

RADIO TEST REPORT

Report No: STS1512011F02

Issued for

COMMERCIAL LINK INTERNATIONAL S.A.S

TRANSV. 60 NO 115–58 TORRE A OFICINA 703 CENTRO EMPRESARIAL ILARCO BOGOTA COLOMBIA

Product Name:	smart phone
Brand Name:	GLOBE, MULTITECH
Model No.:	V55
Series Model:	GB-SMP5000,GB-SMP5X,GB-SMP05, MT-MBP5000,MT-SMP05,MT-SMP5W
FCC ID:	2AGT8-V55
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

Page 2 of 38

Report No.: STS1512011F02

TEST RESULT CERTIFICATION

COMMERCIAL LINK INTERNATIONAL S.A.S
TRANSV. 60 NO 115–58 TORRE A OFICINA 703 CENTRO EMPRESARIAL ILARCO BOGOTA COLOMBIA
SHENZHEN VASTKING ELECTRONIC CO.,LTD
Building 6, Zheng Zhong Industrial Park, Qiaotou Community, Fuyong, Baoan, Shen Zhen, China
smart phone
V55
GB-SMP5000,GB-SMP5X,GB-SMP05, MT-MBP5000,MT-SMP05,MT-SMP5W
FCC Part15.247
ANSI C63.10-2013

This device described above has been tested by STS, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, thidocument may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test:

Test Result:	Pass
Date of Issue:	05 Dec. 2015
Date (s) of performance of tests:	01 Dec. 2015 ~04 Dec. 2015

Testing Engineer :	Burning
	(Jin Ming)
Technical Manager :	Marti APPROVAL
	(Vita Li)
Authorized Signatory :	honey Juney
	(Bovey Yang)

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 3 of 38

Report No.: STS1512011F02

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	5
1.1 TEST FACTORY	5
1.2 MEASUREMENT UNCERTAINTY	5
2. GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 DESCRIPTION OF TEST MODES	8
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
3. EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	12
3.2 TEST PROCEDURE	13
3.3 TEST SETUP	13
3.4 EUT OPERATING CONDITIONS	13
3.5 TEST RESULTS	14
4. RADIATED EMISSION MEASUREMENT	16
4.1 RADIATED EMISSION LIMITS	16
4.2 TEST PROCEDURE	17
4.3 TEST SETUP	18
4.4 EUT OPERATING CONDITIONS	19
4.5 TEST RESULTS	19
4.6 TEST RESULTS (RESTRICTED BANDS REQUIREMENTS)	23
5. CONDUCTED SPURIOUS EMISSIONS	24
5.1 REQUIREMENT	24
5.2 TEST PROCEDURE	24
5.3 TEST SETUP	24
5.4 EUT OPERATION CONDITIONS	24
5.5 TEST RESULTS	25
6. POWER SPECTRAL DENSITY TEST	28
6.1 APPLIED PROCEDURES / LIMIT	28
6.2 TEST PROCEDURE	28
6.3 TEST SETUP	28

Page 4 of 38

Report No.: STS1512011F02

Table of Contents	Page
6.4 EUT OPERATION CONDITIONS	28
6.5 TEST RESULTS	29
7. BANDWIDTH TEST	31
7.1 APPLIED PROCEDURES / LIMIT	31
7.2 TEST PROCEDURE	31
7.3 TEST SETUP	31
7.4 EUT OPERATION CONDITIONS	31
7.5 TEST RESULTS	32
8. PEAK OUTPUT POWER TEST	34
8.1 APPLIED PROCEDURES / LIMIT	34
8.2 TEST PROCEDURE	34
8.3 TEST SETUP	34
8.4 EUT OPERATION CONDITIONS	34
8.5 TEST RESULTS	35
9. ANTENNA REQUIREMENT	36
9.1 STANDARD REQUIREMENT	36
9.2 EUT ANTENNA	36
10. EUT TEST PHOTO	37

Ħ

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

	FCC Part15 (15.247) , Subpart C			
Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	PASS		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)	Peak Output Power	PASS		
15.247 (c)	Radiated Spurious Emission PASS			
15.247 (d)	Power Spectral Density PASS			
15.205	Band Edge Emission PASS			
15.203	Antenna Requirement PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China CNAS Registration No.: L7649; FCC Registration No.: 842334; IC Registration No.: 12108A-1

