

CTC Laboratories, Inc.

Т	EST REPORT				
Report No: CTC2025034613					
FCC ID:	PADWF157				
IC:	10563A-WF157				
FCC Applicant/Manufacturer·····:	Wahoo Fitness LLC				
Address:	90 W. Wieuca Road #110, Atlanta, GA 30342, United States				
ISED Applicant/Manufacturer·····:	Wahoo Fitness				
Address	90 West Wieuca Road Suite 110, Atlanta, GA 30342, United States				
Product Name:	Bike Computer				
Trade Mark:	WAHOO FITNESS				
Model/Type reference:	WF157				
Listed Model(s):	/				
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.249 RSS-210 Issue 11				
Test Report Form No:	CTC-TR-060_A1				
Master TRF:	Dated 2024-09-20				
Date of receipt of test sample	Jan. 17, 2025				
Date of testing	Jan. 17, 2025 ~ Mar. 20, 2025				
Date of issue	Mar. 28, 2025				
Result:	PASS				
Compiled by: (Printed name+signature)	Jim Jiang Jim Jiang Zric zhang				
Supervised by:					
(Printed name+signature)	Eric Zhang				
Approved by:	Totti Zhao				
(Printed name+signature)	Totti Zhao				

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Table of Contents

Page

1.	TEST	SUMMARY	.3
	1.1.	Test Standards	.3
	1.2.	REPORT VERSION	.3
	1.3.	TEST DESCRIPTION	.3
	1.4.	TEST FACILITY	
	1.5.	MEASUREMENT UNCERTAINTY	.4
	1.6.	Environmental Conditions	.5
2.	GEN	ERAL INFORMATION	.6
	2.1.	CLIENT INFORMATION	
	2.2.	GENERAL DESCRIPTION OF EUT	
	2.3.	DESCRIPTION OF TEST MODES	
	2.4.	ACCESSORY EQUIPMENT INFORMATION	
	2.5.	Measurement Instruments List	
3.	TEST	ITEM AND RESULTS	
	3.1.	AC POWER LINE CONDUCTED EMISSIONS	
	3.2.	BANDWIDTH	12
	3.3.	RADIATED FIELD STRENGTH OF THE FUNDAMENTAL SIGNAL	14
	3.4.	RADIATED SPURIOUS EMISSIONS AND BANDEDGE EMISSION	
	3.5.	ANTENNA REQUIREMENT	25

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz.

<u>RSS-210 Issue 11</u>: Licence-Exempt Radio Apparatus: Category I Equipment

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC2025034613	Mar. 28, 2025	Original

1.3. Test Description

Test Item	Section in CFR 47	RSS-210	Result	Test Engineer
AC Power Line Conducted Emissions	15.207	RSS-Gen 8.8	PASS	Jim Jiang
20dB Occupied Bandwidth	15.215/15.249	/	PASS	Jim Jiang
Field strength of the Fundamental signal	15.249(a)	RSS-210 F.1.a	PASS	Jim Jiang
Spurious Emissions	15.209/15.249(a)	RSS-210 F.1.e	PASS	Jim Jiang
Band edge Emissions	15.205/15.249(d)	/	PASS	Jim Jiang
Antenna requirement	15.203	RSS-Gen 6.8	PASS	Jim Jiang

Note: "N/A" is not applicable.

The measurement uncertainty is not included in the test result.

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: Room 101 of Building B, Room 107, 108, 207, 208 of Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in th e identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Indus try Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (F CC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties radio equipment characteristics; Part 2" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C ~ 27°C
Relative Humidity:	40% ~ 60%
Air Pressure:	101kPa

2. GENERAL INFORMATION

2.1. Client Information

FCC Applicant/ Manufacturer:	Wahoo Fitness LLC
Address:	90 W. Wieuca Road #110, Atlanta, GA 30342, United States
IC Applicant/ Manufacturer:	Wahoo Fitness
Address:	90 West Wieuca Road Suite 110, Atlanta, GA 30342, United States

