

RF Test Report

For

Applicant Name:

TECNO MOBILE LIMITED

Address:

EUT Name:

Brand Name:

Model Number:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG Laptop Computer TECNO **K16AS** Series Model Number: Refer to section 2

Issued By

Company Name:

Address:

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: Test Standards:

BTF231027R00201 47 CFR Part 15.247

Test Conclusion: FCC ID: Test Date: Date of Issue:

Pass 2ADYY-K16AS 2023-09-25 to 2023-10-26 2023-10-27

Prepared By:

Date:

Approved By:

Date:

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 1 of 56

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-10-27	Original	1.1

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 56BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Table of Contents

1	INTR	ODUCTION	5
	1.1 1.2 1.3	Identification of Testing Laboratory Identification of the Responsible Testing Location Announcement	5
2		DUCT INFORMATION	
	2.1 2.2 2.3 2.4	Application Information Manufacturer Information Factory Information General Description of Equipment under Test (EUT)	6 6
	2.4	Technical Information	
3	SUM	MARY OF TEST RESULTS	
	3.1 3.2 3.3	Test Standards Uncertainty of Test Summary of Test Result	7
4	TEST	CONFIGURATION	8
	4.1 4.2 4.3	Test Equipment List Test Auxiliary Equipment Test Modes	12
5	EVA	UATION RESULTS (EVALUATION)	13
	5.1	Antenna requirement	13
		5.1.1 Conclusion:	
6	RAD	O SPECTRUM MATTER TEST RESULTS (RF)	
	6.1	Conducted Emission at AC power line	
		 6.1.1 E.U.T. Operation: 6.1.2 Test Setup Diagram: 6.1.3 Test Data: 	14
	6.2	Occupied Bandwidth	17
		 6.2.1 E.U.T. Operation: 6.2.2 Test Setup Diagram: 6.2.3 Test Data: 	17
	6.3	Maximum Conducted Output Power	18
		 6.3.1 E.U.T. Operation: 6.3.2 Test Setup Diagram: 6.3.3 Test Data: 	19
	6.4	Power Spectral Density	
		 6.4.1 E.U.T. Operation: 6.4.2 Test Setup Diagram: 6.4.3 Test Data: 	20
	6.5	Emissions in non-restricted frequency bands	
		 6.5.1 E.U.T. Operation: 6.5.2 Test Setup Diagram: 6.5.3 Test Data: 	22 22
	6.6	Band edge emissions (Radiated)	
		6.6.1 E.U.T. Operation: 6.6.2 Test Data:	24
	6.7	Emissions in restricted frequency bands (below 1GHz)	
		6.7.1 E.U.T. Operation:	25

	6.7.2	Test Data:	
6.8	Emiss	sions in restricted frequency bands (above 1GHz)	
	6.8.1	E.U.T. Operation:	
		Test Data:	
APPENDIX			

1 Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China		
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	
FCC Registration Number: 518915		
Designation Number:	CN1330	

1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 **Product Information**

2.1 Application Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.2 Manufacturer Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.3 Factory Information

	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Company Name:	Dongguan Bmorn Technology Co., LTD.
Address:	101,Building 24,Waijing Industrial Park,Fumin Community,Fucheng Street,Longhua District,Shenzhen City,P.R.China 101Room,6No. Huanzhuli Industrial Road, Changping Town, Dongguan City, Guangdong

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Laptop Computer
Test Model Number:	K16AS
Series Model Number:	N/A
Software Version:	Windows 11
Hardware Version:	V2.2

2.5 Technical Information

Power Supply:	Rechargeable Li-ion Polymer Battery: K16 Rated Voltage: 11.55V Rated Capacity: 6060mAh Rated nergy: 70Wh Limited Charge Voltage: 13.2V
Power Adaptor:	Adapter1: RYG910B200325VU Input: 100-240V~50/60Hz 2.0A Output: 20.0V3.25A Adapter2: GA20032U Input: 100-240V~50/60Hz 1.8A Output: 20.0V3.25A 65W
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	Integral Antenna
Antenna Gain [#] :	4.3dBi

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards: 47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB
The following measurement uncertainty levels have been estimated for tests	s performed on the EUT as
specified in CISPR 16-4-2. This uncertainty represents an expanded uncerta	ainty expressed at approximately

3.3 Summary of Test Result

the 95% confidence level using a coverage factor of k=2.

