

FCC LISTED, REGISTRATION NUMBER: 720267

ISED LISTED REGISTRATION NUMBER 4621A-2

Informe de ensayo nº: Test report No:

NIE: 52641RRF.006

Partial test report USA FCC Part 15.247, 15.209 CANADA RSS-247, RSS-Gen

Radio Frequency Devices. Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz.

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

General Requirements and Information for the Certification of Radio Apparatus.

Identificación del objeto ensayado: Identification of item tested	Vibrating Wire sensor with EU and FCC radio
Marca: Trademark	Loadsensing G6
Modelo y/o referencia tipo Model and /or type reference	LS-G6-VW-1M
Otra identificación del producto: Other identification of the product	FCC ID: 2AHN4-LS-G6-VW-1M IC: 21260-LSG6VW1M
Final HW version:	1M
Final SW version:	2.23
Características: Features	LoRa radio, Channel Hopping
Fabricante: Manufacturer	WORLDSENSING SL c/Viriat, 47, Edificio Numancia 1, 7th floor, 08014 Barcelona, SPAIN
Método de ensayo solicitado, norma: Test method requested, standard	USA FCC Part 15.247 10-1-17 Edition: Operation within the bands 902 - 928 MHz, 2400 -2483.5 MHz, and 5725 - 5850 MHz.
	USA FCC Part 15.209 10-1-17 Edition: Radiated emission limits; general requirements.
	CANADA RSS-247 Issue 2 (February 2017).
	CANADA RSS-Gen Issue 4 (November 2014). -FCC 15.247 Subclause (d) / RSS-247 Clause 5.5. Emission limitations radiated (Transmitter)
	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 558074 D01 DTS Meas Guidance v04 dated 05/04/2017.
	ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.
Aprobado por (nombre / cargo y firma) Approved by (name / position & signature)	A. Llamas RF Lab. Manager
Fecha de realización: Date of issue	2018-03-12

Formato de informe No.....: Report template No FDT08_20

Index

Competences and guarantees	4
General conditions	4
Uncertainty	4
Usage of samples	
Test sample description	5
Identification of the client	
Testing period	5
Environmental conditions	5
Remarks and comments	6
Testing verdicts	7
Appendix A – Test result	8

Competences and guarantees

DEKRA Testing and Certification is a testing laboratory accredited by the National Accreditation Body (ENAC - Entidad Nacional de Acreditación), to perform the tests indicated in the Certificate No. 51/LE 147.

DEKRA Testing and Certification is a laboratory with a measurement facility in compliance with the requirements of Section 2.948 of the FCC rules and has been added to the list of facilities whose measurements data will be accepted in conjuction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Registration Number: 720267.

DEKRA Testing and Certification is a laboratory with a measurement site in compliance with the requirements of RSS 212, Issue 1 (Provisional) and has been added to the list of filed sites of the Canadian Certification and Engineering Bureau. Reference File Number: ISED 4621A-2.

In order to assure the traceability to other national and international laboratories, DEKRA Testing and Certification has a calibration and maintenance program for its measurement equipment.

DEKRA Testing and Certification guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at DEKRA Testing and Certification at the time of performance of the test.

DEKRA Testing and Certification is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA Testing and Certification.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA Testing and Certification.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA Testing and Certification and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the DEKRA Testing and Certification.internal document PODT000.

Usage of samples

Samples undergoing test have been selected by: the client

Sample S/01 is composed of the following elements:

Control Nº	Description	Model	Serial N°	Date of reception
52641/045	Vibrating Wire sensor	LS-G6-VW-1M	6	2017-09-12
52641/041	Antenna Type N			2017-06-06

1. Sample S/01 has undergone following test(s).

All tests indicated in appendix A.

Test sample description

The test sample consist of a sensor which is capable of measure changes in pressure by using a vibrating wire.

Identification of the client

WORLDSENSING SL c/Viriat, 47, Edificio Numancia 1, 7th floor, 08014 Barcelona, SPAIN.

Testing period

The performed test started on 2017-09-22 and finished on the same day. The tests have been performed at DEKRA Testing and Certification.