2.2. General Description of EUT

Product Name:	Bike Computer
Trade Mark:	WAHOO FITNESS
Model/Type reference:	WF157
Listed Model(s):	/
Model Difference:	/
Sample ID:	CTC241119-010-S002, CTC241119-010-S003
Power supply:	5Vdc from USB Cable, 3.85Vdc from 2050mAh Li-ion Battery
Hardware version:	Queen 2.0 DVT
Software version:	QUEEN-userdebug-(0019)
ANT+ Specification	
Modulation:	GFSK
Operation frequency:	2457MHz
Antenna type:	PIFA Antenna
Antenna gain:	2.4dBi

2.3. Description of Test Modes

The EUT has been tested under test mode condition. The Applicant provides software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)	
01	2457	

Test Mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit. (duty cycle>98%).

For AC power line conducted emissions:

The EUT charges through the adapter, and the EUT was set to connect with large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.4. Accessory Equipment Information

Equipment Information						
Name	Model	S/N	Manufacturer			
Adapter	A2167	/	Apple			
Cable Information						
Name	Shielded Type	Ferrite Core	Length			
USB Cable	Unshielded	NO	100cm			
Test Software Information						
Name	Version	/	/			
WahooSerial	/	/	/			

2.5. Measurement Instruments List

	RF Test System - SRD						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until		
1	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 21, 2025		
2	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 12, 2025		
3	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 12, 2025		
4	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 12, 2025		
5	EXG Analog Signal Generator	Keysight	N5173B	MY59100842	Dec. 12, 2025		
6	MXG Vector Signal Generator	Keysight	N5182B	MY59100212	Dec. 12, 2025		
7	USB Wideband Power Sensor	Keysight	U2021XA	MY55130004	Mar. 21, 2025		
8	USB Wideband Power Sensor	Keysight	U2021XA	MY55130006	Mar. 21, 2025		
9	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 12, 2025		
10	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 21, 2025		
11	RF Control Unit	Tonscend	JS0806-2	/	Aug. 21, 2025		

	Radiated Emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until		
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 24, 2025		
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Sep. 25, 2025		
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2025		
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2025		
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2025		
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026		
7	Test Software	FARA	EZ-EMC	FA-03A2	/		

		Conducted	d Emission		
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	LISN	R&S	ENV216	101112	Dec. 12, 2025
2	LISN	R&S	ENV216	101113	Dec. 12, 2025
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2025
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 12, 2025
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 12, 2025
6	Test Software	R&S	EMC32	6.10.10	/

Note: 1. The Cal. Interval was one year.

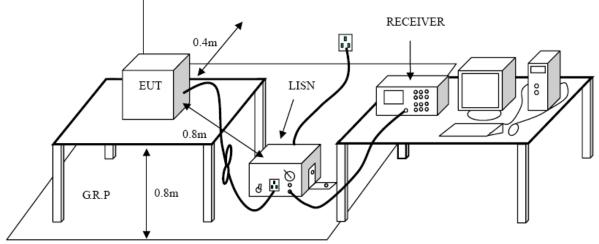
2. The Cal. Interval was three year of the chamber

3. The cable loss has calculated in test result which connection between each test instruments..

CTC Laboratories, Inc.

3. TEST ITEM AND RESULTS

3.1. AC Power Line Conducted Emissions


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8

	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

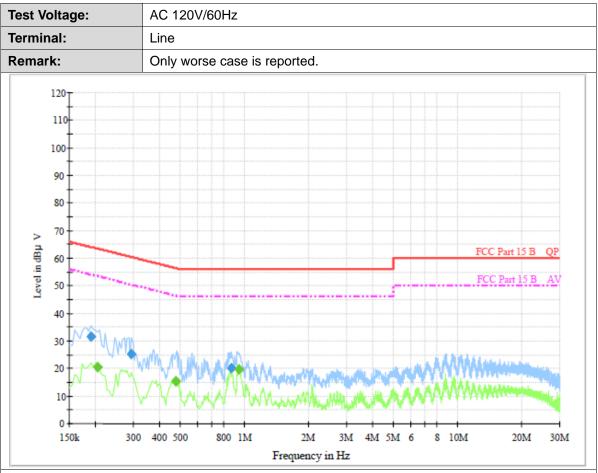
* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 10 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 10 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

CTC Laboratories, Inc.


Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

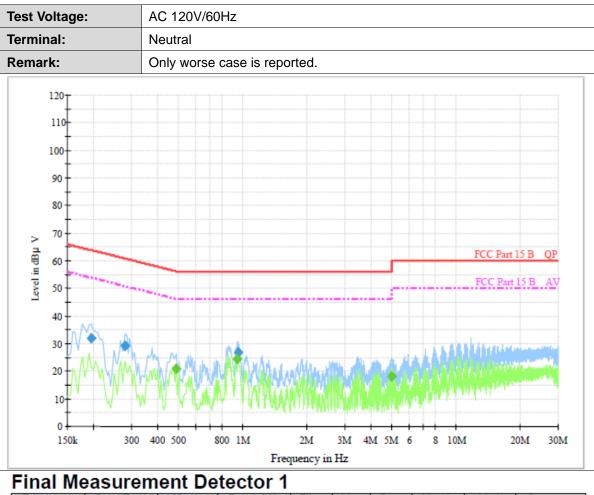
For anti-fake verification, please visit the official website of China Inspection And Testing Society : <u>yz.cnca.cn</u>

Please refer to the clause 2.3

Test Results

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.190500	31.7	1000.00	9.000	On	L1	9.5	32.3	64.0	
0.294000	25.3	1000.00	9.000	On	L1	9.5	35.1	60.4	
0.865500	20.1	1000.00	9.000	On	L1	9.6	35.9	56.0	


Final Measurement Detector 2

	Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
ſ	0.204000	20.4	1000.00	9.000	On	L1	9.5	33.0	53.4	
Ī	0.474000	15.6	1000.00	9.000	On	L1	9.4	30.8	46.4	
[0.942000	19.7	1000.00	9.000	On	L1	9.6	26.3	46.0	

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

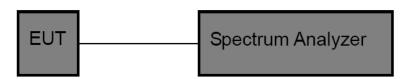
	Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
Γ	0.195000	32.1	1000.00	9.000	On	N	9.3	31.7	63.8	
	0.280500	29.0	1000.00	9.000	On	Ν	9.4	31.8	60.8	
	0.946500	26.9	1000.00	9.000	On	Ν	9.5	29.2	56.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ	Comment
((uph 1)	(ms)	(1112)			(uD)	(ab)	V)	
0.487500	20.9	1000.00	9.000	On	Ν	9.6	25.3	46.2	
0.942000	24.5	1000.00	9.000	On	N	9.5	21.5	46.0	
4.996500	18.0	1000.00	9.000	On	Ν	9.5	28.0	46.0	

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



3.2. Bandwidth

Limit

Operation frequency range 2400MHz~2483.5MHz.

Test Configuration

Test Procedure

- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss 1. was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously

3. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a test channel RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW Sweep = auto, Detector function = peak, Trace = max hold

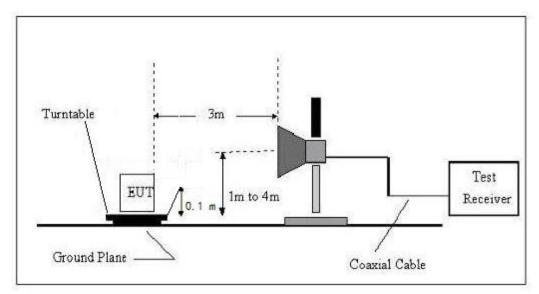
4. Measure and record the results in the test report.

Test Mode

Please refer to the clause 2.3

Channel	20dB Bandwidth (KHz)	99% Bandwidth (KHz)	Result
01	958.20	917.09	Pass

Test Graphs


3.3. Radiated field strength of the fundamental signal

<u>Limit</u>

Fundamental frequency	Field strength of fundamental (millivolts/meter/ AVG)	Field strength of harmonics (microvolts/meter/ AVG)
902-928 MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)
2400-2483.5 MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)
5725-5875 MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)
24.0-24.25 GHz	250 (108dBuV/m @3m)	2500 (68dBuV/m @3m)

Frequencies above 1000 MHz, the field strength limits are based on average limits

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 0.1 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow: RBW=1MHz, VBW=3MHz Peak detector for Peak value.

