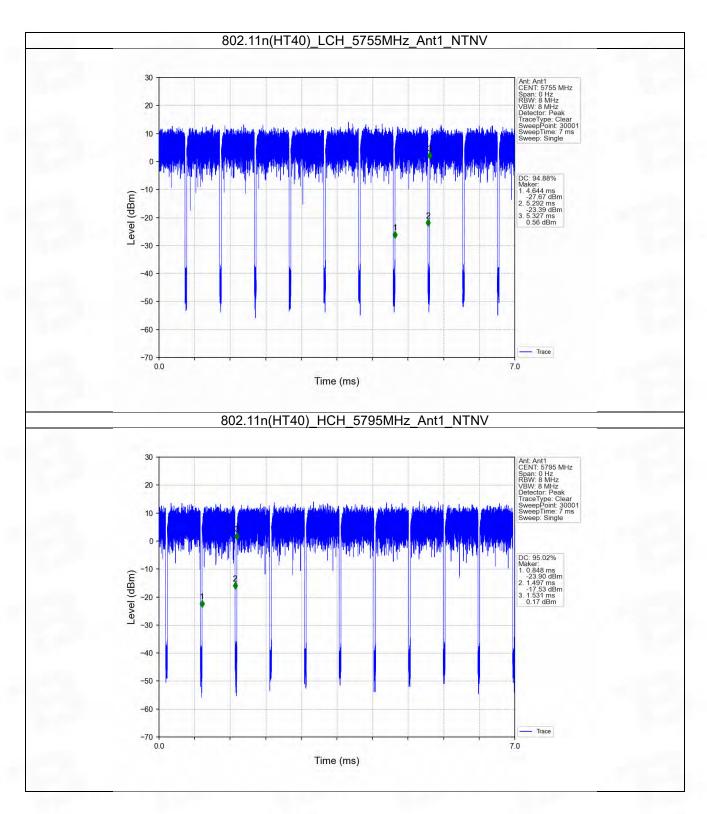


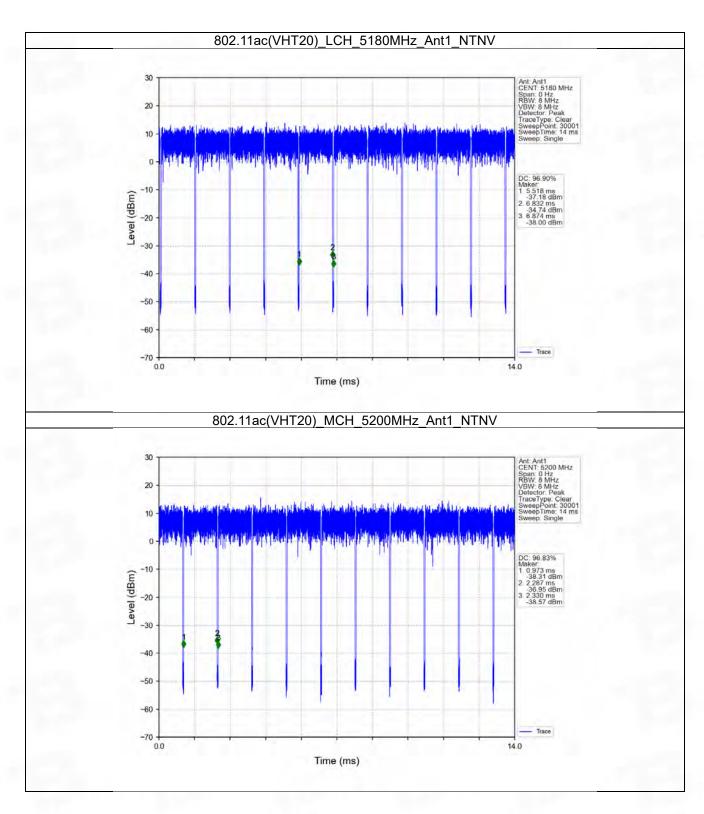


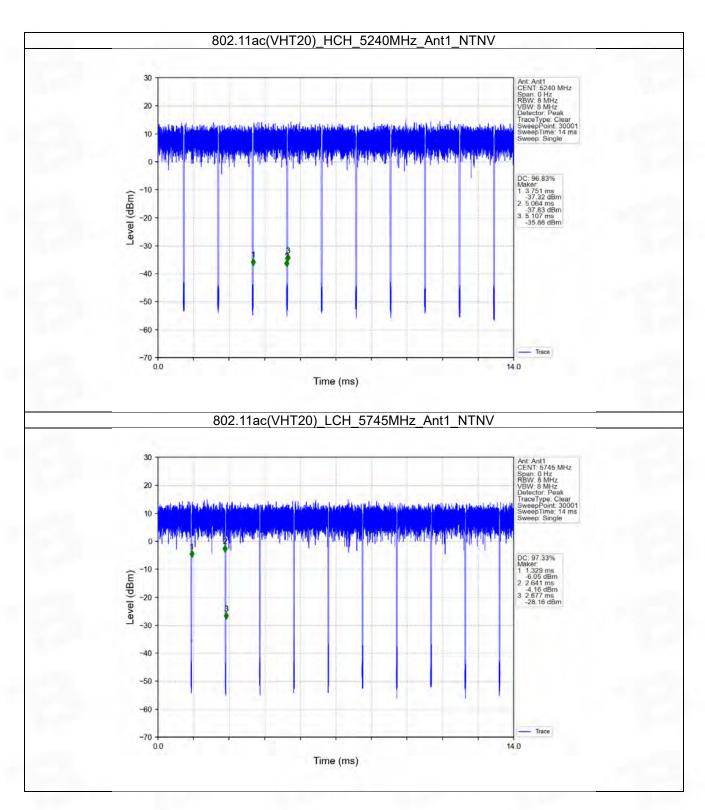


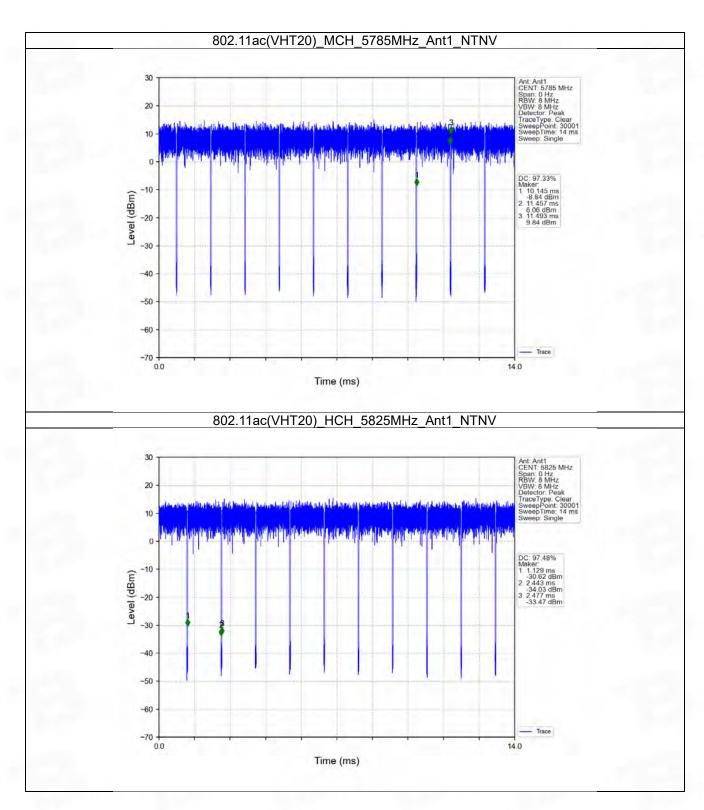


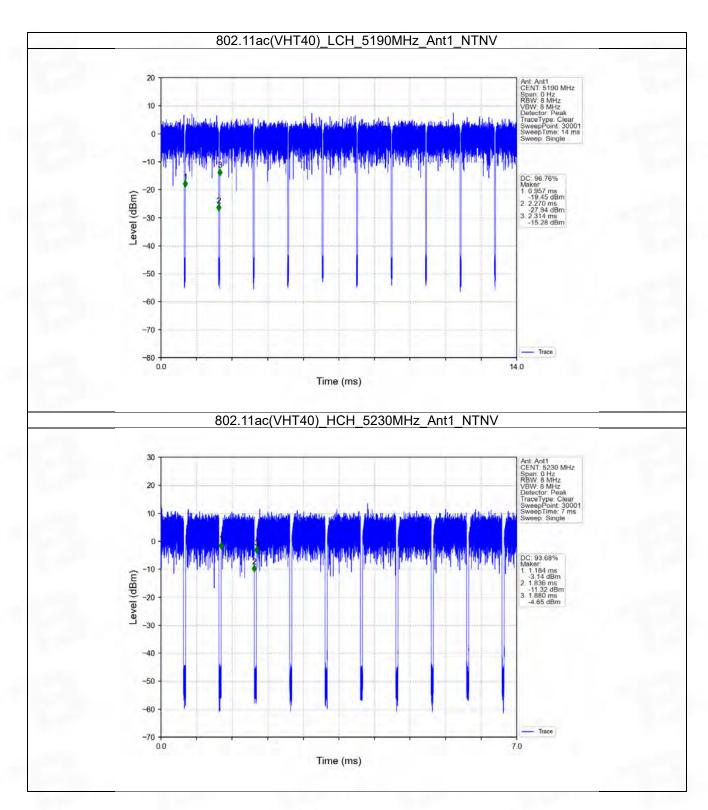


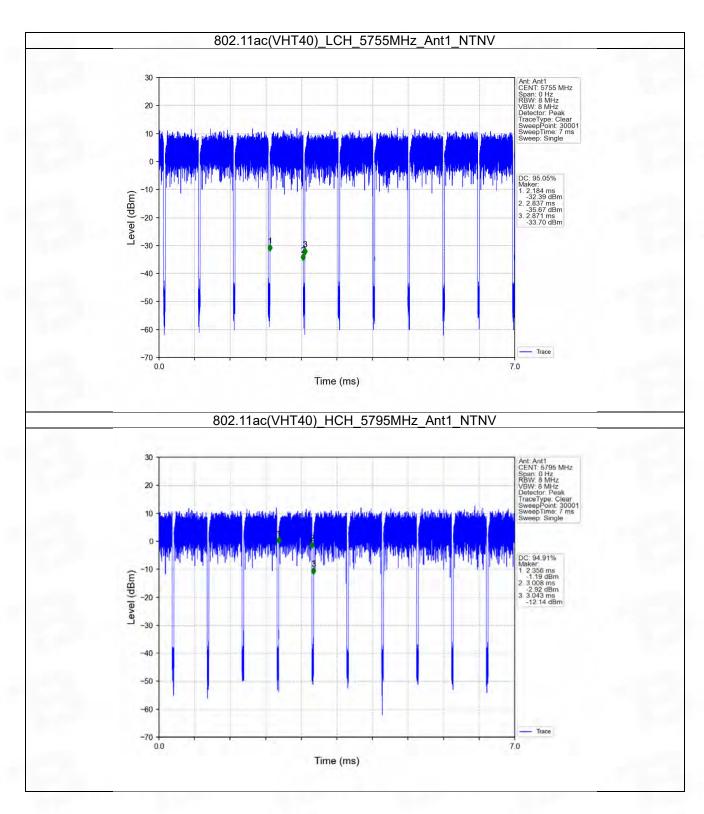


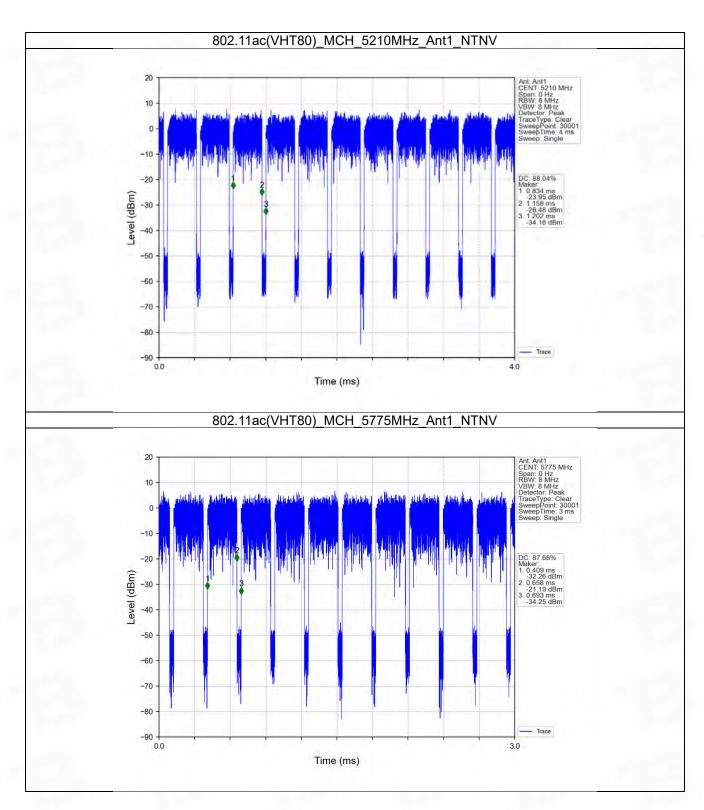


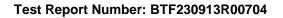







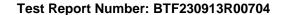






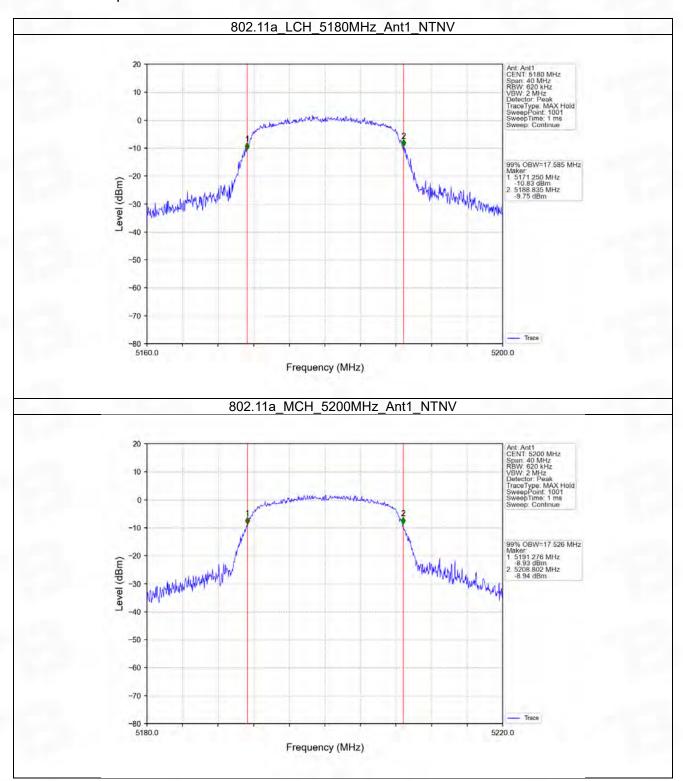




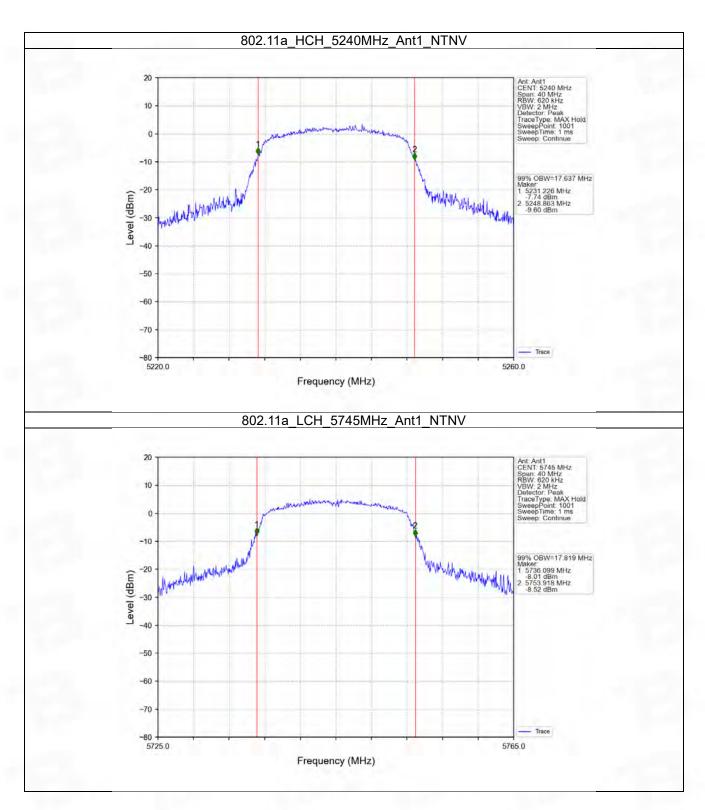




# 2. Bandwidth

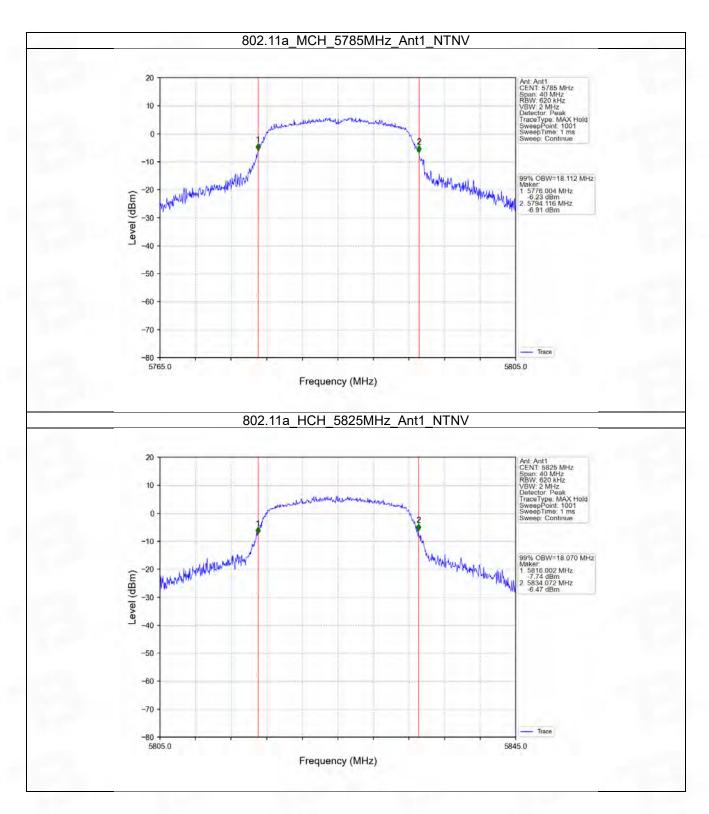
# 2.1 OBW


# 2.1.1 Test Result

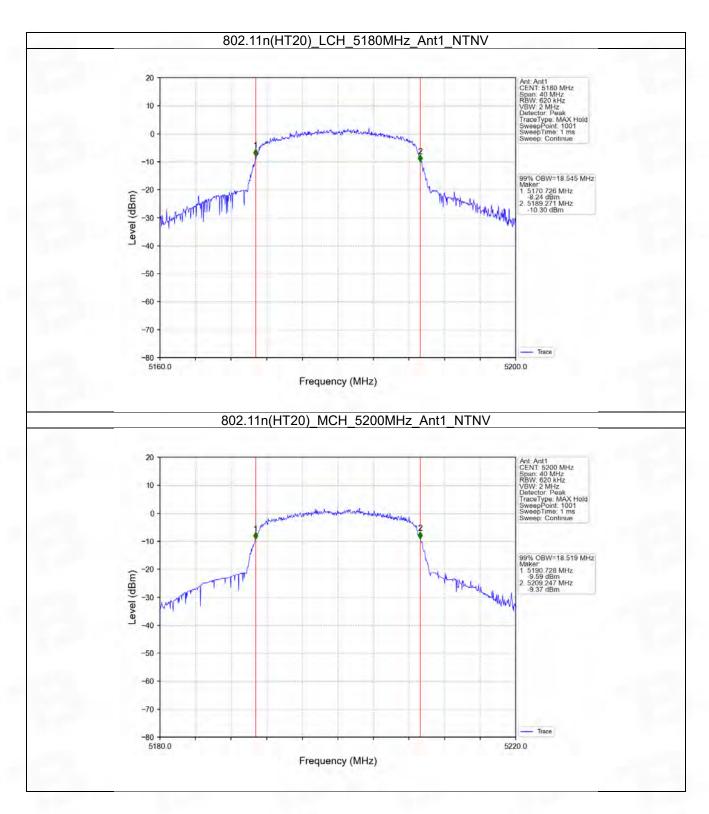
| Mode     | TX   | Frequency (MHz) ANT | ANIT | 99% Occupied Ba | Vordict |         |
|----------|------|---------------------|------|-----------------|---------|---------|
|          | Type |                     | ANI  | Result          | Limit   | Verdict |
|          | SISO | 5180                | 1    | 17.585          | 1       | Pass    |
|          |      | 5200                | 1    | 17.526          | 1       | Pass    |
| 000 44-  |      | 5240                | 1    | 17.637          | 1       | Pass    |
| 802.11a  |      | 5745                | 1    | 17.819          | 1       | Pass    |
|          |      | 5785                | 1    | 18.112          | 1       | Pass    |
|          |      | 5825                | 1    | 18.070          |         | Pass    |
|          | SISO | 5180                | 1    | 18.545          | 1       | Pass    |
|          |      | 5200                | 1    | 18.519          | 1       | Pass    |
| 802.11n  |      | 5240                | 1    | 18.549          | 1       | Pass    |