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\ k=2$, providing a level of confidence of approximately 95 % $^\circ$

No.	Item	Uncertainty
1	Conducted Emission (9KHz-150KHz)	±2.88dB
2	Conducted Emission (150KHz-30MHz)	±2.67dB
3	RF power,conducted	±0.70dB
4	Spurious emissions, conducted	±1.19dB
5	All emissions,radiated(<1G) 30MHz-200MHz	±2.83dB
6	All emissions,radiated(<1G) 200MHz-1000MHz	±2.94dB
7	All emissions,radiated(>1G)	±3.03dB
8	Temperature	±0.5°C
9	Humidity	±2%

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	smart phone			
Trade Name	GLOBE,MULTITECH			
Model Name	V55			
Series Model	GB-SMP5000,GB-S MT-MBP5000,MT-S			
Model Difference	Different appearanc	e		
	The EUT is a smart	phone		
	Operation Frequency:	2402~2480 MHz		
	Modulation Type:	GFSK		
Product Description	Radio Technology	BLE		
	Number Of Channel 40			
	Antenna Designation:	Please see Note 3.		
	Antenna Gain (dBi)	0 dbi		
Channel List	Please refer to the Note 2.			
Adapter	Input: AC100-240V, 200mA, 50/60 Hz			
	Output: DC 5V, 1500mA			
Battery	Rated Voltage: 3.8V			
	capacity :2600mAh			
Hardware version number	MF0MCB1C1-1			
Software versioning number				
Connecting I/O Port(s)	Please refer to the User's Manual			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Ð

2.

	Channel List						
Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequency (MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

3.

Table for Filed Antenna

I	Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
	А	GLOBE,MU LTITECH	V55	PIFA Antenna	N/A	0	BT 4.0 ANT

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: 0755-36886288
 Fax: 0755-36886277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 8 of 38

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

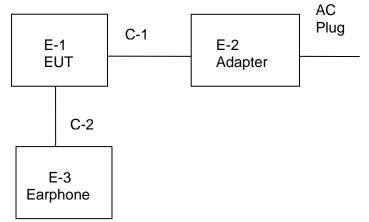
Pretest Mode	Description
Mode 1	TX CH1/CH20/CH40
Mode 2	Keeping TX mode

For Conducted Emission			
Final Test Mode Description			
Mode 2 Keeping TX mode			

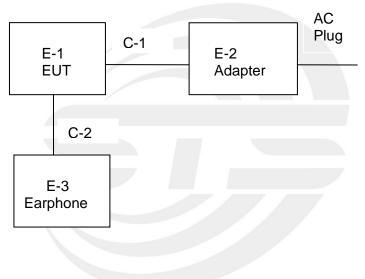
For Radiated Emission				
Final Test Mode Description				
Mode 1	TX CH1/CH20/CH40			
Mode 2 Keeping TX mode				

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.


(2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

(3) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation.



2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Emission Test

Shenzhen STS Test Services Co., Ltd.

Page 10 of 38

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	smart phone	GLOBE,MULTITECH	V55	N/A	EUT
E-2	Adapter	N/A	EE5015-P17	N/A	EUT
E-3	Earphone	N/A	N/A	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note
C-1	unshielded	NO	81cm	N/A
C-2	Unshielded	NO	100cm	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^[] Length ^[] column.

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Spectrum Analyzer	Agilent	E4407B	MY50140340	2015.10.25	2016.10.24
Test Receiver	R&S	ESCI	101427	2015.10.25	2016.10.24
Bilog Antenna	TESEQ	CBL6111D	34678	2015.11.25	2016.11.24
Horn Antenna	Schwarzbeck	BBHA 9120D(1201)	9120D-1343	2015.03.06	2016.03.05
50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2015.06.06	2016.06.05
PreAmplifier	Agilent	8449B	60538	2015.10.25	2016.10.24
Loop Antenna	ARA	PLA-1030/B	1029	2015.06.08	2016.06.07

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	102086	2015.11.20	2016.11.19
LISN	R&S	ENV216	101242	2015.10.25	2016.10.24
LISN	EMCO	3810/2NM	000-23625	2015.10.25	2016.10.24

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2015.10.25	2016.10.24
Spectrum Analyzer	Agilent	E4407B	MY50140340	2015.10.25	2016.10.24
Signal Analyzer	Agilent	N9020A	MY49100060	2015.11.18	2016.11.17

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 12 of 38

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

operating frequency band. In case the emission fall within the restricted band specified on Part 15.247&207(a) limit in the table below has to be followed.

