

TEST REPORT FCC ID:QTG-ZKPI2N

Product Name: Bluetooth Keyboard

Trademark: ZAGG

Model Number: ZKB102PMN53

Prepared For: ZAGG Inc.

Address: 910 West Legacy Center Way, Midvale, Utah 84047, USA.

Manufacturer: ZAGG Inc.

Address: 910 West Legacy Center Way, Midvale, Utah 84047, USA.

Prepared By: Shenzhen BCTC Testing Co., Ltd.

BCTC Building & 1-2F, East of B Building, Pengzhou

Address: Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong

Street, Bao'an District, Shenzhen, China

Sample Received Date: Aug. 25, 2020

Sample tested Date: Aug. 25, 2020 to Aug. 31, 2020

Issue Date: Aug. 31, 2020

Report No.: BCTC2008002902E

Test Standards FCC Part15.247 ANSI C63.10-2013

Test Results PASS

Remark: This is Bluetooth BLE radio test report.

Compiled by: Reviewed by:

Willem Worng Zill You

Willem Wang Eric Yang

Approved by:

Report No.: BCTC2008002902E

Zero Zhou/Manager

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

TABLE OF CONTENT

Test F	Report Declaration P	'age
1.	VERSION	4
2.	TEST SUMMARY	5
3.	MEASUREMENT UNCERTAINTY	6
4.	PRODUCT INFORMATION AND TEST SETUP	
4.1	Product Information	7
4.2	Test Setup Configuration	7
4.3	Support Equipment	8
4.4	Channel List	8
4.5	Test Mode	8
4.6	table of parameters of text software setting	8
4.7	Copy of marking plate	
5.	TEST FACILITY AND TEST INSTRUMENT USED	10
5.1	Test Facility	10
5.2	Test Instrument Used	
6.	CONDUCTED EMISSIONS	12
6.1	Block Diagram Of Test Setup	12
6.2	Limit	12
6.3	Test procedure	12
6.4	EUT operating Conditions	12
6.5	Test Result	
7.	RADIATED EMISSIONS	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	EUT operating Conditions	
7.5	Test Result	
8.	RADIATED BAND EMISSION MEASUREMENT AND RESTRICTED BAND	
	DPERATION	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test procedure	
8.4	EUT operating Conditions	
8.5	Test Result	
9.	POWER SPECTRAL DENSITY TEST	
9.1	Block Diagram Of Test Setup	
9.2	Limit	
9.3	Test procedure	
9.4	EUT operating Conditions	
9.5	Test Result	
10.	BANDWIDTH TEST	
10.1	Block Diagram Of Test Setup	31

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC2008002902E

10.2	Limit	31
10.3	Test procedure	31
10.4	EUT operating Conditions	31
10.5	Test Result	32
11.	PEAK OUTPUT POWER TEST	36
11.1		
11.2	Limit	36
11.3	Test procedure	36
11.4	EUT operating Conditions	36
11.5	Test Result	37
12.	100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	38
12.1	Block Diagram Of Test Setup	38
12.2	Limit	38
12.3	Test procedure	38
12.4	EUT operating Conditions	38
12.5	Test Result	39
13.	ANTENNA REQUIREMENT	43
13.1	Limit	43
13.2	Test Result	43
14.	EUT PHOTOGRAPHS	44
15	FUT TEST SETUP PHOTOGRAPHS	4

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved
BCTC2008002902E	Aug. 31, 2020	Original	Valid

2. TEST SUMMARY

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted Emission	15.207	PASS
2	6dB Bandwidth	15.247 (a)(2)	PASS
3	Peak Output Power	15.247 (b)	PASS
4	Radiated Spurious Emission	15.247 (d), 15.205	PASS
5	Power Spectral Density	15.247 (e)	PASS
6	Restricted Band of Operation	15.205	PASS
7	Band Edge (Out of Band Emissions)	15.247(d)	PASS
8	Antenna Requirement	15.203	PASS

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
3	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
4	Conducted Adjacent channel power	U=1.38dB
5	Conducted output power uncertainty Above 1G	U=1.576dB
6	Conducted output power uncertainty below 1G	U=1.28dB
7	humidity uncertainty	U=5.3%
8	Temperature uncertainty	U=0.59°C