| (HT20)   |      | 5745                | 1    | 18.731          | 1       | Pass    |
|          |      | 5785                | 1    | 18.702          |         | Pass    |
|          |      | 5825                | 1    | 18.836          | 1       | Pass    |
|          | SISO | 5190                | 1    | 37.106          | 1       | Pass    |
| 802.11n  |      | 5230                | 1    | 37.172          | 1       | Pass    |
| (HT40)   |      | 5755                | 1    | 37.300          | 1       | Pass    |
|          |      | 5795                | 1    | 37.182          |         | Pass    |
|          | SISO | 5180                | 1    | 18.343          | 1       | Pass    |
|          |      | 5200                | 1    | 18.364          | 1       | Pass    |
| 802.11ac |      | 5240                | 1    | 18.376          | 1       | Pass    |
| (VHT20)  |      | 5745                | 1    | 18.405          | 1       | Pass    |
| ,        |      | 5785                | 1    | 18.054          | 1       | Pass    |
|          |      | 5825                | 1    | 18.476          | 1       | Pass    |
|          | SISO | 5190                | 1    | 18.797          | 1       | Pass    |
| 802.11ac |      | 5230                | 1    | 36.543          | 1       | Pass    |
| (VHT40)  |      | 5755                | 1    | 36.714          | 1       | Pass    |
| ,        |      | 5795                | 1    | 36.711          | 1       | Pass    |
| 802.11ac | SISO | 5210                | 1    | 76.175          | 1       | Pass    |
| (VHT80)  |      | 5775                | 1    | 77.774          | 1       | Pass    |