	Class B	Standard	
FREQUENCY (MHz)	Quasi-peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	56.00	46.00	CISPR
5.0 -30.0	60.00	50.00	CISPR

0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

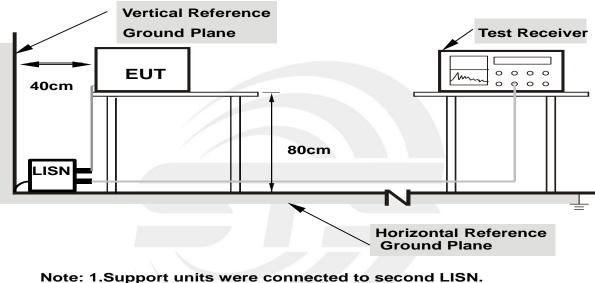
(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

Report No.: STS1512011F02



3.2 TEST PROCEDURE

a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Page 13 of 38

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

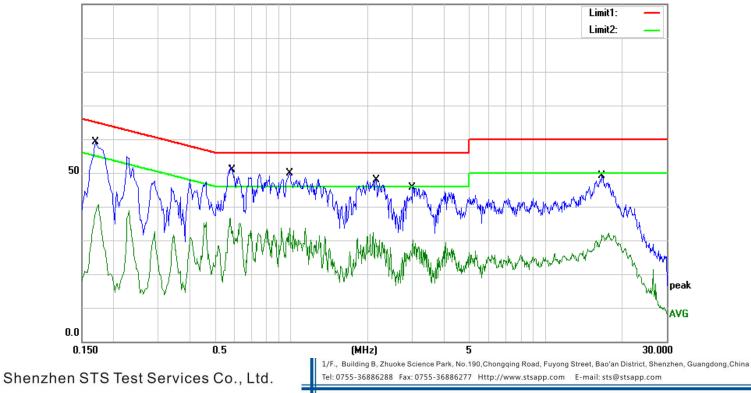
3.3 TEST SETUP

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS

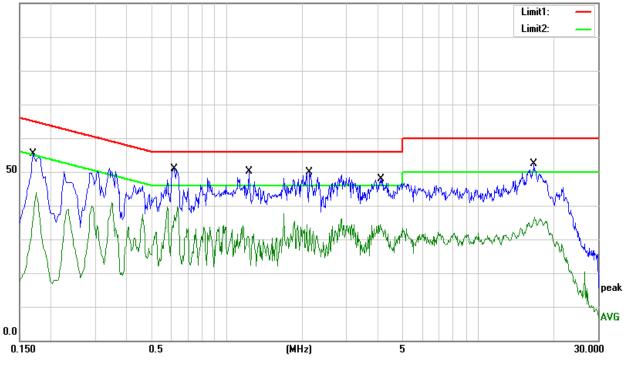

EUT :	EUT : smart phone		V55
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC120V/60Hz	Test Mode :	Mode 2

Frequency	Reading	Correct	Result	Limit	Margin	Demerle
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1785	44.88	10.00	54.88	64.56	-9.68	QP
0.1785	38.50	10.00	48.50	54.56	-6.06	AVG
0.2714	42.59	9.93	52.52	61.07	-8.55	QP
0.2714	33.66	9.93	43.59	51.07	-7.48	AVG
0.8507	39.89	9.95	49.84	56.00	-6.16	QP
0.8507	31.13	9.95	41.08	46.00	-4.92	AVG
2.8782	35.80	10.01	45.81	56.00	-10.19	QP
2.8782	22.51	10.01	32.52	46.00	-13.48	AVG
5.5306	35.54	10.20	45.74	60.00	-14.26	QP
5.5306	22.73	10.20	32.93	50.00	-17.07	AVG
24.5263	33.75	10.53	44.28	60.00	-15.72	QP
24.5263	18.92	10.53	29.45	50.00	-20.55	AVG