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15.247	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass

Test Configuration 4

Test Equipment List 4.1

Conducted Emission at AC power line					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23

Occupied Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Maximum Conducted	Output Power				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Power Spectral Densi	ty				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 8 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 8 of 56

RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Emissions in non-res	tricted frequency b	ands			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Band edge emissions (Radiated)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 9 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 9 of 56

POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Emissions in restricte	ed frequency band	s (below 1GHz)			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Emissions in restricted frequency bands (above 1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 10 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 10 of 56

POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
est Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 90.56%) with Fully-charged battery.

plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

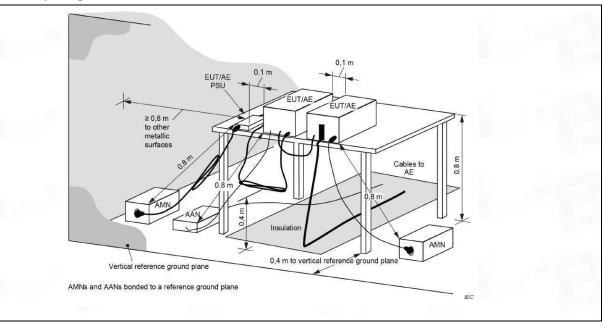
Test Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

BT Antenna

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 13 of 56 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Radio Spectrum Matter Test Results (RF) 6

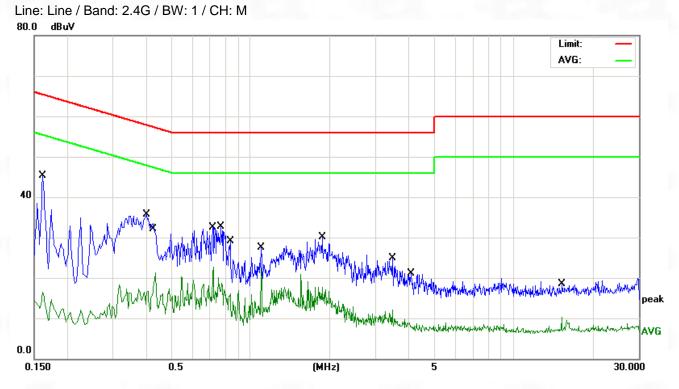

Conducted Emission at AC power line 6.1

	Except as shown in paragraphs (b) that is designed to be connected t					
Test Requirement:	frequency voltage that is conducted or frequencies, within the band 15 the following table, as measured u stabilization network (LISN).	ed back onto the AC pow 0 kHz to 30 MHz, shall	wer line on any frequency not exceed the limits in			
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line					
	conducted emissions from unlicensed wireless devices					
	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
Test Limit	0.15-0.5	66 to 56*	56 to 46*			
Test Limit:	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of t	he frequency.				

6.1.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.2 °C	
Humidity:	50.5 %	
Atmospheric Pressure:	1010 mbar	

6.1.2 Test Setup Diagram:



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 14 of 56

6.1.3 Test Data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1620	34.91	10.45	45.36	65.36	-20.00	QP
2		0.4020	25.17	10.50	35.67	57.81	-22.14	QP
3		0.4340	10.90	10.50	21.40	47.18	-25.78	AVG
4		0.7220	12.27	10.53	22.80	46.00	-23.20	AVG
5		0.7740	22.23	10.54	32.77	56.00	-23.23	QP
6		0.8380	18.59	10.54	29.13	56.00	-26.87	QP
7		1.0980	12.00	10.57	22.57	46.00	-23.43	AVG
8		1.8740	19.38	10.69	30.07	56.00	-25.93	QP
9		1.8740	7.07	10.69	17.76	46.00	-28.24	AVG
10		3.4540	14.26	10.72	24.98	56.00	-31.02	QP
11		4.0340	-1.75	10.73	8.98	46.00	-37.02	AVG
12		15.2580	-0.80	11.19	10.39	50.00	-39.61	AVG

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

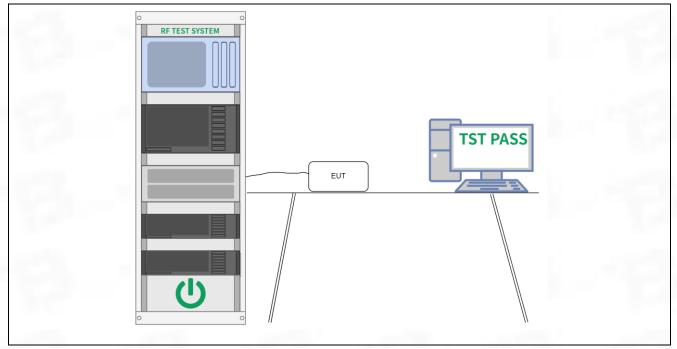
BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

						Limit: AVG:	_
×	X X X X X						
MARY	A WAYNAPP	NHIN TUNIN	WAY AND AND MAN	handlesselverstand	Western .	X	×
Munna	a parta parta and a parta p	WWWW AMANUMAN	Ning Mathenality and the	1777710101 · · · · · · · · · · · · · · · · ·	- Margan and	and a second and a second second	Muthington A
						anatana Manata	