Test Mode

Please refer to the clause 2.3

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

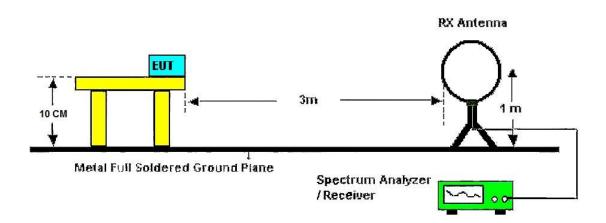
For anti-fake verification, please visit the official website of China Inspection And Testing

Test Results

nt. Pol	•	Hori	zontal					
est Mo	de	TXA	NT+ Mode	2457MHz				
120.0 dB	uV/m							
110							uV/m Radiati -6 dB	on
100								
90								
80				1				
70								
60				<u> </u>				
50								
40	a. 1	1. 6 19 July	Married Contraction				1.	
30 🚧	Vmpphym	hall have					an der Wilke	N/WWW
20								
10								
0.0								
2452.00	D 2453.00	2454.00	2455.00 2	456.00 (MHz)	2458.00	2459.00 2460.0	0 2461.0	0 2462.0
No.	Frequ (MH	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto
1 *	2456.	965	82.71	-8.33	74.38	114.00	-39.62	peak
Remarks			1		1	1	1	1
Domorte	3.							

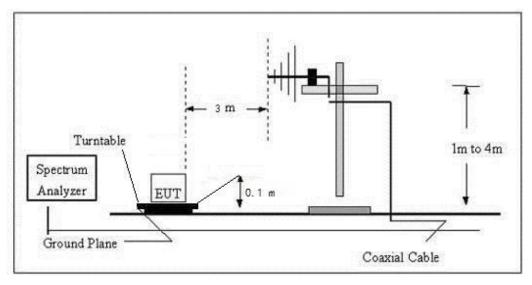
120.0 dBuV/m 110	VT+ Mode 2	2457MHz		114dB Margin	uV/m_Radiati	on
III0 IIII 100 IIIII 90 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		×				<u>on</u>
110		*				on
100		*				
90		*				
80		×				
70		×				
50		×				
50						
40						
and the second of the second o	***			I NWW	William .	
30 W W W W W W W W W W W W W W W W W W W					MANDAR AND	MA MINA
20						
10						
0.0	2455.00 24	56.00 (MHz)	2458.00 2	459.00 2460.0	0 2461.0	0 2462.00
	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 * 2457.064	80.34	-8.33	72.01	114.00	-41.99	peak

3.4. Radiated Spurious Emissions and Bandedge Emission

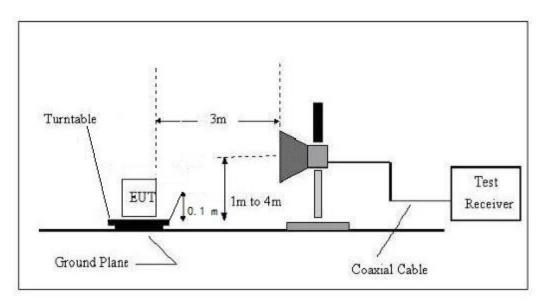

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m @3m)	Value		
30MHz~88MHz	40.00	Quasi-peak		
88MHz~216MHz	43.50	Quasi-peak		
216MHz~960MHz	46.00	Quasi-peak		
960MHz~1GHz	54.00	Quasi-peak		
Above 1GHz	54.00	Average		
	74.00	Peak		


Test Configuration

• 9 kHz ~ 30 MHz

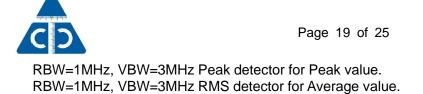


• 30 MHz ~ 1 GHz

• Above 1 GHz

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 0.1 meter above ground for below 1 GHz, and 0.1 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings


Span shall wide enough to fully capture the emission being measured; (1)Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(2)From 1 GHz to 10th harmonic:

CTC Laboratories, Inc.