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s): ZKB102PMN53

Model Description: N/A

Bluetooth Version: BT 5.2

Hardware Version: V1.3

Software Version: V1.0

Operation Frequency: Bluetooth: 2402-2480MHz

Type of Modulation: Bluetooth: GFSK

Number Of Channel 40CH

Antenna installation: Bluetooth: PCB antenna

Antenna Gain: Bluetooth: 1.87dBi

Ratings: DC 3.7V from Battery

DC 5V from adapter

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

E-1⊬ EUT⊬

4.3 Support Equipment

no Capport Equipment						
No.	Device Type	Brand	Model	Series No.	Data Cable	Power Cord
E-1	Bluetooth Keyboard	ZAGG	ZKB102P MN53	N/A	EUT	E-1
E-2	Adapter	N/A	BCTC001	N/A	Auxiliary	E-2

Report No.: BCTC2008002902E

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	0.6M	DC cable unshielded

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

Sharmor Elot							
Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
01	2402	11	2422	21	2442		
02	2404	12	2424	22	2444		
03	2406	13	2426	23	2446		
~	٠	~	~	~	~		
09	2418	19	2438	39	2478		
10	2420	20	2440	40	2480		

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

For All Mode	Description	Modulation Type	
Mode 1	CH01		
Mode 2	CH20	GFSK	
Mode 3	CH40		
Mode 4	Link mode (Conducted emission and Radiated emission)		

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) Fully-charged battery is used during the test

4.6 table of parameters of text software setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Report No.: BCTC2008002902E

Test software Version	Pixart BLE Utility			
Frequency	2402 MHz	2440 MHz	2480 MHz	
Parameters	DEF	DEF	DEF	

4.7 Copy of marking plate

FC (© ROHS 0 PATENT PENDING FCC ID : QTG-ZKPI2N MIN : ZKB102PMN53 Input: 5VDC, 500mA Battery Capacity: 3.7VDC, 450mAh 101 1011JM Made in China

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

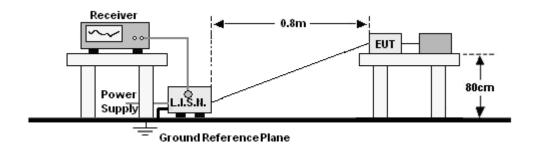
All measurement facilities used to collect the measurement data are located at BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850

IC Registered No.: 23583

5.2 Test Instrument Used

Conducted emissions Test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Receiver	R&S	ESR3	102075	Jun. 08, 2020	Jun. 07, 2021	
LISN	R&S	ENV216	101375	Jun. 04, 2020	Jun. 03, 2021	
ISN	HPX	ISN T800	S150900 1	Jun. 04, 2020	Jun. 03, 2021	
Software	Frad	EZ-EMC	EMC-CO N 3A1	\	\	



Radiated emissions Test (966 chamber) **Equipment** Manufacturer Model# Serial# Last Cal. Next Cal. 966 966 Room 966 ChengYu Jun. 06. 2020 Jun. 05, 2023 chamber Receiver R&S 102075 ESR3 Jun. 08, 2020 Jun. 07, 2021 R&S **ESRP** Jun. 08, 2020 Receiver 101154 Jun. 07, 2021 **Amplifier** Schwarzbeck **BBV9718** 9718-309 Jun. 04, 2020 Jun. 03, 2021 **Amplifier** Schwarzbeck BBV9744 9744-0037 Jun. 04, 2020 Jun. 03, 2021 TRILOG **VULB VULB9163** Broadband schwarzbeck Jun. 08, 2020 Jun. 07, 2021 9163 -942 Antenna SCHWARZBE **BBHA9120** Horn 1541 Jun. 10, 2020 Jun. 09, 2021 CK Antenna D Horn **SCHWARZBE** Antenna BBHA9170 822 Jun. 10, 2020 | Jun. 09, 2021 (18GHz-40 CK GHz) Amplifier TTA1840-3 (18GHz-40 MITEQ 2034381 Jun. 08, 2020 | Jun. 07, 2021 5-HG GHz) Loop **SCHWARZBE** FMZB1519 Antenna 014 Jun. 08, 2020 | Jun. 07, 2021 (9KHz-30M CK В Hz) RF cables1 9kHz-30M B1702988-(9kHz-30MH Huber+Suhnar Jun. 08, 2020 Jun. 07, 2021 Hz 8000 RF cables2 30MHz-1G (30MHz-1G Huber+Suhnar 1486150 Jun. 08, 2020 | Jun. 07, 2021 Hz Hz) RF cables3 1GHz-40G Huber+Suhnar (1GHz-40G 1607106 Jun. 08, 2020 Jun. 07, 2021 Hz Hz) Power Keysight E4419B \ Jun. 08, 2020 Jun. 07, 2021 Metter Power Keysight E9 300A \ Jun. 08, 2020 Jun. 07, 2021 Sensor (AV) Signal MY491000 Analyzer KEYSIGHT N9020A Jun. 04, 2020 Jun. 03, 2021 20kHz-26.5 60 GHz Spectrum Analyzer Agilent FSP40 100363 Jun. 08, 2020 Jun. 07, 2021 9kHz-40G Hz FA-03A2 Software Frad **EZ-EMC** \ \ RE