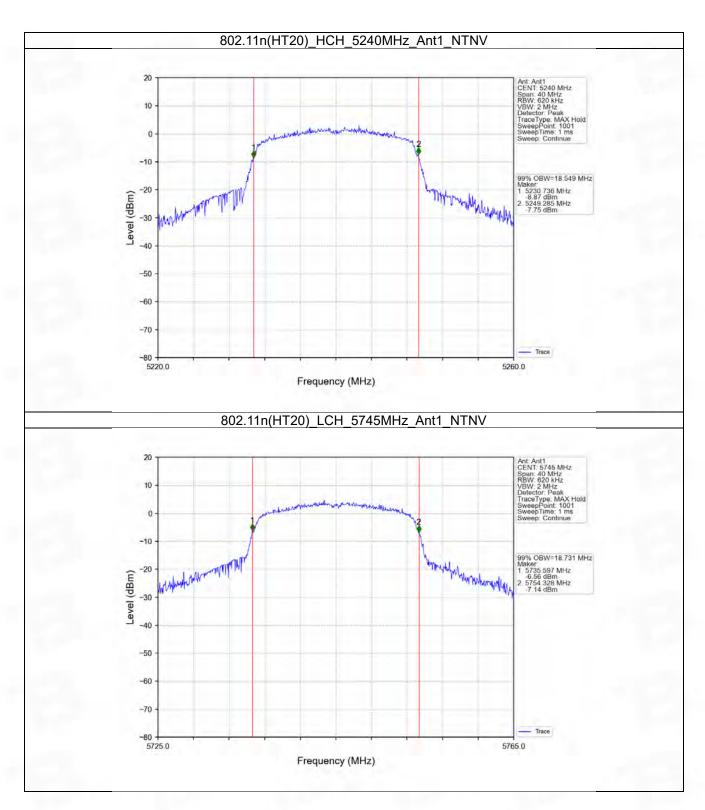




# 2.1.2 Test Graph

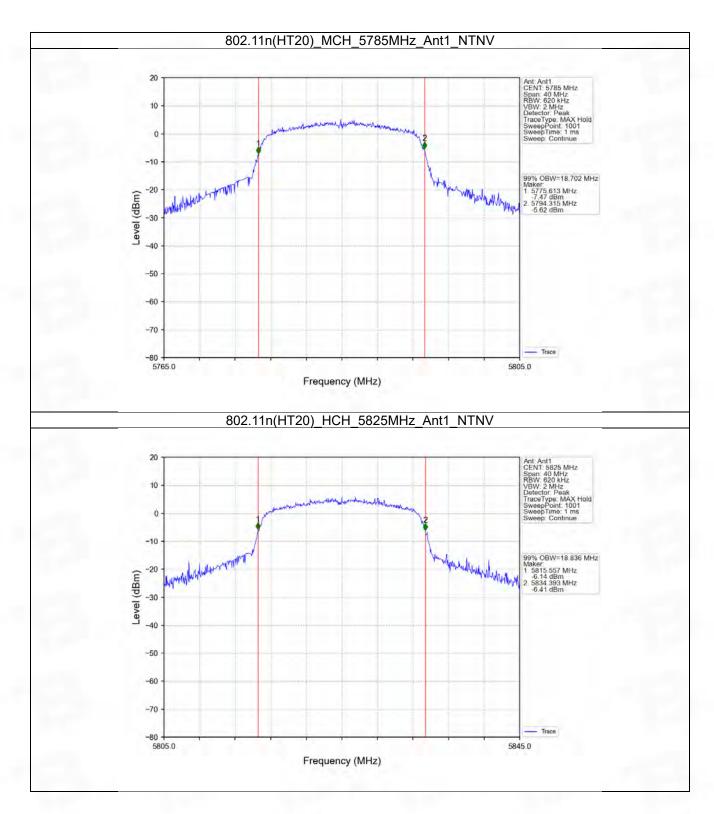




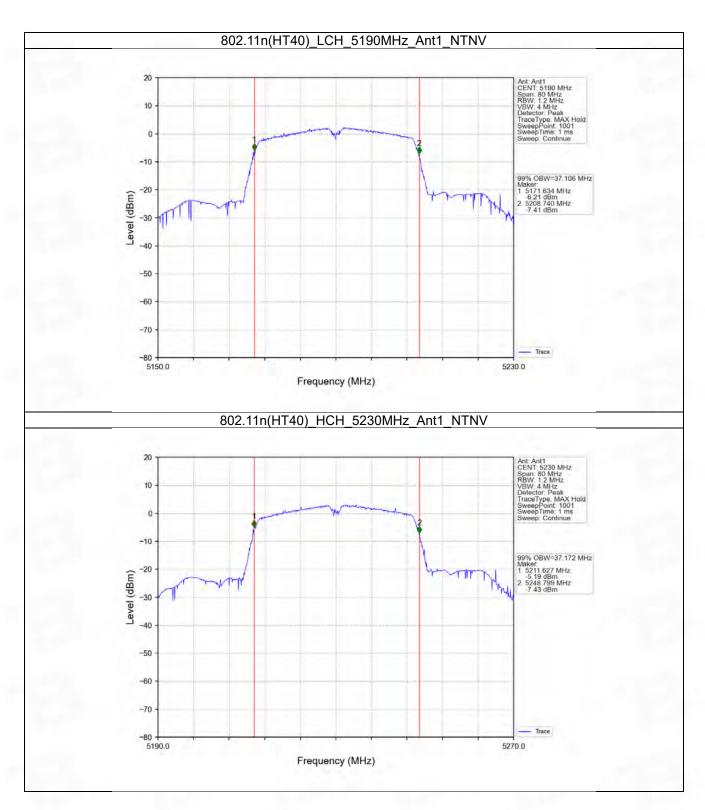


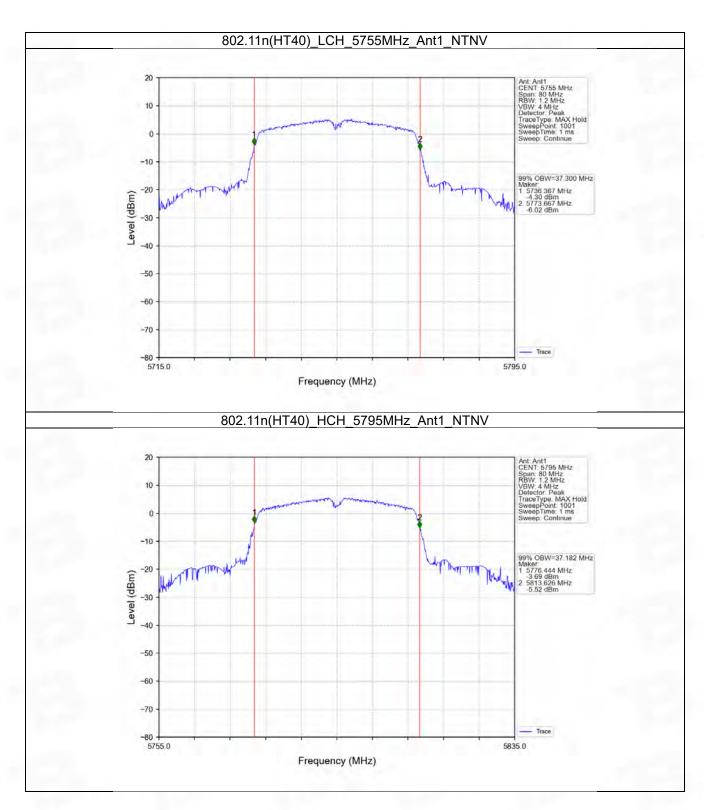


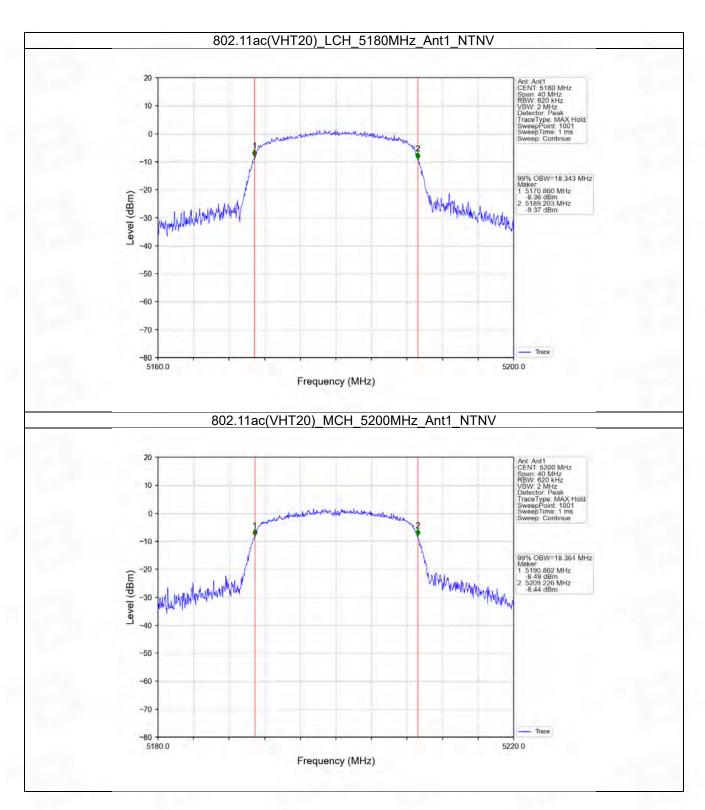


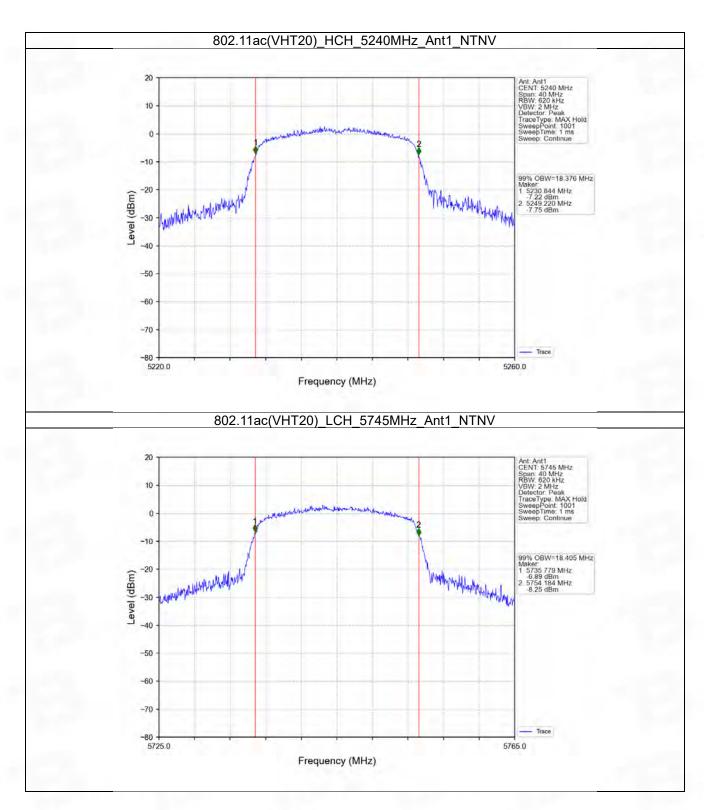


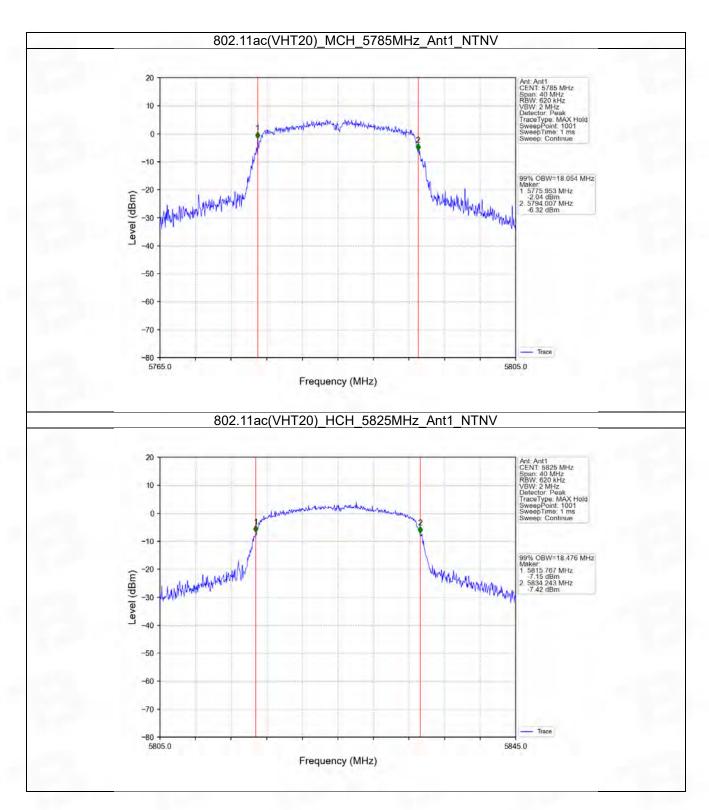


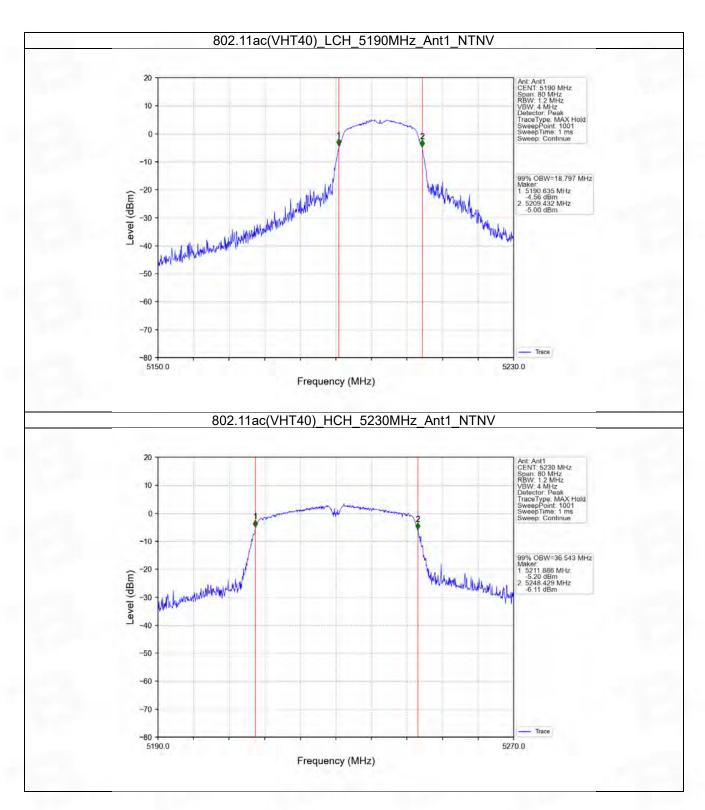


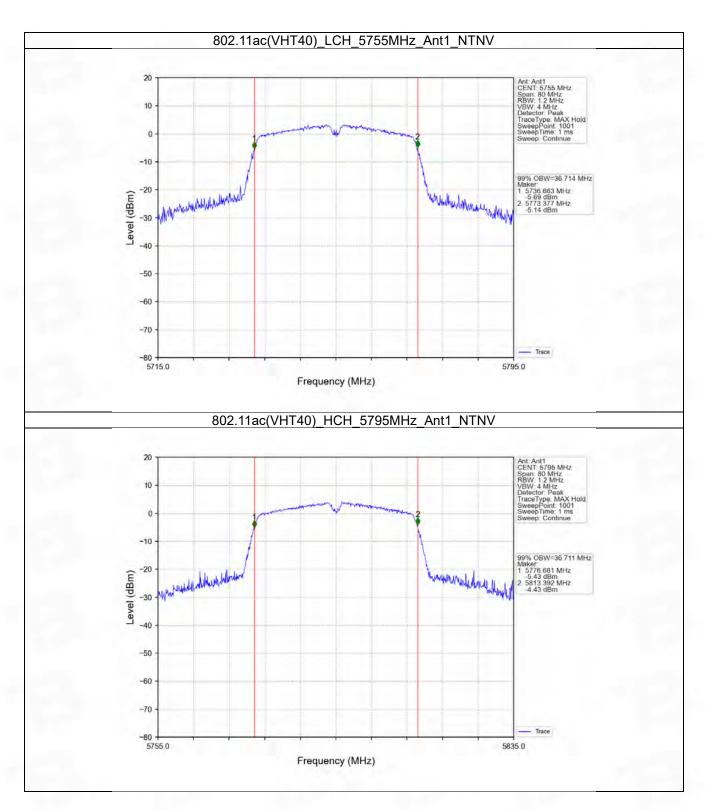


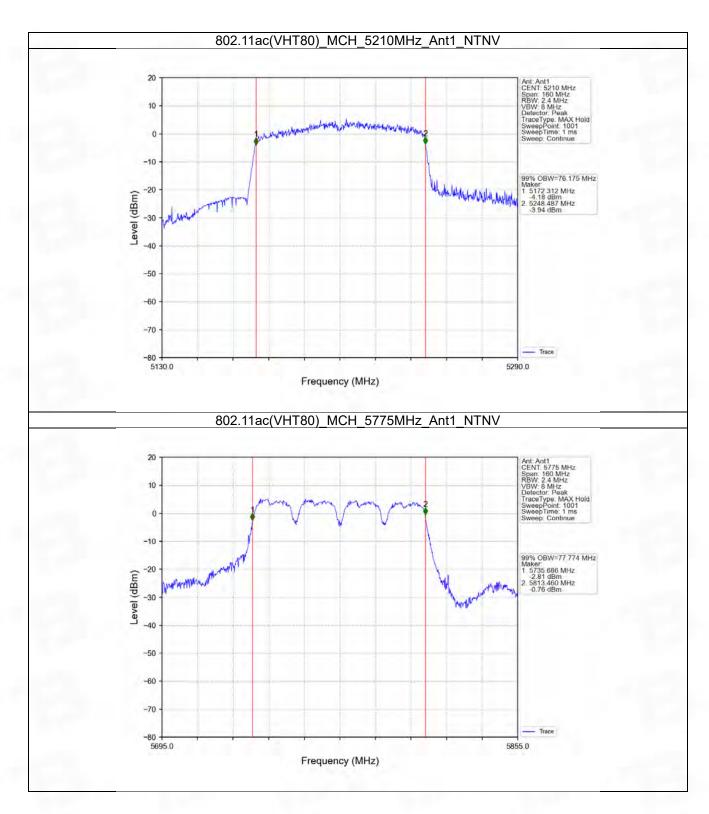










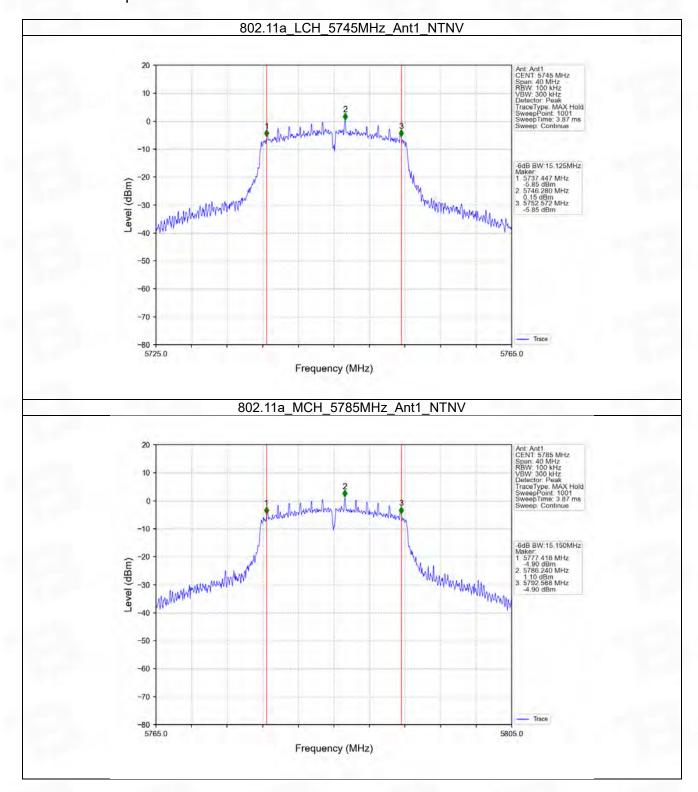




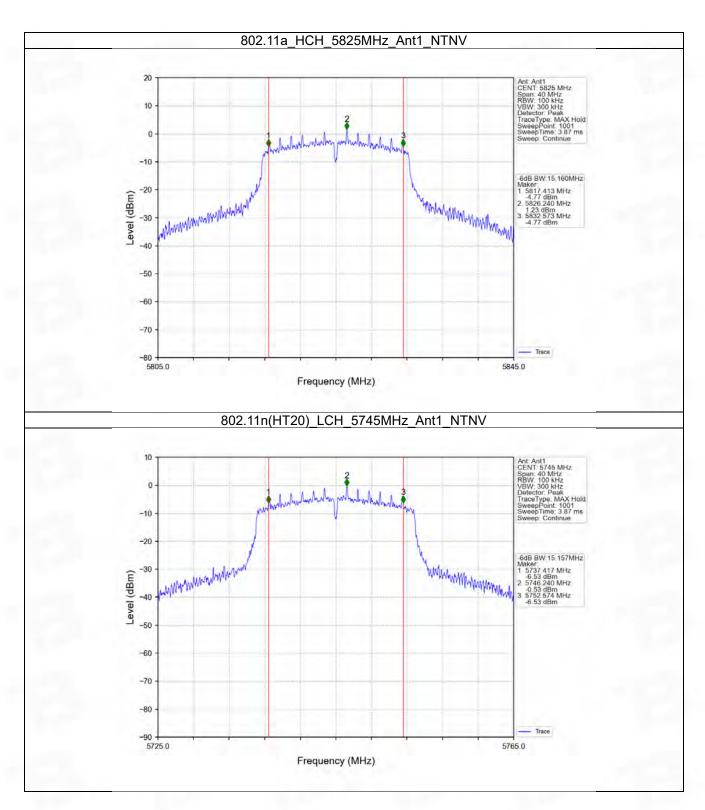




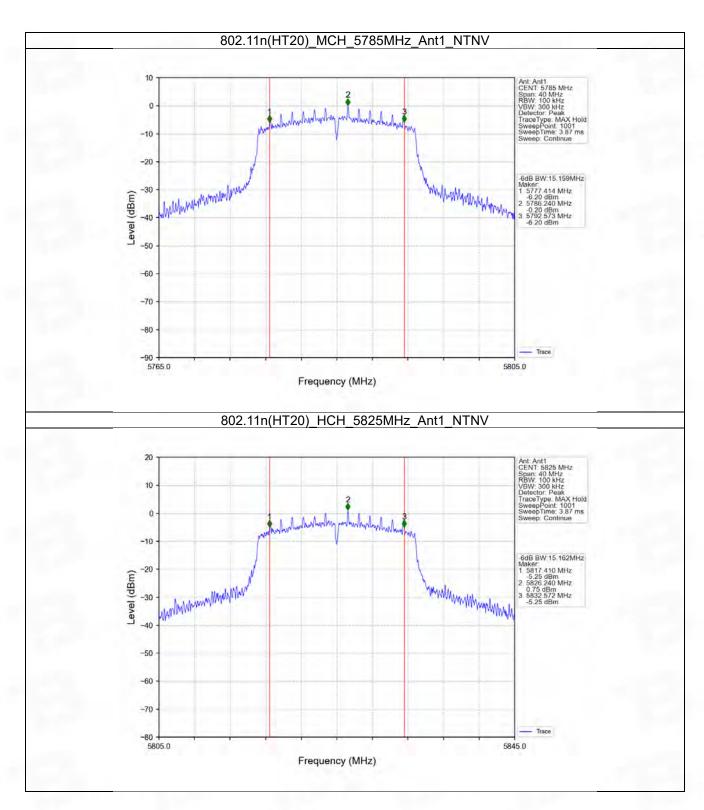




# 2.2 6dB BW

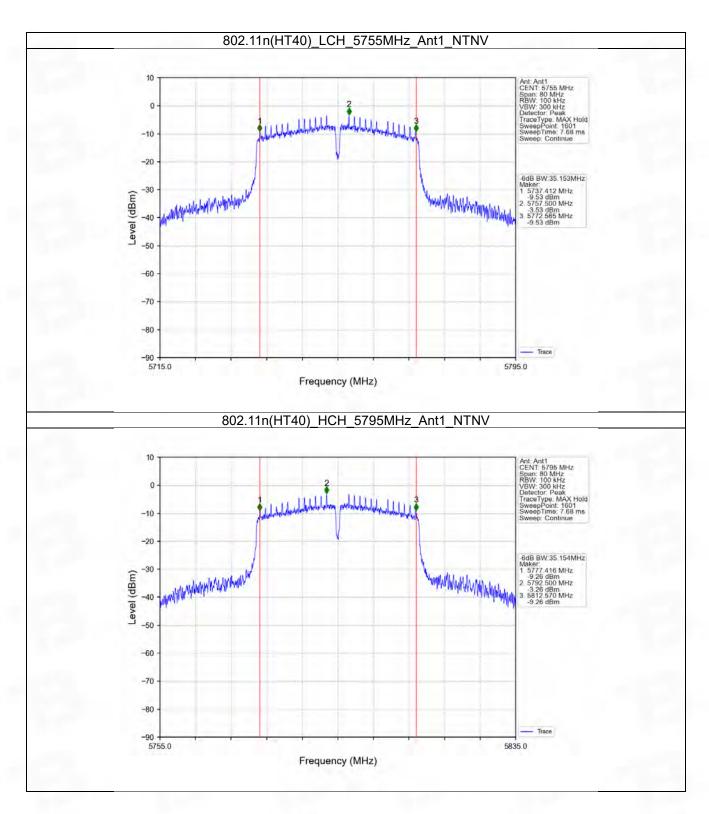
## 2.2.1 Test Result


| Mode                | TX<br>Type | Frequency<br>(MHz) | ANT | 6dB Bandwidth (MHz) |       | \/ovdiet |