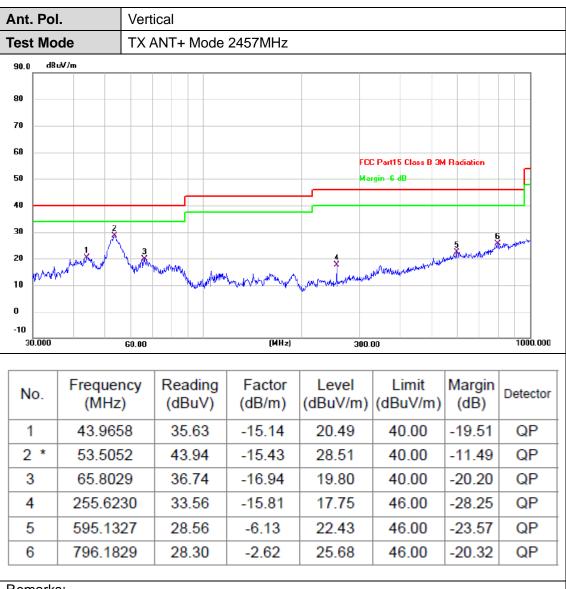
Test Mode

Please refer to the clause 2.3

Test Results

■ 9 kHz ~ 30 MHz

The EUT was pre-scanned the frequency band (9 kHz \sim 30 MHz), found the radiated level lower than the limit, so don't show on the report.


■ 30 MHz ~ 1 GHz

Ant.	Pol	-	Hori	zontal					
Test	Мо	de	TX A	ANT+ Mo	de 2457MHz				
90.0	dB	uV/m							
80									
70									
60						Ff	CC Part15 Class B 3k	L Badiation	
50							argin 6 dB		
40									
30									<u>.</u>
20							where the work where we want	5 martine	MALIN -
10	m	and a second when	when when	W. Nolds.	mpulul al share	1 Martha Martin	2 Martin Martin Martin		
0	r 1	and the second		Marine Mary					
-10									
30	0.000		60.00		(MHz)	300).00		1000.000
No	D.	Frequer (MHz	-	Readin (dBuV	-	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1		53.131	3	30.64	-15.38	15.26	40.00	-24.74	QP
2		141.82	62	29.30	-15.24	14.06	43.50	-29.44	QP
3		185.78	80	31.64	-17.28	14.36	43.50	-29.14	QP
4		362.98	43	33.47	-12.63	20.84	46.00	-25.16	QP
5		607.78	66	28.35	-5.94	22.41	46.00	-23.59	QP
6	*	869.13	00	29.32	-2.29	27.03	46.00	-18.97	QP

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Above 1 GHz

Ant. Pol.		Horizontal										
Test Mode		TX A	TX ANT+ Mode 2457MHz									
Remark:			No report for the emission which more than 20 dB below the prescribed limit.									
No.	Frequer (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector				
1 *	4913.8	95	27.96	2.90	30.86	54.00	-23.14	AVG				
2	4913.9	01	40.40	2.90	43.30	74.00	-30.70	peak				

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. Pol.		Vertical									
Test Mode		TX ANT+ Mode 2457MHz									
Remark:		No report for the emission which more than 20 dB below the prescribed limit.									
No.	Frequency (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
1 *	4913.8	21	27.84	2.90	30.74	54.00	-23.26	AVG			
2	4913.919		39.98	2.90	42.88	74.00	-31.12	peak			
	(dB/m) = /		na Factor (c Limit value	dB/m)+Cabl	e Factor (dE	3)-Pre-ampli	fier Facto	or			