Line: Neutral / Band: 2.4G / BW: 1 / CH: M

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1700	29.05	10.45	39.50	64.96	-25.46	QP
2		0.3140	7.68	10.48	18.16	49.86	-31.70	AVG
3	*	0.3339	29.72	10.48	40.20	59.35	-19.15	QP
4		0.4340	11.28	10.50	21.78	47.18	-25.40	AVG
5		0.7780	24.03	10.54	34.57	56.00	-21.43	QP
6		1.0980	11.45	10.57	22.02	46.00	-23.98	AVG
7		1.5580	11.02	10.64	21.66	46.00	-24.34	AVG
8		2.1300	15.70	10.71	26.41	56.00	-29.59	QP
9		2.5100	0.38	10.72	11.10	46.00	-34.90	AVG
10		10.4540	9.93	10.86	20.79	60.00	-39.21	QP
11		15.2420	0.20	11.19	11.39	50.00	-38.61	AVG
12		29.3100	8.56	11.20	19.76	60.00	-40.24	QP
-								

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 16 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


6.2 Occupied Bandwidth

Test Requirement:	Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	DTS bandwidth
Test Limit:	Section (a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW >= [3 x RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

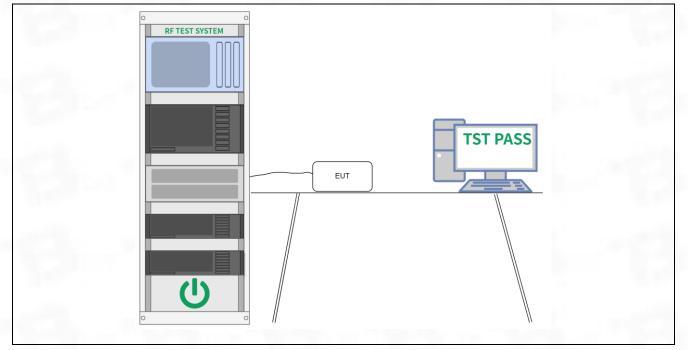
6.2.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.8 °C	
Humidity:	49.9 %	
Atmospheric Pressure:	1010 mbar	

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Please Refer to Appendix for Details.


6.3 Maximum Conducted Output Power

Test Requirement:	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	Maximum peak conducted output power
Test Limit:	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power
6.3.1 E.U.T. Operation:	

Operating Environment:	
Temperature:	25.8 °C
Humidity:	49.9 %
Atmospheric Pressure:	1010 mbar

6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.

6.4 Power Spectral Density

Test Requirement:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	Maximum power spectral density level in the fundamental emission
Test Limit:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

6.4.1 E.U.T. Operation:

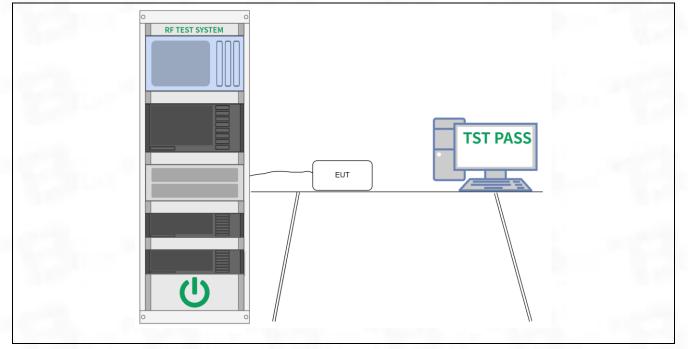
Operating Environment:	
Temperature:	25.8 °C
Humidity:	49.9 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Please Refer to Appendix for Details.

6.5 Emissions in non-restricted frequency bands


Test Requirement:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	Emissions in nonrestricted frequency bands
Test Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

6.5.1 E.U.T. Operation:

Operating Environment:			
Temperature:	25.8 °C		
Humidity:	49.9 %		
Atmospheric Pressure:	1010 mbar		

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).						
Test Method:	Radiated emissions test	Radiated emissions tests					
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
Test Limit:	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.						
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4	and the second sec				
6.6.1 E.U.T. Operation			harden and strange				
-							

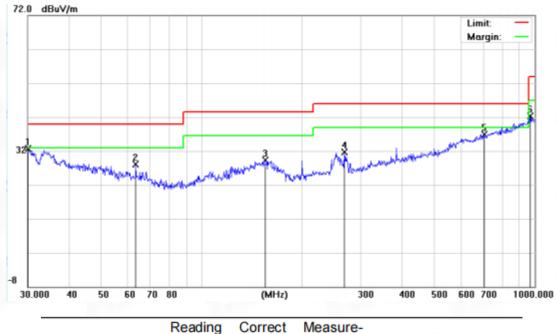
Operating Environment:	
Temperature:	22.1 °C
Humidity:	46.3 %
Atmospheric Pressure:	1010 mbar