6. CONDUCTED EMISSIONS

6.1 Block Diagram Of Test Setup

6.2 Limit

FREQUENCY (MHz)	Limit (dBuV)		
FREQUENCT (MHZ)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Notes

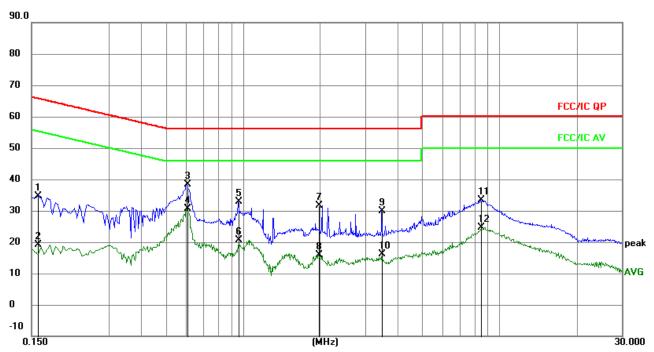
- 1. *Decreasing linearly with logarithm of frequency.
- 2. The lower limit shall apply at the transition frequencies.

6.3 Test procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

- a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

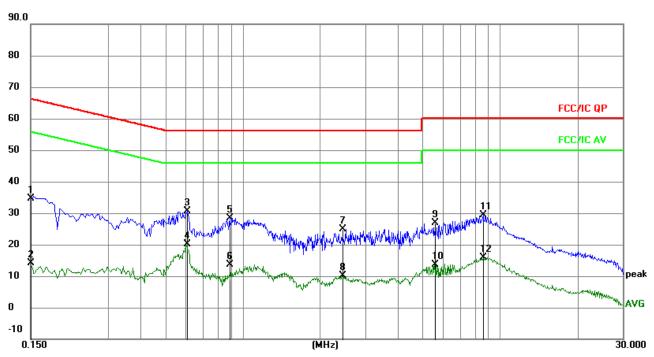
6.4 EUT operating Conditions


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 4

Report No.: BCTC2008002902E


Remark:

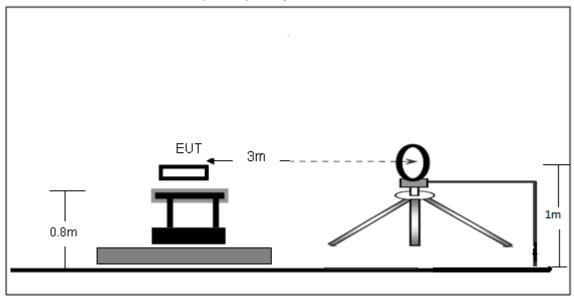
- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

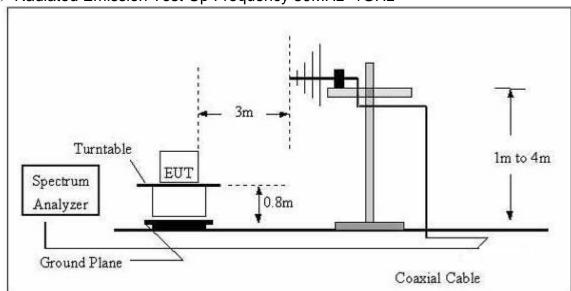
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBu∀	dBu∀	dB	Detector
1	0.1590	25.06	9.51	34.57	65.52	-30.95	QP
2	0.1590	9.62	9.51	19.13	55.52	-36.39	AVG
3	0.6044	28.47	9.98	38.45	56.00	-17.55	QP
4 *	0.6044	20.67	9.98	30.65	46.00	-15.35	AVG
5	0.9600	23.28	9.58	32.86	56.00	-23.14	QP
6	0.9600	11.12	9.58	20.70	46.00	-25.30	AVG
7	1.9724	22.08	9.59	31.67	56.00	-24.33	QP
8	1.9724	6.39	9.59	15.98	46.00	-30.02	AVG
9	3.4755	20.07	9.69	29.76	56.00	-26.24	QP
10	3.4755	6.50	9.69	16.19	46.00	-29.81	AVG
11	8.4795	23.66	9.71	33.37	60.00	-26.63	QP
12	8.4795	14.92	9.71	24.63	50.00	-25.37	AVG

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Z
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 4

Remark:

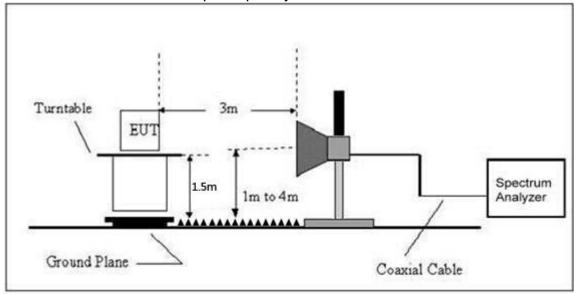
- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBu∨	dBu∀	dB	Detector
1	0.1500	25.17	9.52	34.69	66.00	-31.31	QP
2	0.1500	4.72	9.52	14.24	56.00	-41.76	AVG
3 *	0.6089	20.69	9.97	30.66	56.00	-25.34	QP
4	0.6089	10.22	9.97	20.19	46.00	-25.81	AVG
5	0.8924	18.84	9.60	28.44	56.00	-27.56	QP
6	0.8924	3.95	9.60	13.55	46.00	-32.45	AVG
7	2.4404	15.30	9.62	24.92	56.00	-31.08	QP
8	2.4404	0.47	9.62	10.09	46.00	-35.91	AVG
9	5.5680	17.17	9.78	26.95	60.00	-33.05	QP
10	5.5680	3.92	9.78	13.70	50.00	-36.30	AVG
11	8.6280	19.69	9.70	29.39	60.00	-30.61	QP
12	8.6280	6.16	9.70	15.86	50.00	-34.14	AVG


7. RADIATED EMISSIONS

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC2008002902E

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENC	Limit (dBuV/m) (at 3M)		
Y (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)	
Below 1.705	30	
1.705 – 108	1000	
108 – 500	2000	
500 – 1000	5000	
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower	

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting		
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average		

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise

the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Report No.: BCTC2008002902E

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Above 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

Below 30MHz

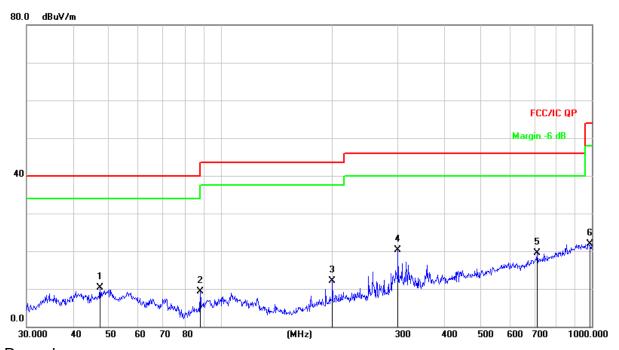
Report No.: BCTC2008002902E

Temperature:	26 ℃	Relative Humidtity:	24%
Pressure:	101 kPa	Test Voltage:	DC 3.7V
Test Mode:	Mode 4	Polarization:	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

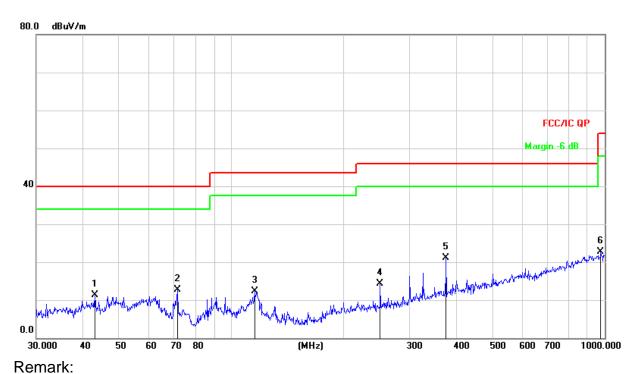
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidtity:	54%
Pressure:	101 kPa	Test Voltage:	DC 3.7V
Test Mode:	Mode 4	Polarization:	Horizontal



Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dB/m	dB	Detector
1		47.3255	25.21	-15.00	10.21	40.00	-29.79	QP
2		88.0329	27.93	-18.55	9.38	43.50	-34.12	QP
3	1	199.9856	28.36	-16.30	12.06	43.50	-31.44	QP
4	* 3	300.3672	33.92	-13.59	20.33	46.00	-25.67	QP
5	7	711.6734	24.40	-4.95	19.45	46.00	-26.55	QP
6	9	989.5355	22.82	-0.87	21.95	54.00	-32.05	QP

Temperature:	26 ℃	Relative Humidtity:	54%
Pressure:	101 kpa	Test Voltage:	DC 3.7V
Test Mode:	Mode 4	Polarization:	Vertical