Bandedge Emission

Ant. Pol.			Horizontal													
est I	Mode		TX A	TX ANT+ Mode 2457MHz												
120.0	dBuV/n	1														1
110 -																
100																
90																
80 -														10.0		
70										-LL P	art 1	1.30	Above	-1G Peal	¢	1
60 -												1				
50											art 1:		Above	-16 AV		
40						ł								3 X		
30						3						$\left\{ \right\}$		4		
20						· · · · · · · · · · · · · · · · · · ·										
10 -																-
0.0	0.000 2	220.00	2348.00	200	7.00 23	86.00 (MI	łz)	242	4.00 2	443.0	0	240	2.00	2481.0	0 25	00.00
No	F	Freque		1	ading	Facto			evel		Lim			argin	Dete	ector
110	•	(MHz)		(dBuV)		(dB/m)		(dBuV/m)		(dBuV/m)			1) (dB)	Delector	
1		2390.0	00	4	7.54	-8.46		39	.08	1	74.(00	-3	4.92	pe	ak
2		2390.0	00	3	5.49	-8.46		27	.03	ł	54.(00	-2	6.97	AV	/G
3		2483.5	00	4(6. 70	-8.23		38	.47	1	74.(00	-3	5.53	pe	ak
4	*	2483.5	00	3	5.31	-8.23		27	.08	ł	54.(00	-2	6.92	AV	/G
Rema		- / .				IB/m)+Ca			(/ JD				. 1:0	F . 4		

2.Margin value = Level -Limit value

) /m	TX /	۱NT+	Mode	2457MHz									
m			TX ANT+ Mode 2457MHz										
						F	CC Part 15C 3N /	Above-16 Peak					
						F	CC Part 15C 3N /	Above-16 AV					
				1				3					
				- X			·	×					
									2500.00				
	-	1	-	Factor (dB/m)	Level (dBuV/n		Limit (dBuV/m)	Margin (dB)	Detector				
2390.0	00	47	7.68	-8.46	39.22	:	74.00	-34.78	peak				
2390.0	00	35	5.32	-8.46	26.86	i	54.00	-27.14	AVG				
2483.5	00	47	7.36	-8.23	39.13		74.00	-34.87	peak				
2483.5	00	35	5.37	-8.23	27.14		54.00	-26.86	AVG				
F	(MHz 2390.0 2390.0 2483.5	2329.00 2348.00 Frequency (MHz) 2390.000 2390.000 2483.500 2483.500	Frequency (MHz) Rea (dE 2390.000 47 2390.000 35 2483.500 47	Frequency (MHz)Reading (dBuV)2390.00047.682390.00035.322483.50047.36	Frequency (MHz)Reading (dBuV)Factor (dB/m)2390.00047.68-8.462390.00035.32-8.462483.50047.36-8.23	Reading (MHz) Factor (dB/m) Level (dBuV/r 2390.00 47.68 -8.46 39.22 2390.000 47.36 -8.23 39.13	Image: Property of the system Reading (dBuV) Factor (dBuV) Level (dBuV/m) 2329.00 2348.00 2367.00 2386.00 (MHz) 2424.00 24 Frequency (MHz) Reading (dBuV) Factor (dBuV) Level (dBuV/m) 2390.000 47.68 -8.46 39.22 2390.000 35.32 -8.46 26.86 2483.500 47.36 -8.23 39.13	Image: Product of the sector (MHz) Level (dBuV) Limit (dBuV/m) 2329.00 2348.00 2367.00 2386.00 (MHz) 2424.00 2443.00 2462. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) 2390.000 47.68 -8.46 39.22 74.00 2390.000 35.32 -8.46 26.86 54.00 2483.500 47.36 -8.23 39.13 74.00	Reading (MHz) Factor (dBuV) Level (dBm) Limit (dBuV/m) Margin (dBuV/m) 2390.000 47.68 -8.46 39.22 74.00 -34.78 2390.000 35.32 -8.46 26.86 54.00 -27.14 2483.500 47.36 -8.23 39.13 74.00 -34.87				

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

3.5. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

RSS-Gen Issue 5 Section 6.8

The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the licence-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. Licence-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotropically radiated power(e.i.r.p.) limits specified in the applicable standard (RSS) for licence-exempt apparatus.

<u>Result</u>

PASS.

The EUT has 1 antenna: a PIFA Antenna for ANT+.

Note: Antenna use a permanently attached antenna which is not replaceable.

Not using a standard antenna jack or electrical connector for antenna replacement.

The antenna has to be professionally installed (please provide method of installation).

Which in accordance to RSS-Gen 6.8, please refer to the internal photos.

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of China Inspection And Testing

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Society : <u>yz.cnca.cn</u>