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 20 % Max. = 75 %
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	<10

In the semianechoic chamber, the following limits were not exceeded during the test.

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 20 % Max. = 75 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar
Shielding effectiveness	>100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	<1Ω
Normal site attenuation (NSA)	$< \pm 4$ dB at 10 m distance between item under test and receiver antenna, (30 MHz to 1000 MHz)
Field homogeneity	More than 75% of illuminated surface is between 0 and 6 dB (26 MHz to 1000 MHz).

Remarks and comments

1: The tests have been performed by the technical personnel: Pedro Parada Luna and Carolina Postigo Martín.

- 2: Test not requested by the client.
- 3: Used instrumentation:

Radiated Measurements

		Last Cal. date	Cal. due date
1.	Semianechoic Absorber Lined Chamber ETS FACT3 200STP	N.A.	N.A.
2.	BiconicalLog antenna ETS LINDGREN 3142E	2015/06	2018/06
3.	Multi Device Controller EMCO 2090	N.A.	N.A.
4.	Double-ridge Guide Horn antenna 1-18 GHz SCHWARZBECK BBHA 9120 D	2016/11	2019/11
5.	EMI Test Receiver R&S ESU 40	2016/03	2018/03
6.	Spectrum analyser Rohde & Schwarz FSW50	2015/12	2017/12
7.	RF pre-amplifier 20 MHz-7 GHz PAM-0207	2016/09	2017/09
8.	RF pre-amplifier 1-18 GHz Bonn Elektronik BLMA 0118-1M	2016/02	2018/02

Testing verdicts

Not applicable:	N/A
Pass:	Р
Fail:	F
Not measured:	N/M

FCC PART 15 PARAGRAPH / RSS-247			VERDICT		
		NA	Р	F	NM
FCC 15.247 Subclause (a) (1) / RSS-247 Clause 5.1 (b)	20 dB Bandwidth and Carrier frequency separation				NM ²
FCC 15.247 Subclause (a)(1)(iii) / RSS-247 Clause 5.1 (c)	Number of hopping channels	NA			
FCC 15.247 Subclause (f)/ RSS-247 Clause 5.3 (a)	Time of occupancy (Dwell Time)				NM ²
FCC 15.247 Subclause (b) / RSS-247 Clause 5.4 (a)	Maximum peak output power and antenna gain				NM ²
FCC 15.247 Subclause (d) / RSS-247 Clause 5.5	Emission limitations conducted (Transmitter)				NM ²
FCC 15.247 Subclause (d) / RSS-247 Clause 5.5.	Band-edge emissions compliance (Transmitter)				NM ²
FCC 15.247 Subclause (f) / RSS-247 5.3. (b)	Power spectral density				NM ²
FCC 15.247 Subclause (d) / RSS-247 Clause 5.5	Emission limitations radiated (Transmitter)		Р		

2: See section "Remarks and comments".

Appendix A – Test result

INDEX

TEST CONDITIONS	
FCC Section 15.247 Subclause (d) / RSS-247 Clause 5.5 Emission limitations radiated (Transmitter)	

TEST CONDITIONS

Power supply (V):

 $V_{nominal} = 3.7 Vdc$

Type of power supply = DC voltage from internal battery.

Type of antenna = External attachable antenna.

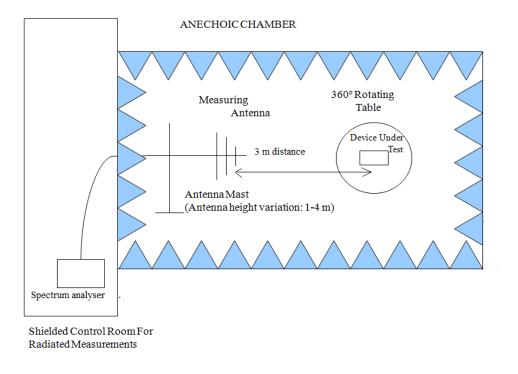
TEST FREQUENCIES: Lowest channel: 902.3 MHz Middle channel: 908.7 MHz Highest channel: 914.9 MHz

The equipment can operate as hybrid system using 8 hopping channels.