6.6.2 Test Data:

Test result for GFSK Mode (the worst case)

Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Cha	nnel			
2390	68.21	-8.73	59.48	74	-14.52	Н	PK
2390	51.82	-8.73	43.09	54	-10.91	Н	AV
2390	66.87	-8.73	58.14	74	-15.86	V	PK
2390	46.01	-8.73	37.28	54	-16.72	V	AV
			High Cha	Innel			
2483.5	68.30	-8.17	60.13	74	-13.87	Н	PK
2483.5	45.93	-8.17	37.76	54	-16.24	Н	AV
2483.5	65.51	-8.17	57.34	74	-16.66	V	PK
2483.5	45.97	-8.17	37.80	54	-16.20	V	AV

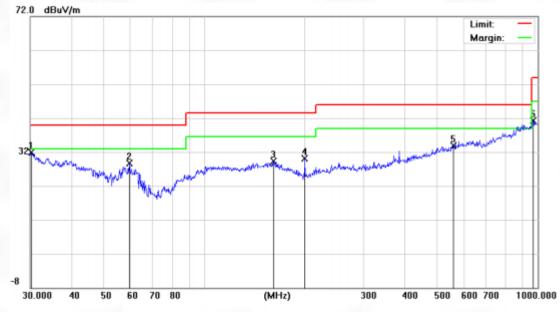
6.7 Emissions in restricted frequency bands (below 1GHz)


Test Requirement:	15.205(a), must also co	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).						
Test Method:	Radiated emissions test	Radiated emissions tests						
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
Test Limit:	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.							
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4						
6.7.1 E.U.T. Operation	n:							

Operating Environment:	
Temperature:	22.1 °C
Humidity:	46.3 %
Atmospheric Pressure:	1010 mbar

6.7.2 Test Data:

Note: All the mode have been tested, and only the worst case of 1M mode are in the report Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H



No.	Mk.	Freq.	Level	Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	30.0000	9.18	23.59	32.77	40.00	-7.23	QP
2		63.3132	5.13	22.97	28.10	40.00	-11.90	QP
3		155.3644	4.21	25.01	29.22	43.50	-14.28	QP
4		267.5455	8.48	23.14	31.62	46.00	-14.38	QP
5		706.6999	4.88	32.10	36.98	46.00	-9.02	QP
6		968.9338	5.74	36.57	42.31	54.00	-11.69	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 26 of 56

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Polarization: Vertical / Band: 2.4G / BW: 1 / CH: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	30.2111	8.32	23.59	31.91	40.00	-8.09	QP
2		59.4405	5.21	23.50	28.71	40.00	-11.29	QP
3		160.9089	4.56	24.80	29.36	43.50	-14.14	QP
4		199.9856	9.36	20.79	30.15	43.50	-13.35	QP
5		558.7302	4.67	29.31	33.98	46.00	-12.02	QP
6	1	968.9338	4.74	36.57	41.31	54.00	-12.69	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 27 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 27 of 56

6.8 Emissions in restricted frequency bands (above 1GHz)

Test Requirement:	15.205(a), must also co	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).						
Test Method:	Radiated emissions test	Radiated emissions tests						
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
Test Limit:	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	radiators operating unde 54-72 MHz, 76-88 MHz,	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.						
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4						
6.8.1 E.U.T. Operation	n:							

Operating Environment:	
Temperature:	22.1 °C
Humidity:	46.3 %
Atmospheric Pressure:	1010 mbar

6.8.2 Test Data:

Freq. (MHz)	Low channel: 2402MHz								
	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)			
	H/V	PK	AV	PK	AV	PK	AV		
4804	V	58.60	40.25	74	54	-15.40	-13.75		
7206	V	58.20	40.84	74	54	-15.80	-13.16		
4804	Н	59.86	39.39	74	54	-14.14	-14.61		
7206	Н	59.29	40.29	74	54	-14.71	-13.71		

Freq. (MHz)	Middle channel: 2440MHz								
	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)			
	H/V	PK	AV	PK	AV	PK	AV		
4880	V	58.86	40.68	74	54	-15.14	-13.32		
7320	V	59.09	39.78	74	54	-14.91	-14.22		
4880	Н	58.67	39.05	74	54	-15.33	-14.95		
7320	Н	58.10	39.10	74	54	-15.90	-14.90		

Free	High channel: 2480 MHz							
Freq.	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m(dBuV/m)		Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
4960	V	59.28	39.38	74	54	-14.72	-14.62	
7440	V	58.25	39.64	74	54	-15.75	-14.36	
4960	Н	59.72	40.76	74	54	-14.28	-13.24	
7440	Н	58.65	39.65	74	54	-15.35	-14.35	

Note:

1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.