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dB/m	dB	Detector
1		43.0505	26.61	-15.24	11.37	40.00	-28.63	QP
2		71.8320	31.24	-18.60	12.64	40.00	-27.36	QP
3	1	115.3205	29.52	-17.27	12.25	43.50	-31.25	QP
4	2	250.3012	29.45	-15.14	14.31	46.00	-31.69	QP
5	* 3	375.9385	32.68	-11.64	21.04	46.00	-24.96	QP
6	ć	975.7529	23.74	-0.96	22.78	54.00	-31.22	QP

Between 1GHz - 25GHz

Report No.: BCTC2008002902E

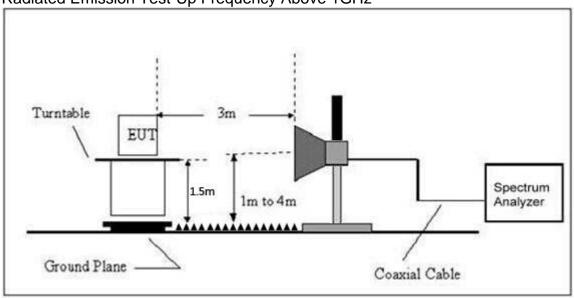
	GFSK(1Mbps)						
Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Low chan	nel	-		
V	4804.00	53.94	-0.43	53.51	74.00	-20.49	PK
V	4804.00	45.89	-0.43	45.46	54.00	-8.54	AV
V	7206.00	46.75	8.31	55.06	74.00	-18.94	PK
V	7206.00	36.70	8.31	45.01	54.00	-8.99	AV
Н	4804.00	52.73	-0.43	52.30	74.00	-21.70	PK
Н	4804.00	42.86	-0.43	42.43	54.00	-11.57	AV
Н	7206.00	44.14	8.31	52.45	74.00	-21.55	PK
Н	7206.00	36.89	8.31	45.20	54.00	-8.80	AV
	1		Middle cha		T		T
V	4880.00	50.52	-0.38	50.14	74.00	-23.86	PK
V	4880.00	43.69	-0.38	43.31	54.00	-10.69	AV
V	7320.00	39.91	8.83	48.74	74.00	-25.26	PK
V	7320.00	30.71	8.83	39.54	54.00	-14.46	AV
Н	4880.00	47.35	-0.38	46.97	74.00	-27.03	PK
Н	4880.00	37.26	-0.38	36.88	54.00	-17.12	AV
Н	7320.00	38.31	8.83	47.14	74.00	-26.86	PK
Н	7320.00	30.35	8.83	39.18	54.00	-14.82	AV
	1		High chan		T		
V	4960.00	53.36	-0.32	53.04	74.00	-20.96	PK
V	4960.00	44.94	-0.32	44.62	54.00	-9.38	AV
V	7440.00	47.15	9.35	56.50	74.00	-17.50	PK
V	7440.00	37.75	9.35	47.10	54.00	-6.90	AV
H	4960.00	51.27	-0.32	50.95	74.00	-23.05	PK
Н	4960.00	41.54	-0.32	41.22	54.00	-12.78	AV
Н	7440.00	46.03	9.35	55.38	74.00	-18.62	PK
Н	7440.00	38.97	9.35	48.32	54.00	-5.68	AV

Remark:

1.Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Over= Emission Level - Limit


- 2.If peak below the average limit, the average emission was no test.
- 3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB
- 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 5. This report only shows the worst case test data.

8. RADIATED BAND EMISSION MEASUREMENT AND RESTRICTED BANDS OF OPERATION

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENC	Limit (dBuV/m) (at 3M)		
Y (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Report No.: BCTC2008002902E

Above 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

	Polar (H/V)	Frequency (MHz)	Reading Level	Factor	Factor (dBuV/m)	Limits (dBuV/m)		Result
	(1117)	(**************************************	(dBuV/m)		PK	□PK	AV	
	Low Channel 2402MHz							
	Н	2390.00	57.28	-6.70	50.58	74.00	54.00	PASS
	Н	2400.00	49.73	-6.71	43.02	74.00	54.00	PASS
	V	2390.00	57.07	-6.70	50.37	74.00	54.00	PASS
GFSK	V	2400.00	48.92	-6.71	42.21	74.00	54.00	PASS
(2Mbps)			High	Channel 2	2480MHz			
	Н	2483.50	57.45	-6.79	50.66	74.00	54.00	PASS
	Н	2485.00	48.81	-6.81	42.00	74.00	54.00	PASS
	V	2483.50	55.56	-6.79	48.77	74.00	54.00	PASS
	V	2485.00	47.16	-6.81	40.35	74.00	54.00	PASS

Remark:

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Over= Emission Level - Limit

- 2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB
- 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 5. This report only shows the worst case test data.