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

100.0 dBuV


EUT :	smart phone	Model Name. :	V55
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC120V/60Hz	Test Mode:	Mode 2

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1708	39.47	10.00	49.47	64.92	-15.45	QP
0.1708	29.52	10.00	39.52	54.92	-15.40	AVG
0.6137	39.35	9.96	49.31	56.00	-6.69	QP
0.6137	28.05	9.96	38.01	46.00	-7.99	AVG
1.2234	38.98	10.00	48.98	56.00	-7.02	QP
1.2234	24.49	10.00	34.49	46.00	-11.51	AVG
2.1316	35.99	10.00	45.99	56.00	-10.01	QP
2.1316	22.06	10.00	32.06	46.00	-13.94	AVG
4.0768	34.79	10.19	44.98	56.00	-11.02	QP
4.0768	25.02	10.19	35.21	46.00	-10.79	AVG
16.7208	35.02	10.40	45.42	60.00	-14.58	QP
16.7208	25.12	10.40	35.52	50.00	-14.48	AVG

Remark:

1. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

100.0 dBuV

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 16 of 38

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

6dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on Part 15.247&205(a), then the Part15.247&209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Class B (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier harmonic(Peak/AV)
RB / VB (emission in restricted	
band)	1 MHz / 1 MHz, AV=3 MHz

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

Report No.: STS1512011F02

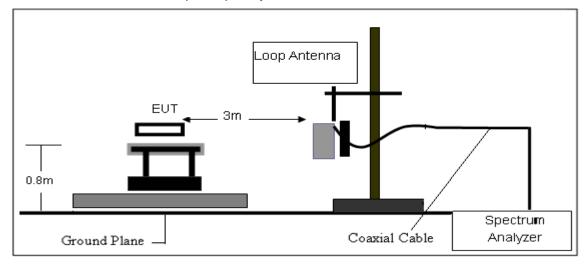
4.2 TEST PROCEDURE

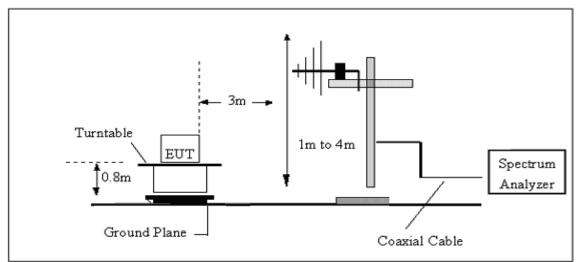
a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

Page 17 of 38

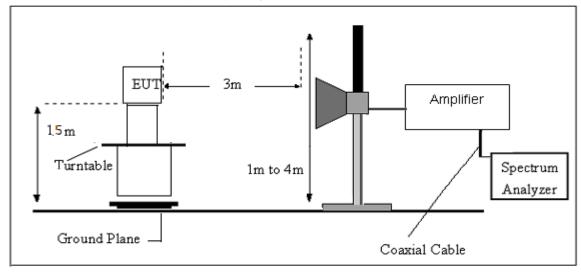
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested


and performed pretest to three orthogonal axis. The worst case emissions were reported



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.5 TEST RESULTS

(Between 9KHz - 30 MHz)

EUT:	smart phone	Model Name. :	V55
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa		DC 5V from Adapter AC120V/60Hz
Test Mode :	Link mode	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
	/			

NOTE:

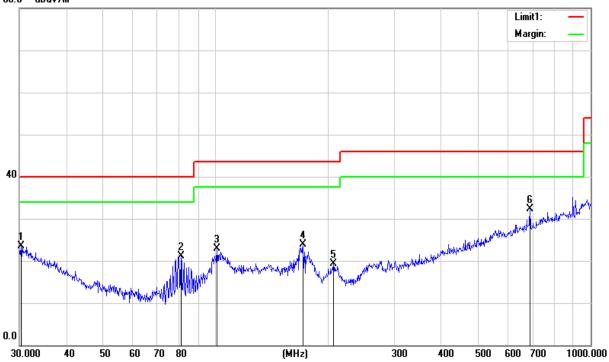
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Shenzhen STS Test Services Co., Ltd.