|---------------------|------------|--------------------|-----|---------------------|-------|----------|
|                     |            |                    |     | Result              | Limit | Verdict  |
| 802.11a             | SISO       | 5745               | 1   | 15.125              | >=0.5 | Pass     |
|                     |            | 5785               | 1   | 15.150              | >=0.5 | Pass     |
|                     |            | 5825               | 1   | 15.160              | >=0.5 | Pass     |
| 902 11p             | SISO       | 5745               | 1   | 15.157              | >=0.5 | Pass     |
| 802.11n<br>(HT20)   |            | 5785               | 1   | 15.159              | >=0.5 | Pass     |
| (П120)              |            | 5825               | 1   | 15.162              | >=0.5 | Pass     |
| 802.11n             | SISO       | 5755               | 1   | 35.153              | >=0.5 | Pass     |
| (HT40)              | 3130       | 5795               | 1   | 35.154              | >=0.5 | Pass     |
| 902 1100            | SISO       | 5745               | 1   | 15.161              | >=0.5 | Pass     |
| 802.11ac<br>(VHT20) |            | 5785               | 1   | 15.102              | >=0.5 | Pass     |
| (11120)             |            | 5825               | 1   | 15.122              | >=0.5 | Pass     |
| 802.11ac            | SISO       | 5755               | 1   | 35.155              | >=0.5 | Pass     |
| (VHT40)             |            | 5795               | 1   | 35.153              | >=0.5 | Pass     |
| 802.11ac<br>(VHT80) | SISO       | 5775               | 1   | 76.523              | >=0.5 | Pass     |