9. POWER SPECTRAL DENSITY TEST

9.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

9.2 Limit

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

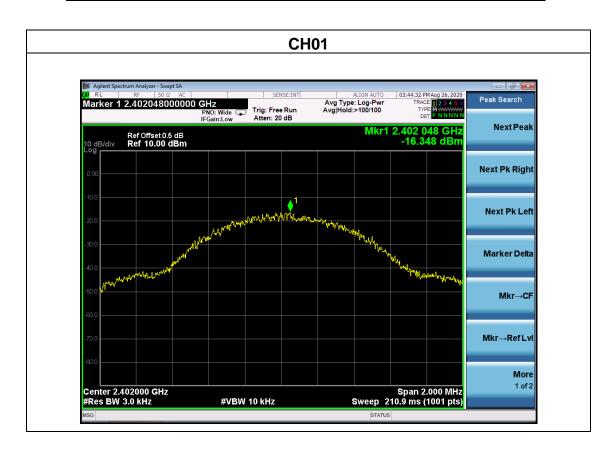
9.3 Test procedure

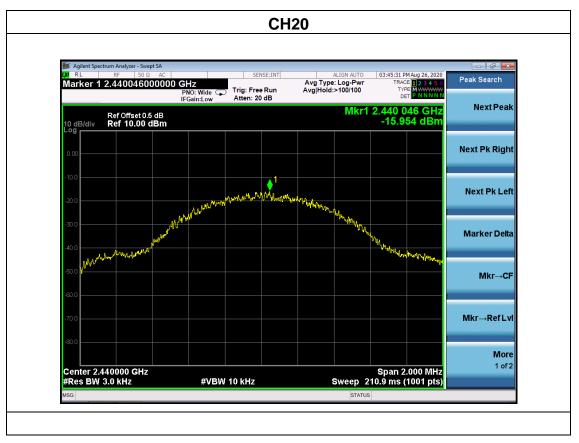
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

9.4 EUT operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing.

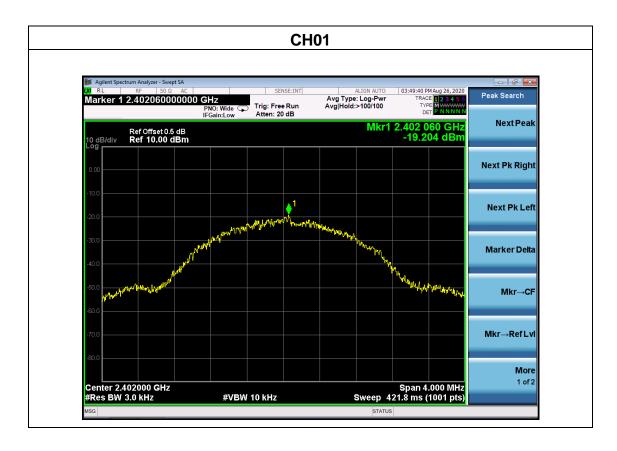
Note: Power Spectral Density(dBm)=Reading+Cable Loss

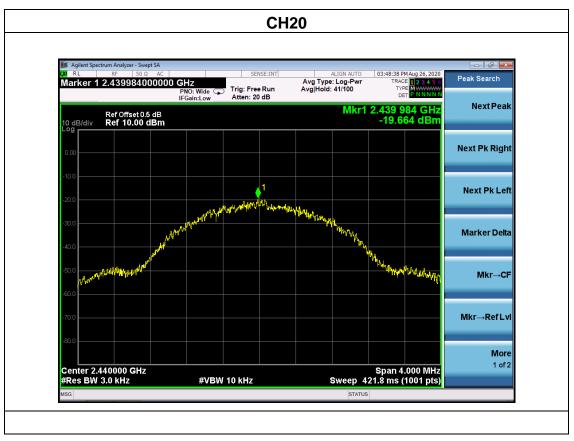

Test Report Tel: 400-788-9558 Web: https://www.bctc-lab.com BCTC/RF-EMC-007 Ver.: A.0 Page 26 of 46


9.5 Test Result

Temperature:	26℃	Relative Humidity:	54%
Test Mode :	GFSK 1Mbps	Test Voltage :	DC 3.7V

Frequency	Power Spectral Density(dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-16.348	8	PASS
2440 MHz	-15.954	8	PASS
2480 MHz	-16.456	8	PASS





Temperature :26 ℃Relative Humidity :54%Test Mode :GFSK 2MbpsTest Voltage :DC 3.7V

Frequency	Power Spectral Density(dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-19.204	8	PASS
2440 MHz	-19.664	8	PASS
2480 MHz	-20.012	8	PASS