Between 30-1000MHz


EUT :	smart phone	Model Name. :	V55
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	Horizontal
Test Voltage :	DC 5V from Adapter AC120V/60Hz	Test Mode :	Mode 2

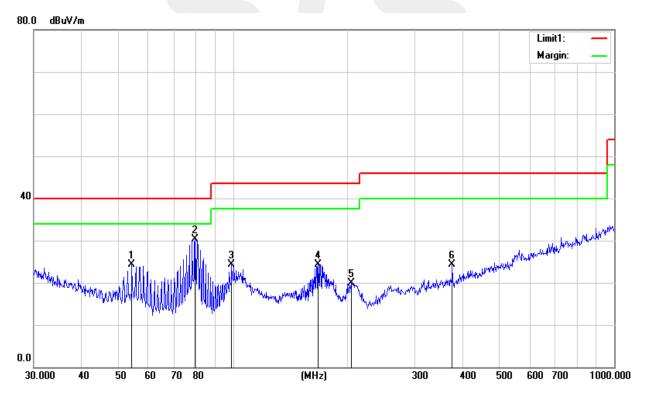
Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
30.3171	4.89	18.54	23.43	40.00	-16.57	QP
80.9274	12.91	8.16	21.07	40.00	-18.93	QP
100.9340	12.02	10.81	22.83	43.50	-20.67	QP
171.3925	13.36	10.45	23.81	43.50	-19.69	QP
206.3976	9.76	9.54	19.30	43.50	-24.20	QP
689.5643	8.99	23.36	32.35	46.00	-13.65	QP

Remark:

1. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com


Page 21 of 38 Report No.: STS1512011F02

EUT :	smart phone	Model Name. :	V55
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	Vertical
Test Voltage :	DC 5V from Adapter AC120V/60Hz	Test Mode :	Mode 2

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
54.2610	17.72	6.51	24.23	40.00	-15.77	QP
79.5208	22.28	7.95	30.23	40.00	-9.77	QP
99.1796	13.63	10.60	24.23	43.50	-19.27	QP
167.2366	13.45	10.81	24.26	43.50	-19.24	QP
204.2376	10.62	9.38	20.00	43.50	-23.50	QP
375.9384	7.58	16.81	24.39	46.00	-21.61	QP

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Above 1000 MHz

EUT :	smart phone	Model Name :	V55
Temperature :	20 ℃	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.8V

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission Level (dBµV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Comment		
		Low	Channel (GF	SK/2402 MHz)					
4804.20	67.08	-3.62	63.46	74	-10.54	PK	Vertical		
4804.21	48.12	-3.62	44.50	54	-9.50	AV	Vertical		
7206.13	63.08	-0.9	62.18	74	-11.82	PK	Vertical		
7206.12	42.36	-0.9	41.46	54	-12.54	AV	Vertical		
4803.99	63.10	-3.65	59.45	74	-14.55	PK	Horizontal		
4803.99	45.14	-3.65	41.49	54	-12.51	AV	Horizontal		
		Mid	Channel (GFS	SK/2440 MHz)					
4882.08	66.07	-3.65	62.42	74	-11.58	РК	Vertical		
4882.07	50.17	-3.65	46.52	54	-7.48	AV	Vertical		
7320.22	62.11	-0.83	61.28	74	-12.72	PK	Vertical		
7320.21	45.26	-0.83	44.43	54	-9.57	AV	Vertical		
4882.18	62.47	-3.68	58.79	74	-15.21	PK	Horizontal		
4882.15	46.11	-3.68	42.43	54	-11.57	AV	Horizontal		
		High	h Channel (GF	SK/2480 MHz))				
4960.25	62.25	-3.59	58.66	74	-15.34	РК	Vertical		
4960.30	46.42	-3.59	42.83	54	-11.17	AV	Vertical		
7440.26	62.15	-0.73	61.42	74	-12.58	PK	Vertical		
7440.30	46.50	-0.73	45.77	54	-8.23	AV	Vertical		
4960.32	62.18	-3.59	58.59	74	-15.41	РК	Horizontal		
4960.31	46.42	-3.59	42.83	54	-11.17	AV	Horizontal		
Remark: 1. Factor = A									

4.6 TEST RESULTS (RESTRICTED BANDS REQUIREMENTS)

EUT :	smart phone	Model Name :	V55
Temperature :	20 ℃	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.8V