2. Emission Level= Reading Level+Probe Factor +Cable Loss.

Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Appendix

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 30 of 56BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1. Bandwidth

1.1 BW

1.1.1 Test Result

BLE 1M

Test channel	6dB Emission Bandwidth (kHz)				
Test channel	BT LE mode	Limit	Result		
Lowest	0.631	>500k			
Middle	0.627	>500k	PASS		
Highest	0.634	>500k			

BLE 2M

Test shapped	6dB Emission Bandwidth (kHz)				
Test channel	BT LE mode	Limit	Result		
Lowest	1.113	>500k			
Middle	1.121	>500k	PASS		
Highest	1.128	>500k			

1.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

	BLE 2M	
	Lowest channel	
Spectrum Analyzer 1 Occupied BW		
KEYSIGHT Input: RF Input Z: 50 Ω Atten: 30 dB R L → Coupling: DC Corr CCorr Freq Ref: Int (S)	Trig: Free Run Center Freq: 2.40200000 GHz Gate: Off Avg Hold: 100/100 #IF Gain: Low Radio Std: None	
1 Graph v Scale/Div 10.0 dB	Ref LvI Offset 2.19 dB Ref Value 22.19 dBm	Mkr3 2.402550000 GHz -4.16 dBm
Log 12.2 2.19 -7.81 -7.81 -7.8 -7.8 -7.8 -7.8 -7.8		Martin Martin and Ma
47.8 -57.8 -67.8 -77	#Video BW 300.00 kHz	Span 2 MHz Sweep 1.33 ms (10001 pts)
Occupied Bandwidth	Measure Trace	Trace 1
1.8729 MHz Transmit Freq Error -6.320 kHz	Total Power % of OBW Power	10.8 dBm 99.00 %
x dB Bandwidth 1.113 MHz	x dB	-6.00 dB
Spectrum Analyzer 1	Middle channel	
Occupied BW T KEYSIGHT Input: RF Input Z: 50 Ω Atten: 30 dB	Trig: Free Run Center Freq: 2.440000000 GHz Gate: Off AvglHold: 200/200	
RL + Align: Auto Freq Ref: Int (S)	#IF Gain: Low Radio Std: None	
1 Graph ▼ Scale/Div 10.0 dB	Ref LvI Offset 2.22 dB Ref Value 22.22 dBm	Mkr3 2.440549000 GHz -1.68 dBm
Log 12.2 2.22 -7.78	<u></u> 1	3
-17.8 -27.8 -37.8		
-47.8 -57.8 -67.8		
Center 2.440000 GHz #Res BW 100.00 kHz	#Video BW 300.00 kHz	Span 2 MHz Sweep 1.33 ms (10001 pts)
2 Metrics V		
Occupied Bandwidth	Measure Trace	Trace 1
1.8624 MHz	Total Power	10.9 dBm
Transmit Freq Error-11.425 kHzx dB Bandwidth1.121 MHz	% of OBW Power x dB	99.00 % -6.00 dB

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 34 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

				Highest cha	annel					
Spectrum Anal Occupied BW	lyzer 1	• +								
	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	Atten: 30 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold: Radio Std:					
1 Graph Scale/Div 10.0	• 0 dB			Ref LvI Offset 2 Ref Value 22.29			Mk	r3 2.4805	57000 0 -2.39 d	
Log 12.3 2.29		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			m/1/	3			
-7.71								and the sale of th	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~
-37.7 -47.7 -57.7										
-67.7 Center 2.4800 #Res BW 100				#Video BW 300.	.00 kHz			Sweep 1.33	Span 2 ms (10001	
2 Metrics	V							Oncep 1.00		P13
	Occupied Ba	andwidth				Measure Trace	Trace 1			
	occupied Be	1.8756 MHz				Total Power		9.93 dBm		
	Transmit Fre x dB Bandwi		-6.963 kHz 1.128 MHz			% of OBW Power x dB		99.00 % -6.00 dB		
1 5	6	Oct 08, 2023 3:10:22 PM	\square							