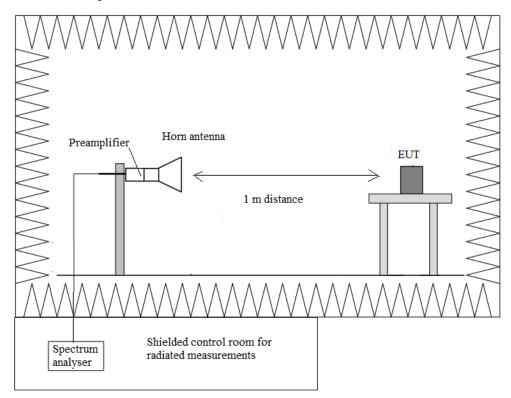
The sample was used to configure the EUT to transmit at a specified output power in all channels (Power Setting in DUT = 20).

RADIATED MEASUREMENTS

All radiated tests were performed in a semi-anechoic chamber. The measurement antenna is situated at a distance of 3 m for the frequency range 30 MHz-1000 MHz (30 MHz-1000 MHz Bilog antenna) and at a distance of 1m for the frequency range 1 GHz-10 GHz (1 GHz-18 GHz Double ridge horn antenna).


For radiated emissions in the range 1 GHz-10 GHz that is performed at a distance closer than the specified distance, an inverse proportionality factor of 20 dB per decade is used to normalize the measured data for determining compliance.

The equipment under test was set up on a non-conductive platform above the ground plane and the situation and orientation was varied to find the maximum radiated emission. It was also rotated 360° and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission.


Measurements were made in both horizontal and vertical planes of polarization.

Radiated measurements setup f < 1 GHz

Radiated measurements setup f > 1 GHz

FCC Section 15.247 Subclause (d) / RSS-247 Clause 5.5 Emission limitations radiated (Transmitter) SPECIFICATION

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)/RSS-Gen):

Frequency Range (MHz)	Field strength ($\mu V/m$)	Field strength (dBµV/m)	Measurement distance (m)
0.009-0.490	2400/F(kHz)	-	300
0.490-1.705	24000/F(kHz)	-	30
1.705 - 30.0	30	-	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
960 - 10000	500	54	3

The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

<u>RSS-247</u>. Attenuation below the general field strength limits specified in RSS-Gen is not required.

RESULTS:

The situation and orientation was varied to find the maximum radiated emission. It was also rotated 360° and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission.

Measurements were made in both horizontal and vertical planes of polarization.

All tests were performed in a semi-anechoic chamber at a distance of 3 m for the frequency range 30 MHz-1000 MHz and at distance of 1m for the frequency range 1 GHz-10 GHz.

The field strength is calculated by adding correction factor to the measured level from the spectrum analyzer. This correction factor includes antenna factor, cable loss and pre-amplifiers gain.

Frequency range 30 MHz-1000 MHz.

No spurious signals were found at less than 20 dB respect to the limit.

Frequency range 1 GHz-10 GHz

The results in the next tables show the maximum measured levels in the 1-10 GHz range (see next plots).

Spurious signals with peak levels above the average limit (54 $dB\mu V/m$ at 3 m) are measured with average detector for checking compliance with the average limit.

1. CHANNEL: LOWEST (902.3 MHz).

Spurious frequency (GHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
1.80445	Н	Peak	37.24	± 4.87
2.70685	V	Peak	50.15	± 4.87
4.51165	Н	Peak	42.28	± 4.87
5.41375	V	Peak	46.71	± 4.87
		Peak	67.12	± 4.87
6.31585 (*)	Н	AVG	65.85	± 4.87
		Peak	54.20	± 4.87
7.21795	Н	AVG	52.79	± 4.87
8.12095	V	Peak	46.28	± 4.87
9.92450	Н	Peak	48.64	± 4.87

(*): This spurious frequency is outside the restricted bands as defined in 15.205(a). The measured maximum carrier level at 3 m was 117.44 dBµV/m (Peak) so the spurious level is more than 20 dB below the carrier level.