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission Level (dBµV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Comment
			GFSI	K			
2390.0	69.38	-12.99	56.39	74	-17.61	PK	Vertical
2390.0	55.17	-12.99	42.18	54	-11.82	AV	Vertical
2390.0	70.37	-12.99	57.38	74	-16.62	PK	Horizontal
2390.0	54.19	-12.99	41.20	54	-12.80	AV	Horizontal
2483.6	71.21	-12.78	58.43	74	-15.57	PK	Vertical
2483.6	54.12	-12.78	41.34	54	-12.66	AV	Vertical
2483.6	71.30	-12.78	58.52	74	-15.48	PK	Horizontal
2483.6	54.21	-12.78	41.43	54	-12.57	AV	Horizontal
Pomark:							

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Low measurement frequencies is range from 2310 to 2400 MHz, high measurement frequencies is range from 2483.5 to 2500 MHz.

Only show the worst point data of the emissions in the frequency 2310-2400 MHz and 2483.5-2500 MHz.

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

5. CONDUCTED SPURIOUS EMISSIONS

5.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting			
Detector	Peak			
Chart/Otan Engrueday	Lower Band Edge: 2310 – 2404 MHz			
Start/Stop Frequency	Upper Band Edge: 2478 – 2500 MHz			
RB / VB (emission in restricted band)	100 KHz/300 KHz			
Trace-Mode:	Max hold			

5.3 TEST SETUP

Spectrum Analyzer

EUT

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

EUT :	smart phone	Model Name :	V55
Temperature :	25 ℃	Relative Humidity :	50%
Pressure :	1012 hPa	Test Voltage :	DC 3.8V
Test Mode :	TX Mode /CH01, CH20, CH40		

01 CH

	RF 50 Ω AC		SENSE:INT	ALIGN AUTO	07:07:18 PM Dec 02, 2015	-		
nter Fred	q 12.51500000	10 GHz PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE M MAAAAAA DET P P P P P P	Frequency Auto Tu		
B/div R	Ref Offset 0.5 dB Mkr1 2.402 GHz 3/div Ref 0.21 dBm -4.791 dBm							
	1					Center Fr		
3					-24.79 dBm	12.515000000 G		
					-24.79 ubm	12.010000000		
						Start Fr		
	and the second second	and the second second	and the state of the second second	and the second s		30.000000 M		
						Stop Fr		
						25.00000000 0		
es BW 10		#VBV	/ 300 kHz	Sweep	Stop 25.00 GHz 2.39 s (8001 pts)	CF St 2.497000000 G		
MODE TRC S	SOL X			JNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto N		
	f f 2	2.402 GHz 4.716 GHz	-4.791 dBm -47.946 dBm					
			-41.540 dBm			Freq Off		
						0		
				STATUS]	1		
				011100				

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

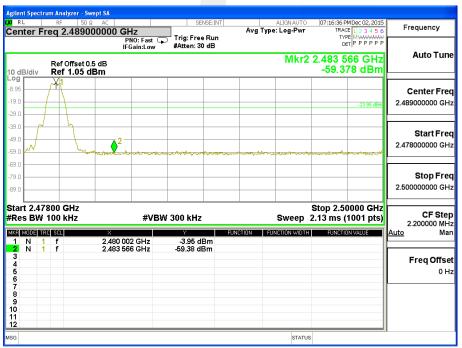
20 CH

	quency
PNO: Fast Trig: Free Run Type Monorman Type Type Type Type Type Type Type Type	
Ref Offset 0.5 dB	uto Tune
10 dB/div Ref -0.20 dBm5.200 dBm	
-10.2	enter Freq
	00000 GHz
-30.2	
-40.2	Start Freq
-50.2 -60.2	00000 MHz
-80.2	
	Stop Freq
	00000 GHz
Start 30 MHz Stop 25.00 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.39 s (8001 pts)	CF Step
X X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE	00000 GHz Man
I N 1 f 2.440 GHz -5.20 dBm 2 N 1 f 24.663 GHz -48.19 dBm	
3	eq Offset
4	0 Hz
6 7	
9	
10	
12	
MSG STATUS	