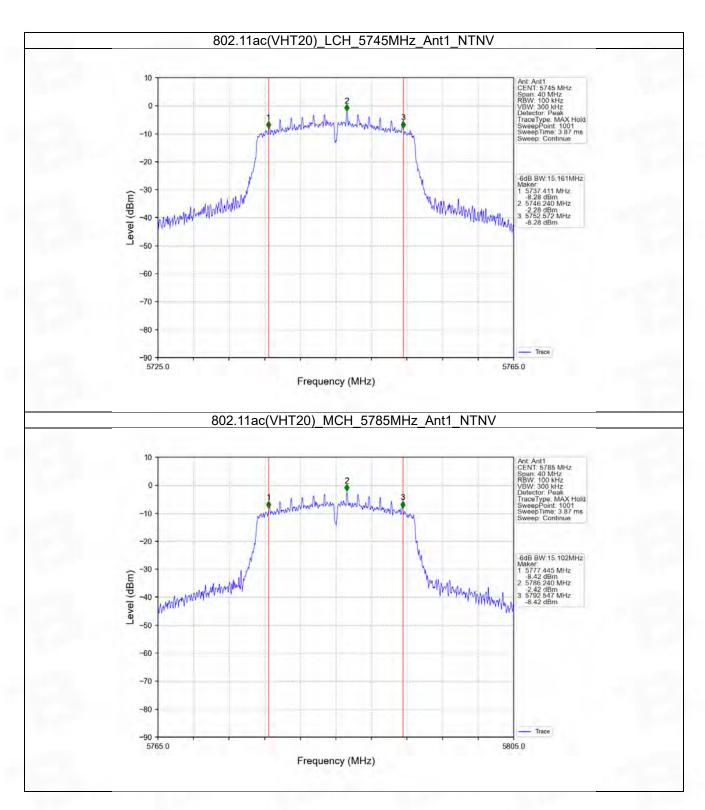



### 2.2.2 Test Graph

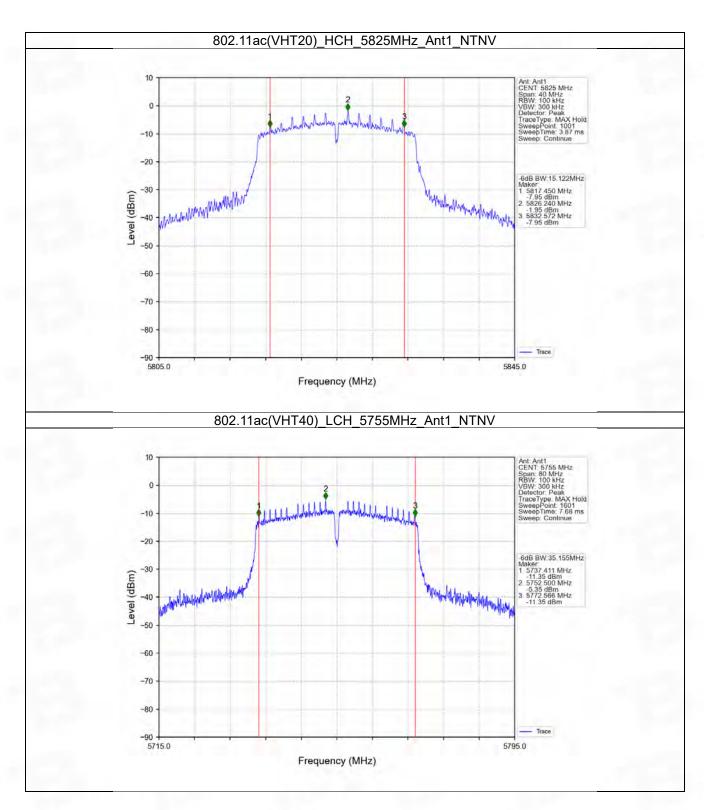




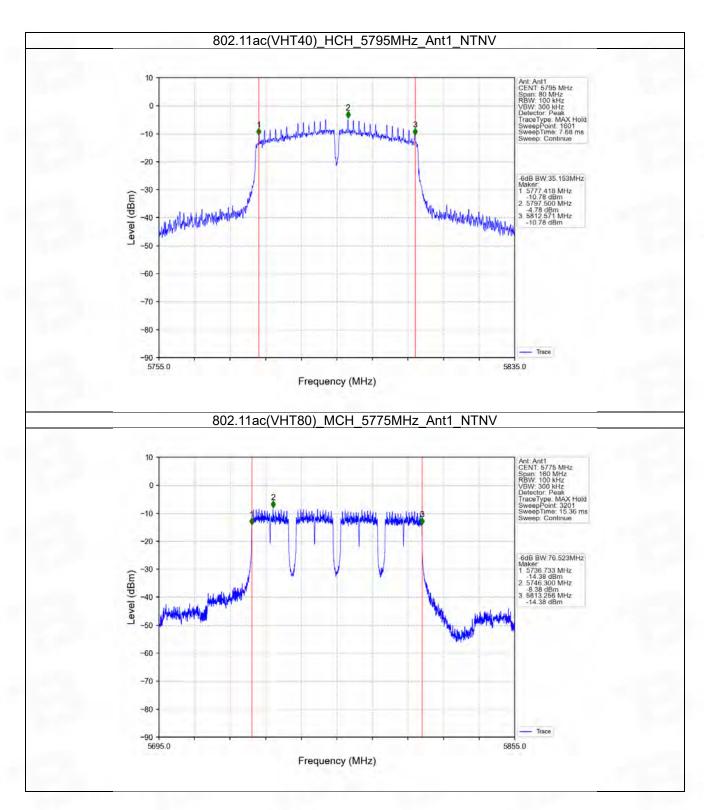


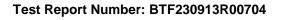









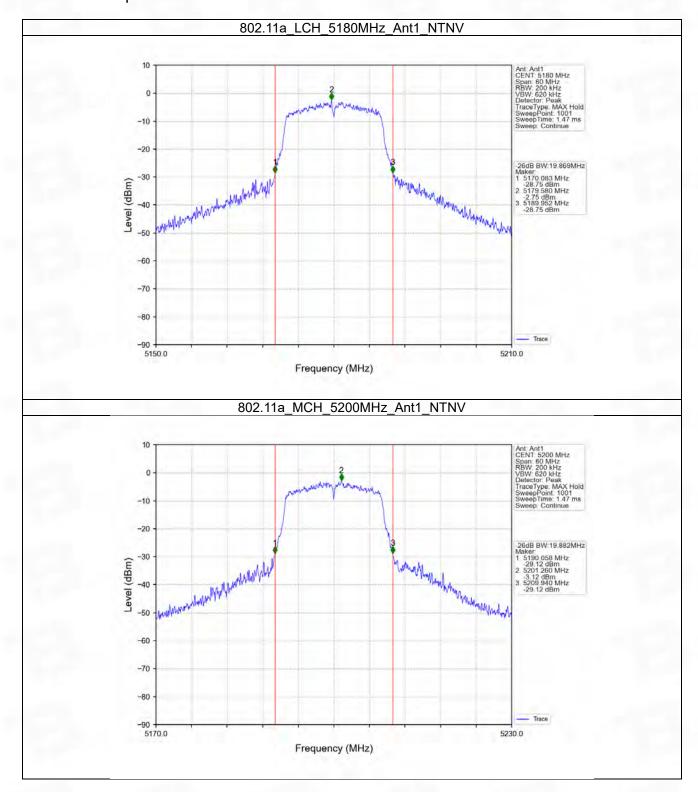




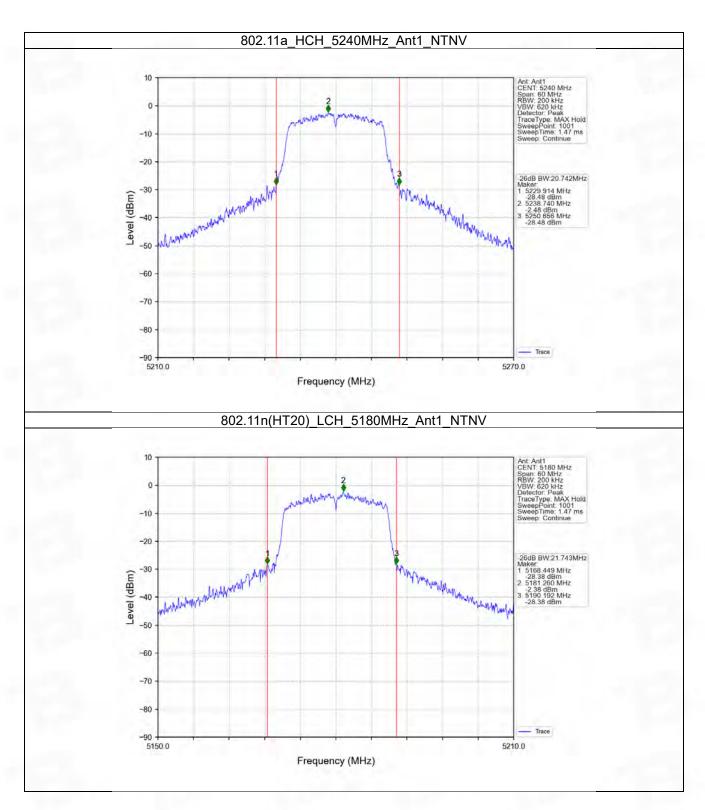




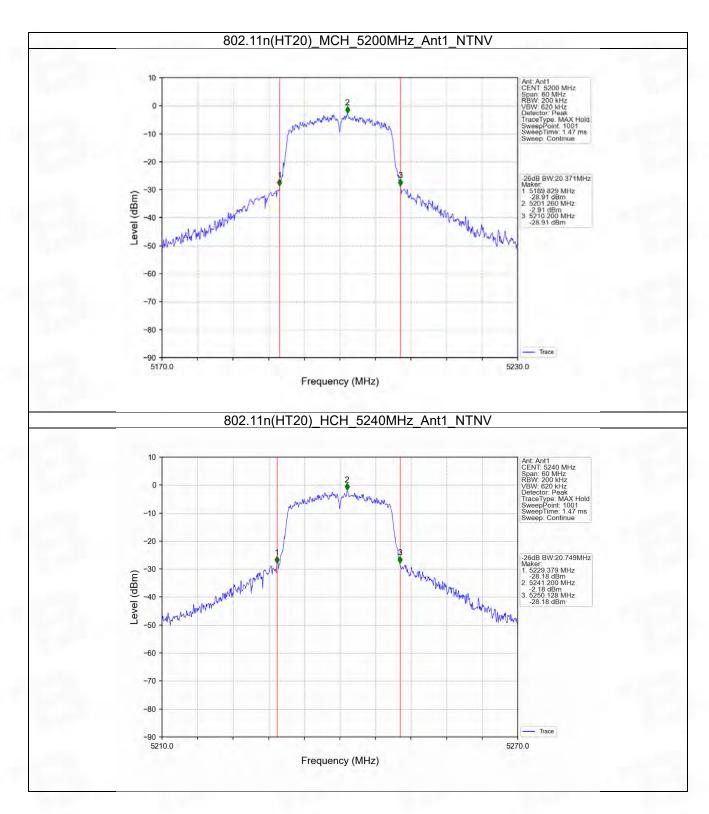




# 2.3 26dB BW

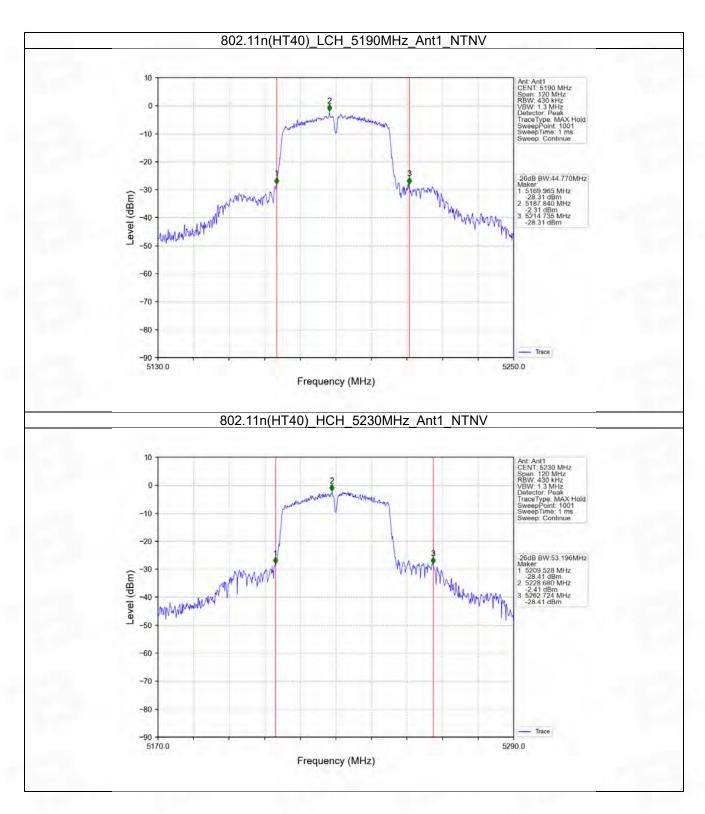
## 2.3.1 Test Result


| Mode                | TX<br>Type | Frequency<br>(MHz) | ANT | 26dB Bandwidth (MHz) |       | ) /li 4 |
|---------------------|------------|--------------------|-----|----------------------|-------|---------|
|                     |            |                    |     | Result               | Limit | Verdict |
| 802.11a             | SISO       | 5180               | 1   | 19.869               | 1     | Pass    |
|                     |            | 5200               | 1   | 19.882               | 1     | Pass    |
|                     |            | 5240               | 1   | 20.742               | 1     | Pass    |
| 000 11-             | SISO       | 5180               | 1   | 21.743               | 1     | Pass    |
| 802.11n             |            | 5200               | 1   | 20.371               | 1     | Pass    |
| (HT20)              |            | 5240               | 1   | 20.749               | 1     | Pass    |
| 802.11n             | CICO       | 5190               | 1   | 44.770               | 1     | Pass    |
| (HT40)              | SISO       | 5230               | 1   | 53.196               | 1     | Pass    |
| 000 11              | SISO       | 5180               | 1   | 20.176               | 1     | Pass    |
| 802.11ac            |            | 5200               | 1   | 20.119               | 1     | Pass    |
| (VHT20)             |            | 5240               | 1   | 20.524               | 1     | Pass    |
| 802.11ac            | SISO       | 5190               | 1   | 24.426               | 1     | Pass    |
| (VHT40)             |            | 5230               | 1   | 40.561               | 1     | Pass    |
| 802.11ac<br>(VHT80) | SISO       | 5210               | 1   | 104.794              | 1     | Pass    |