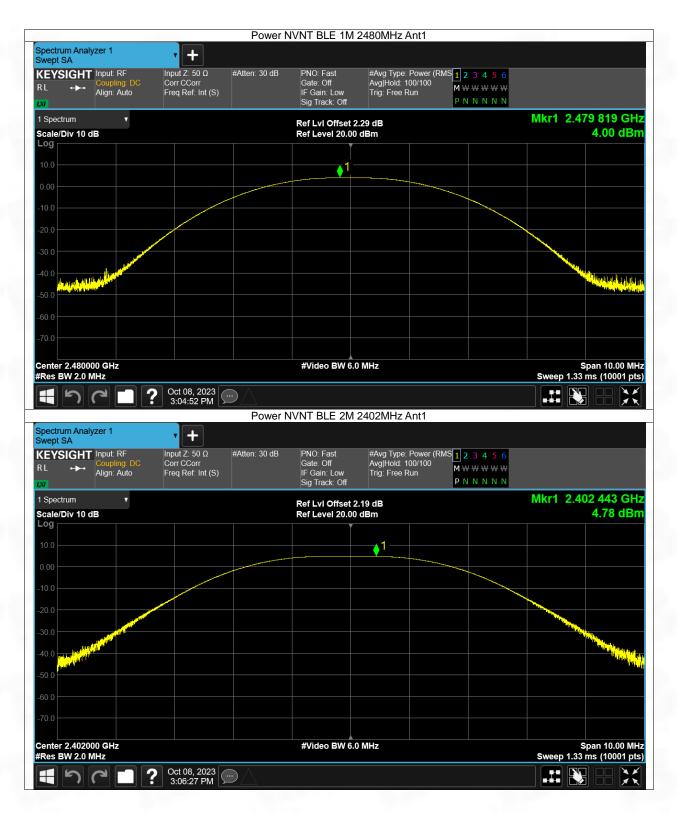
2. Maximum Conducted Output Power

2.1 Power

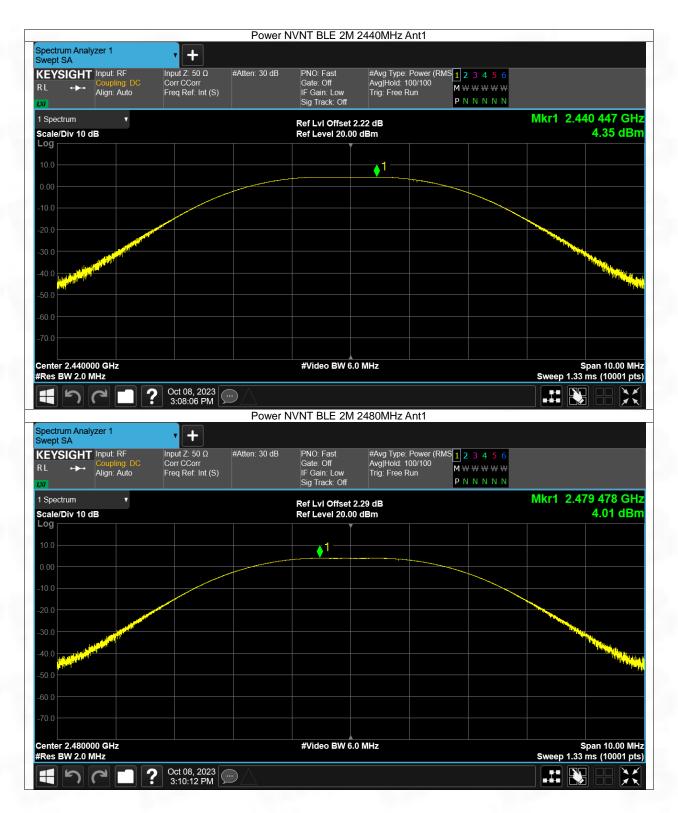
2.1.1 Test Result

BLE 1M						
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result			
Lowest	4.69	30.00	PASS			
Middle	4.33	30.00	PASS			
Highest	4	30.00	PASS			

BLE 2M						
Test channel Maximum Conducted Output Power (dBm) Limit (dBm) Result						
Lowest	4.78	30.00	PASS			
Middle	4.35	30.00	PASS			
Highest	4.01	30.00	PASS			



2.1.2 Test Graph



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

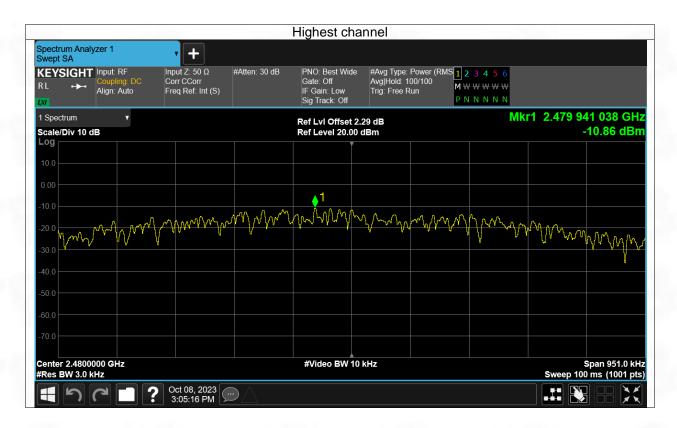
3. Maximum Power Spectral Density

3.1 PSD

3.1.1 Test Result

Test channel	Power Spectral Density (dBm/3kHz)		
	BLE 1M	Limit	Result
Lowest	-10.3	8 dBm/3kHz	
Middle	-10.52	8 dBm/3kHz	PASS
Highest	-10.86	8 dBm/3kHz	