40 CH

aL	RF 50	Ω AC		SENSE:INT		ALIGN AUTO	07:17:20 P	MDec 02, 2015	_
nter F	req 12.51	Р	GHz NO: Fast 😱 Gain:Low	Trig: Free Run #Atten: 30 dB	Avg	Type: Log-Pwr	TYP	атарана Преминистрана Преминистрана Преререре	Frequency
IB/div	Ref Offset Ref -1.10					IV		.80 GHz 02 dBm	Auto Tu
	1								Center F
								-26.10 dBm	12.515000000
								2	
		har a				and the second statement	-	-	Start F 30.000000 M
	and the state of t		Man Concertification						00.0000001
									Stop F
									25.000000000
rt 30 M es BW	VIHz 100 kHz		#VBW	300 kHz		Sweep		5.00 GHz 8001 pts)	CF S
MODE T	RC SCL	× 2.48	30 GHz	-6.102 dBm	UNCTION	FUNCTION WIDTH	FUNCTIO	ON VALUE	Auto
N 1	1 f	24.87	78 GHz	-48.531 dBm					Freq Off
									(
						STATUS			11

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 27 of 38



For Band edge

01 CH

Agilent Spect									
Center F	RF	50 Ω AC 57000000 GHz	SE	NSE:INT		ALIGNAUTO : Log-Pwr	TRAC	ADec 02, 2015	Frequency
	Ref Offs	PNO: Fas IFGain:Lo set 0.5 dB	Trig: Free w #Atten: 30			Mkr2	DE 2.401 7	44 GHz	Auto Tune
10 dB/div Log -8.01	Ref 1.	99 dBm					-3.01	0 dBm	Center Freq
-18.0 -28.0 -38.0								-23.01 dEm	2.357000000 GHz
	and the state of t	by marked my walk have made and a faith	fre NLIM warmed and open story	Jpygrident	- Martin Martin		ngaliyama di Mada	, I I	Start Freq 2.310000000 GHz
-68.0 -78.0 -88.0									Stop Freq 2.404000000 GHz
Start 2.3′ #Res BW	100 kHz	<u>#</u>	/BW 300 kHz			<u> </u>	Stop 2.40 9.00 ms (1	1001 pts)	CF Step 9.400000 MHz
	nc scu 1 f 1 f	× 2.399 770 GHz 2.401 744 GHz			TIUN	NCTION WIDTH	FUNCTIO	NVALUE	<u>Auto</u> Man
4 5 6 7									Freq Offset 0 Hz
8 9 10 11 12									
MSG						STATUS	5		

40 CH

6. POWER SPECTRAL DENSITY TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS				

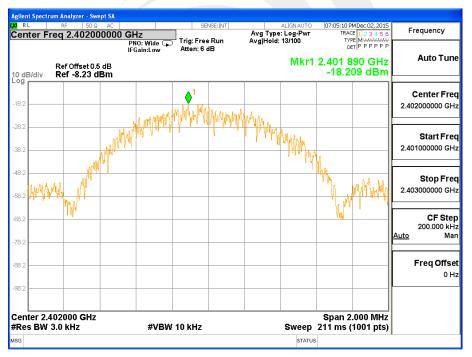
6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

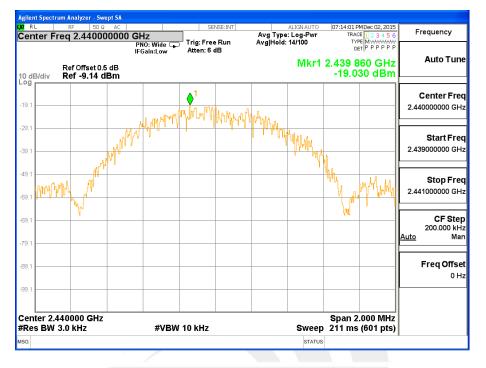
EUT	SPECTRUM
	ANALYZER

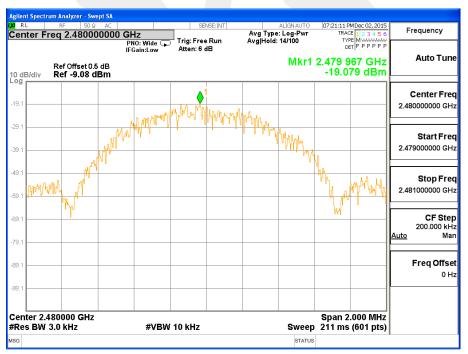
6.4 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