10. BANDWIDTH TEST

10.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

10.2 Limit

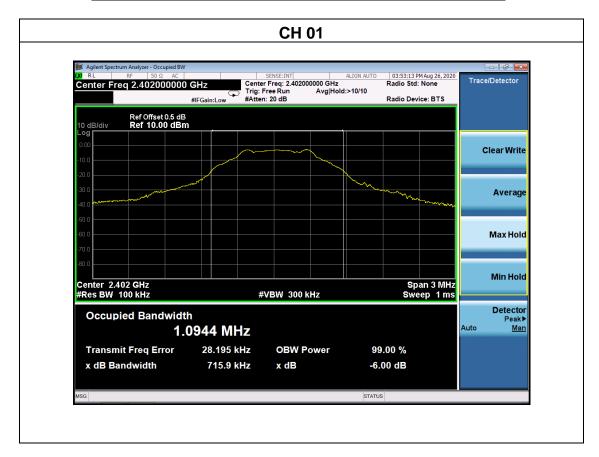
FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

10.3 Test procedure

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

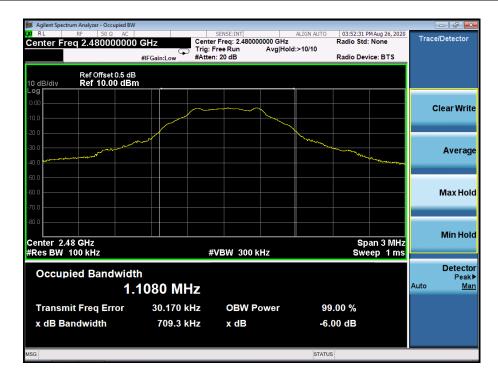
10.4 EUT operating Conditions

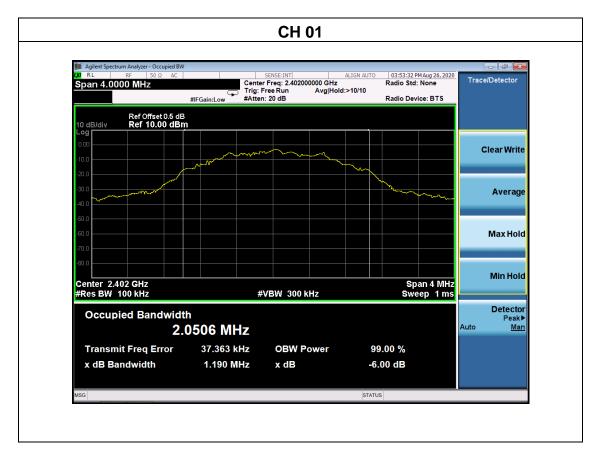
The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing.


Note: Power Spectral Density(dBm)=Reading+Cable Loss


10.5 Test Result

Temperature :	1267	Relative Humidity:	54%
Test Mode :	GFSK 1Mbps	Test Voltage :	DC 3.7V


Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Result
2402	0.716	500	Pass
2440	0.717	500	Pass
2480	0.709	500	Pass



Temperature : 26°C Relative Humidity : 54%

Test Mode : GFSK 2Mbps Test Voltage : DC 3.7V

Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Result
2402	1.190	500	Pass
2440	1.194	500	Pass
2480	1.189	500	Pass

11. PEAK OUTPUT POWER TEST

11.1 Block Diagram Of Test Setup

11.2 Limit

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

11.3 Test procedure

a. The EUT was directly connected to the Power meter

11.4 EUT operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Note: Power Spectral Density(dBm)=Reading+Cable Loss

11.5 Test Result

Temperature :	1267	Relative Humidity:	54%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

L	Frequency	□ Maximum Conducted Output Power(PK)	Conducted Output Power Limit
	(MHz)	(dBm)	dBm
	2402	-1.538	30
GFSK 1Mbps	2440	-1.297	30
	2480	-1.849	30
	2402	-1.587	30
GFSK 2Mbps	2440	-1.222	30
	2480	-1.809	30