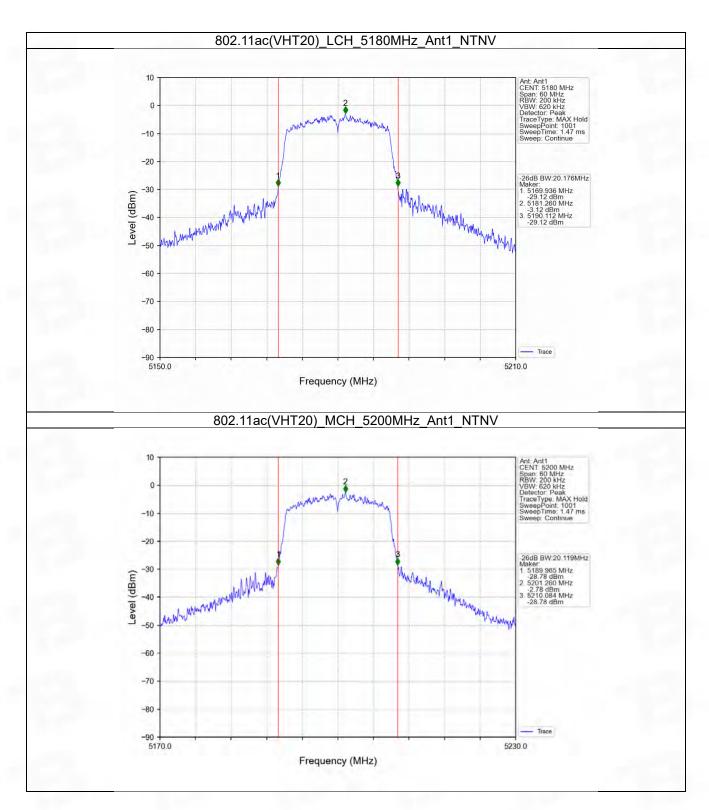



### 2.3.2 Test Graph

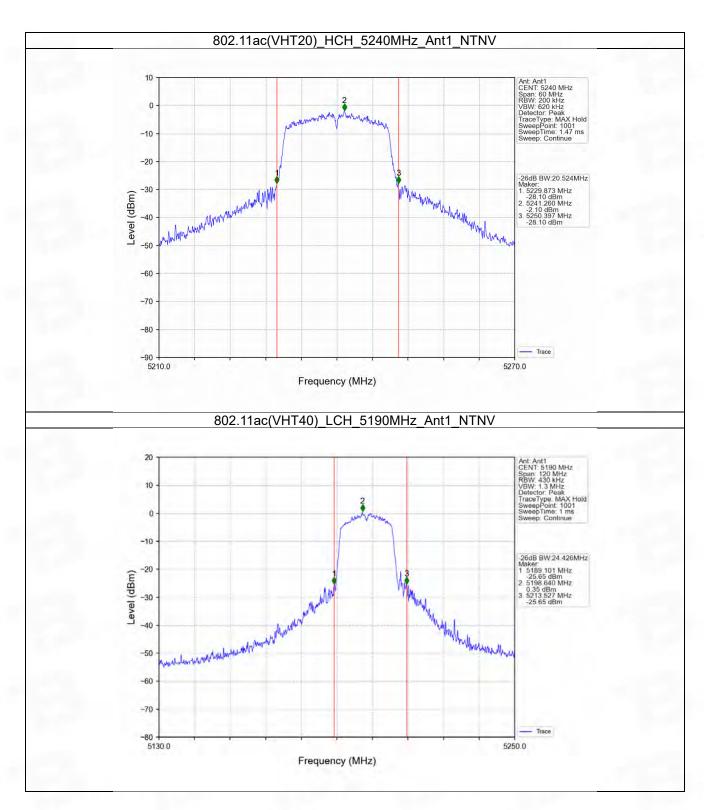




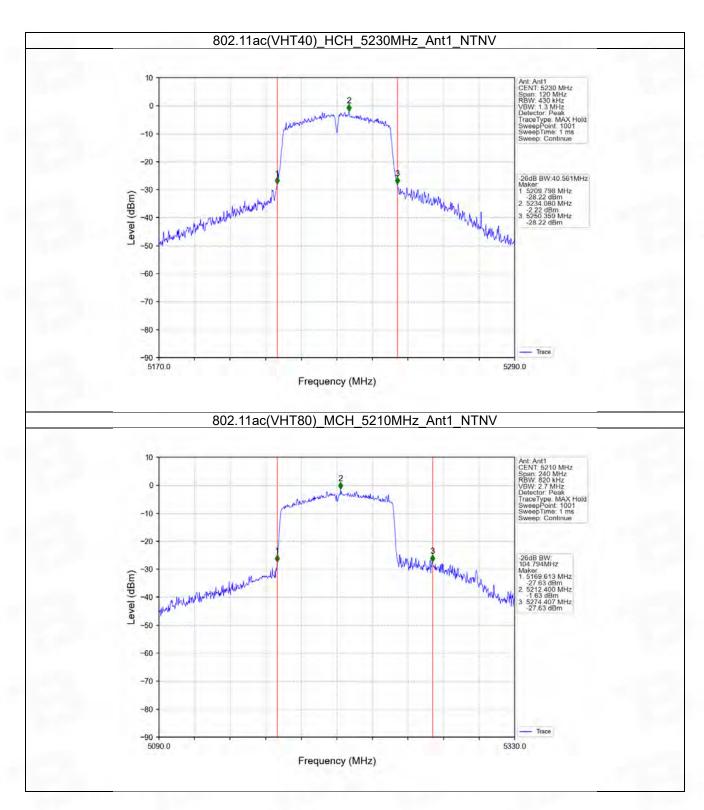


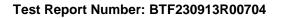




















# 3. Maximum Conducted Output Power

## 3.1 Power

#### 3.1.1 Test Result

| Mode                | TX   | Frequency | Maximum Average Condu | \/a malic + |         |
|---------------------|------|-----------|-----------------------|-------------|---------|
|                     | Туре | (MHz)     | ANT1                  | Limit       | Verdict |
| 802.11a             | SISO | 5180      | 6.07                  | <=23.98     | Pass    |
|                     |      | 5200      | 6.21                  | <=23.98     | Pass    |
|                     |      | 5240      | 7.26                  | <=23.98     | Pass    |
|                     |      | 5745      | 9.95                  | <=30        | Pass    |
|                     |      | 5785      | 10.69                 | <=30        | Pass    |
|                     |      | 5825      | 10.80                 | <=30        | Pass    |
| 802.11n<br>(HT20)   | SISO | 5180      | 6.76                  | <=23.98     | Pass    |
|                     |      | 5200      | 6.16                  | <=23.98     | Pass    |
|                     |      | 5240      | 7.11                  | <=23.98     | Pass    |
|                     |      | 5745      | 9.10                  | <=30        | Pass    |
|                     |      | 5785      | 9.41                  | <=30        | Pass    |
|                     |      | 5825      | 10.25                 | <=30        | Pass    |
| 802.11n<br>(HT40)   | SISO | 5190      | 6.13                  | <=23.98     | Pass    |
|                     |      | 5230      | 6.83                  | <=23.98     | Pass    |
|                     |      | 5755      | 9.07                  | <=30        | Pass    |
|                     |      | 5795      | 9.45                  | <=30        | Pass    |
|                     | SISO | 5180      | 5.95                  | <=23.98     | Pass    |
|                     |      | 5200      | 6.33                  | <=23.98     | Pass    |
| 802.11ac<br>(VHT20) |      | 5240      | 7.12                  | <=23.98     | Pass    |
|                     |      | 5745      | 7.41                  | <=30        | Pass    |
|                     |      | 5785      | 7.10                  | <=30        | Pass    |
|                     |      | 5825      | 7.76                  | <=30        | Pass    |
| 802.11ac<br>(VHT40) | SISO | 5190      | 2.97                  | <=23.98     | Pass    |
|                     |      | 5230      | 6.79                  | <=23.98     | Pass    |
|                     |      | 5755      | 7.23                  | <=30        | Pass    |
|                     |      | 5795      | 7.86                  | <=30        | Pass    |
| 802.11ac<br>(VHT80) | SISO | 5210      | 6.99                  | <=23.98     | Pass    |
|                     |      | 5775      | 8.26                  | <=30        | Pass    |