EUT :	smart phone	Model Name :	V55	
Temperature :	25 ℃	Relative Humidity :	60%	
Pressure :	1015 hPa	Test Voltage :	DC 3.8V	
Test Mode :	TX Mode /CH01, CH20, CH40			


Frequency	Power Density (dBm)	Limit (dBm)	Result
2402 MHz	-18.209	8	PASS
2440 MHz	-19.030	8	PASS
2480 MHz	-19.079	8	PASS


TX CH01

TX CH20

TX CH40

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

7. BANDWIDTH TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

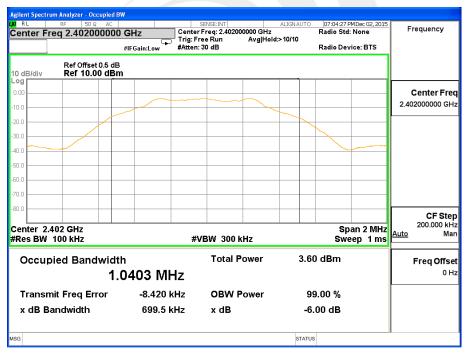
The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

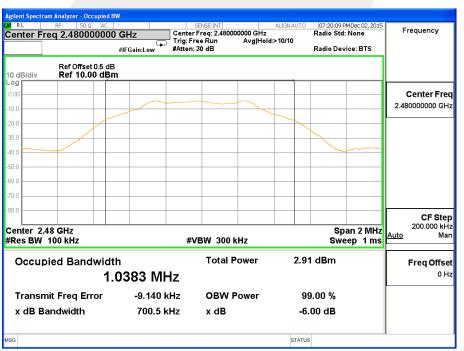


7.5 TEST RESULTS

EUT :	smart phone	Model Name :	V55	
Temperature :	25 ℃	Relative Humidity :	60%	
Pressure :	1012 hPa	Test Voltage :	DC 3.8V	
Test Mode :	TX Mode /CH01, CH20, CH40			

Frequency	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result
2402 MHz	0.700	>=500KHz	PASS
2440 MHz	0.698	>=500KHz	PASS
2480 MHz	0.701	>=500KHz	PASS

TX CH 01



TX CH 20

X/ RL	um Analyzer - Occupied BW RF 50 Ω AC		SENSE:INT		ALIGN AUTO	07:12:12 PM Dec 03	2, 2015
	reg 2.440000000		enter Freq: 2.44000			Radio Std: None	
			ig: Free Run Atten: 30 dB	Avg Hold	l>10/10	Radio Device: B1	rs
10 dB/div	Ref Offset 0.5 dB Ref 10.00 dBm						
0.00							Center Freq
-10.0							2.440000000 GHz
-20.0							
-30.0							
-40.0							
-50.0							
-60.0							
-70.0							
-80.0							
Center 2,						Span 2	CF Step 200.000 kHz
#Res BW			#VBW 300 k	Hz		Sweep 1	
Occup	bied Bandwidth	١	Total P	ower	3.2	1 dBm	Freq Offset
-	1.0	0388 MHz					0 Hz
Transn	nit Freq Error	-9.299 kHz	OBW P	ower	99	9.00 %	
x dB B	andwidth	697.7 kHz	x dB		-6.	00 dB	
MSG					STATUS		

TX CH 40

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

8. PEAK OUTPUT POWER TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Sensor&Power meter

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 TEST RESULTS

EUT :	smart phone	Model Name :	V55
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.8V
Test Mode :	TX Mode /CH01, CH20, CH40		

TX Mode				
Test Channe	Frequency	Peak Conducted Output Power	LIMIT	
(MHz)		(dBm)	dBm	
CH01	2402	-2.222	30	
CH20	2440	-2.617	30	
CH40	2480	-2.905	30	

Shenzhen STS Test Services Co., Ltd.

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is PIFA Antenna. It comply with the standard requirement.

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: 0755-36886288
 Fax: 0755-36886277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Radiated Measurement Photos

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: 0755-36886288
 Fax: 0755-36886277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 38 of 38

Report No.: STS1512011F02

Conducted Measurement Photos

* * * * * END OF THE REPORT * * * * *

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: 0755-36886288
 Fax: 0755-36886277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com