12. 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE

12.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

12.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

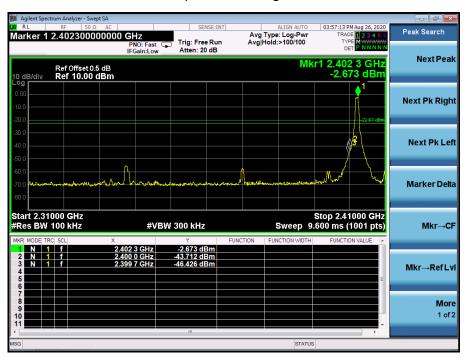
12.3 Test procedure

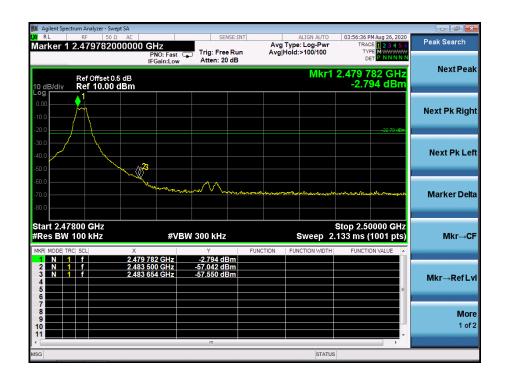
Using the following spectrum analyzer setting:

- a) Set the RBW = 100KHz.
- b) Set the VBW = 300KHz.
- c) Sweep time = auto couple.
- d) Detector function = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize..

12.4 EUT operating Conditions

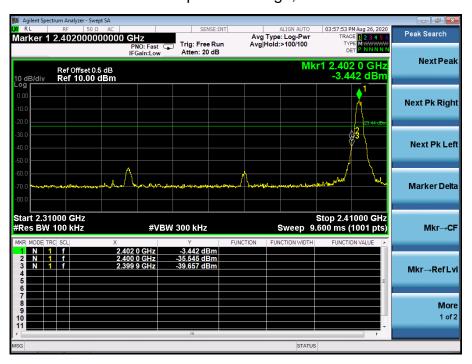
The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing.

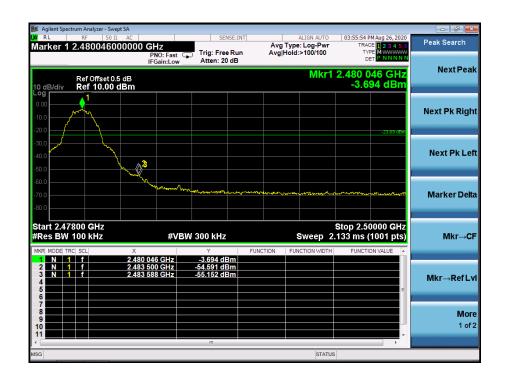

Note: Power Spectral Density(dBm)=Reading+Cable Loss


12.5 Test Result

Temperature :	126°C	Relative Humidity:	54%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

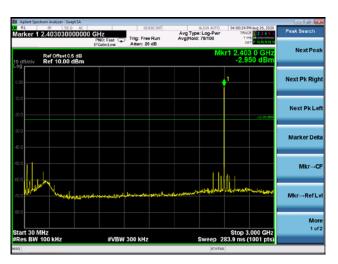
GFSK 1Mbps: Band Edge, Left Side


GFSK 1Mbps: Band Edge, Right Side



GFSK 2Mbps: Band Edge, Left Side

Report No.: BCTC2008002902E


GFSK 2Mbps: Band Edge, Right Side

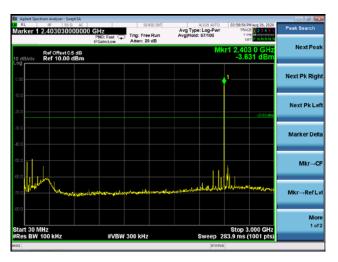
CONDUCTED EMISSION MEASUREMENT GFSK 1Mbps

Low Channel 2402MHz

Report No.: BCTC2008002902E

Middle Channel 2440MHz

High Channel 2480MHz



GFSK 2Mbps

Low Channel 2402MHz


Report No.: BCTC2008002902E

Middle Channel 2440MHz

High Channel 2480MHz

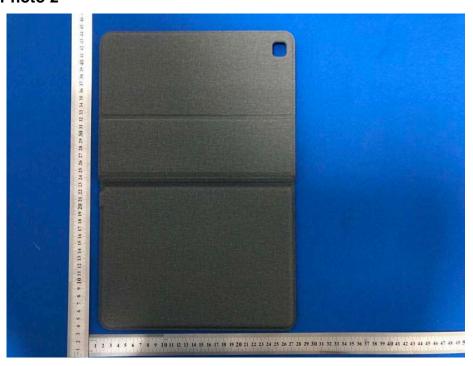
13. ANTENNA REQUIREMENT

13.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2 Test Result

The EUT antenna is PCB antenna, fulfill the requirement of this section.



14. EUT PHOTOGRAPHS

EUT Photo 1

EUT Photo 2

15. EUT TEST SETUP PHOTOGRAPHS

Conducted emissions

Radiated Measurement Photos

******** END OF REPORT *******