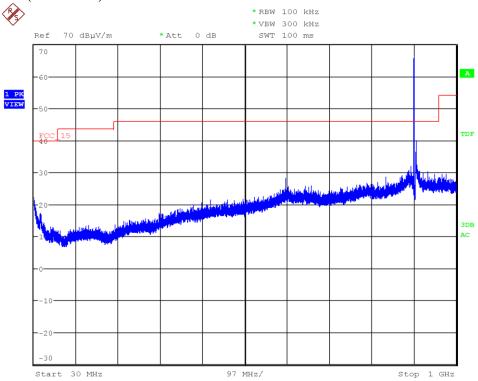
Spurious frequency (GHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
2.72605	V	Peak	49.67	± 4.87
4.54345	Н	Peak	42.80	± 4.87
5.45215	Н	Peak	46.80	± 4.87
		Peak	65.41	± 4.87
6.36115 (*)	Н	AVG	65.10	± 4.87
7.27015	Н	Peak	53.04	± 4.87
8.17795	Н	Peak	47.71	± 4.87
9.08755	Н	Peak	48.35	± 4.87

2. CHANNEL: MIDDLE (908.7 MHz).

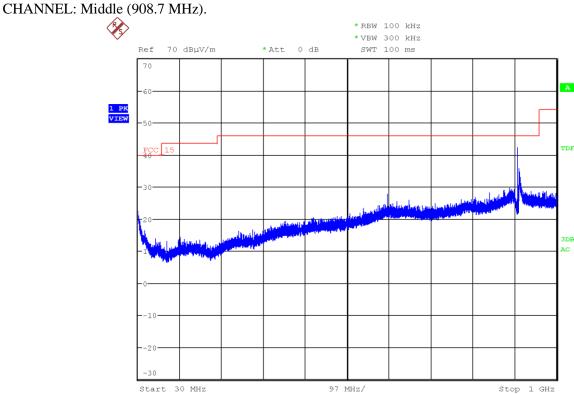
(*): This spurious frequency is outside the restricted bands as defined in 15.205(a). The measured maximum carrier level at 3 m was 116.15 dBµV/m (Peak) so the spurious level is more than 20 dB below the carrier level.

3. CHANNEL: HIGHEST (914.9 MHz).

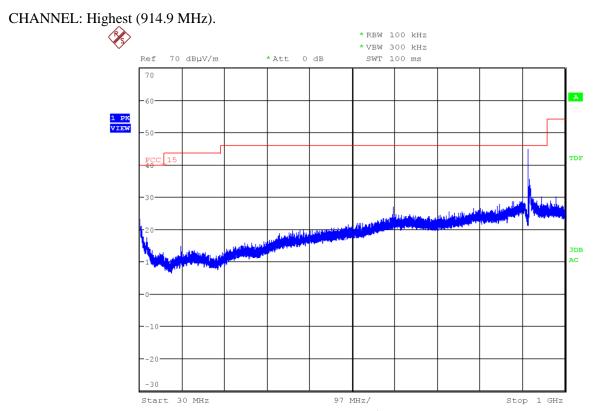
Spurious frequency (GHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
2.74465	Н	Peak	41.96	± 4.87
3.65965	Н	Peak	38.84	± 4.87
4.57465	Н	Peak	42.81	± 4.87
5.48905	Н	Peak	46.64	± 4.87
		Peak	64.15	± 4.87
6.40435 (*)	Н	AVG	63.82	± 4.87
7.31965	Н	Peak	53.89	± 4.87
8.23435	Н	Peak	48.52	± 4.87
9.14875	Н	Peak	46.85	± 4.87


(*): This spurious frequency is outside the restricted bands as defined in 15.205(a). The measured maximum carrier level at 3 m was 118.15 dBµV/m (Peak) so the spurious level is more than 20 dB below the carrier level.

Verdict: PASS



FREQUENCY RANGE 30 MHz-1000 MHz.