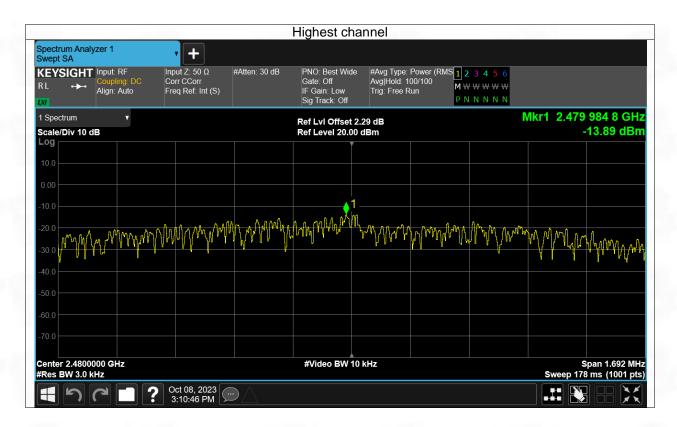
Test channel	Power Spectral Density (dBm/3kHz)		
	BLE 2M	Limit	Result
Lowest	-13.22	8 dBm/3kHz	
Middle	-13.7	8 dBm/3kHz	PASS
Highest	-13.89	8 dBm/3kHz	



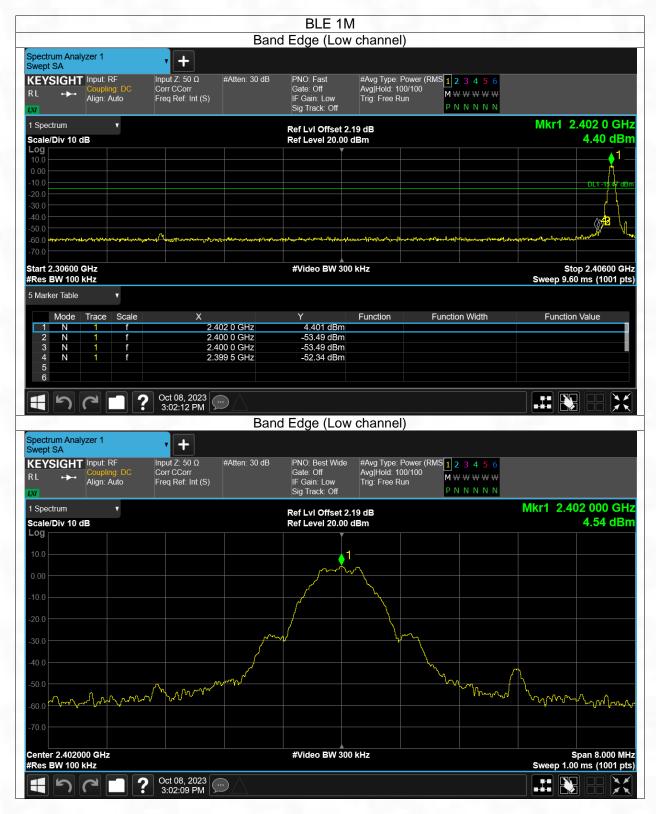
3.1.2 Test Graph



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

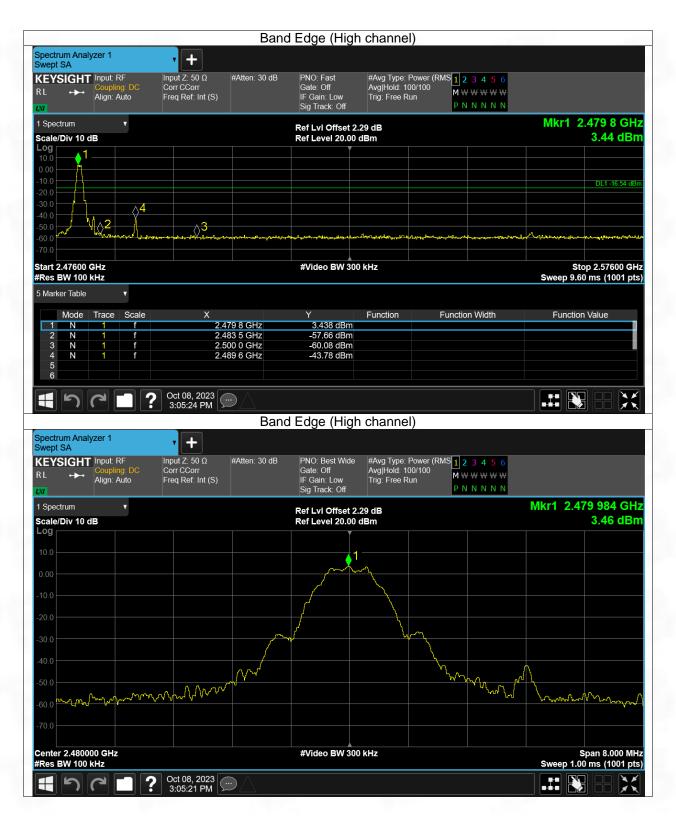


Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 44 of 56 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


4. Unwanted Emissions In Non-restricted Frequency Bands

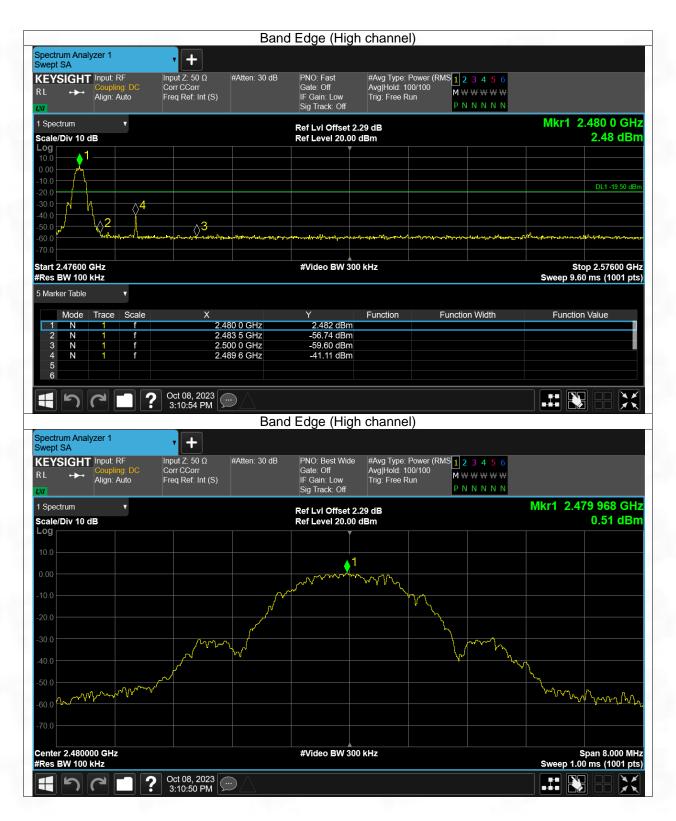
4.1.1Test Result(PASS)

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 45 of 56BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



4.1.2 Test Graph

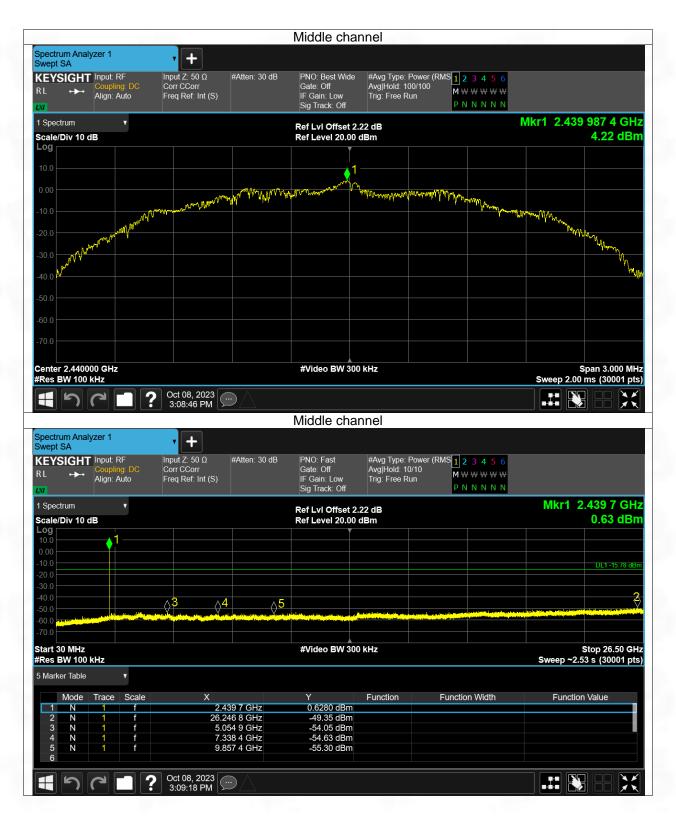
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.





Conducted RF Spurious Emission

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



Test Report Number: BTF231027R00201

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 56 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 56 of 56