Note: The carrier was attenuated using a notch-filter. The peak above the limit is the carrier frequency.

Note: The carrier was attenuated using a notch-filter. The peak shown in the plot is the carrier frequency.

Note: The carrier was attenuated using a notch-filter. The peak shown in the plot is the carrier frequency.

FREQUENCY RANGE 1 GHz to 10 GHz.

CHANNEL: Lowest (902.3 MHz).

MultiView 88	Spectrum]						\bigtriangledown
Ref Level 80.0 Att TDF	Ó dBµV/m O dB ● SWT 1	● RBW s ● VBW	1 MHz 3 MHz Mode A	Auto Sweep				
1 Frequency Sw	reep						●1Pk View	∋2Av ViewLin
	1 74.000 dBµV/m							
70 dBµV/m								
60 dBµV/m								
50 dBµV/m	H2 54.000 dBµV/r	n						
40 dBµV/m					juli, telétine, profikité stadie			
30 dBµV/m	and the state of the second state of the	Lester de la plac		a sha a ta sa kita sa ta ta ƙa			 	يو <mark>موجودة وغير المراجع مع وغير المراجع الم</mark> راجع الم
		U. Logindreger	وسأو الرقار المراجع المراجع المناجع المراجع	and the second	ويتعالم المستلج المساقل والعراق			
20 dBµV/m								
10 dBµV/m								
0 dBµV/m								
-10 dBµV/m								
1.0 GHz			30000 pt	:S	90	0.0 MHz/		10.0 GHz

CHANNEL: Middle (908.7 MHz).

MultiView 8	Spectrum								
Ref Level 80. Att TDF	00 dBµV/m 0 dB • S'	● RBW WT 1s ● VBW	1 MHz 3 MHz Mode 4	Auto Sweep					
Frequency S	weep							●1Pk View	⊜2Av ViewLir
	-H1 74.000 dBµV/m-								
70 dBµV/m									
50 dBµV/m									
	H2 54.000	dBµV/m							
50 dBµV/m									
							a an Anna Madaa ata kati	In the second	
40 dBµV/m					and the same by the selection of the sel		and a second	Manda at walk	
			and and and an instantion				and the state of the state of the state	A REAL PROPERTY AND A REAL PROPERTY A REAL	ويفغرهما فالرج ومانية تعريقهما
30 dBµV/m	(herebeliever) herebeliever		a start of the second			ارع ميافيني البالان المانية المتعادين			
	a factor and the second se			والمراجعة والمتحالية والمتواجع والمحاود					
20 dBµV/m	No. of Concession, Name								
والمشتغليات والاستينانية									
10 dBµV/m									
) dBµV/m									
10 dBµV/m									
10 00000111									
L.0 GHz			30000 pt			0.0 MHz/			10.0 G

CHANNEL: Highest (914.9 MHz).

MultiView 88	Spectrum									
Ref Level 80.00 Att TDF	0 dBµV/m 0 dB 🖷 S Y	● RBW WT 1s ● VBW	1 MHz 3 MHz Mode A	Auto Sweep						
1 Frequency Sweep • 1Pk View © 2Av ViewLin										
	1 74.000 dBµV/m-									
60 dBµV/m										
50 dBµV/m	H2 54.000	dBµV/m						1		
40 dBµV/m					and a set of the second set of the second set of the second second second second second second second second se	and the second				
30 dBµV/m	La Maria de Maria	مرين المرينية والمرينية المرينية (المرينية) محمد المرينية محمد المرينية المرينية (مرينية)		and de lite, à conditation des lands			مرين المرين المان المرين ا	-	hunder	
20 dBµV/m		an an air an an an an air a	مەربەيتىن ئەربەيتىن ئەربىيە ئە	ويحصفوا فينت فالمحمد والمراجع والمحمد و	فيلله والمستعمل والمستعمل والمستر والم					
10 dBµV/m										
0 dBµV/m										
-10 dBµV/m										
1.0 GHz		I	30000 pt	S	90	0.0 MHz/		1	10.0 GHz	