

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

+86-755-26648640 Telephone: Fax: +86-755-26648637 Website:

www.cqa-cert.com

Report Template Revision Date: 2018-07-06

Report Template Version: V04

Test Report

Report No.: CQASZ20240801855E-01 Applicant: Icarsoft Technology Inc.

1629 K St. Suite 300 N.W.Washington D.C., 20006 United States. **Address of Applicant:**

Equipment Under Test (EUT):

EUT Name: Programmable tire pressure sensor

Model No.: **TPMS S6000** Test Model No.: **TPMS S6000** *iCarsoft* **Brand Name:**

FCC ID: 2AWD8S6000

47 CFR Part 15, Subpart C Standards:

Date of Receipt: 2024-08-28

Date of Test: 2024-08-28 to 2024-10-16

Date of Issue: 2024-10-16

PASS* Test Result:

*In the configuration tested, the EUT complied with the standards specified above

Reviewed By: _ (Timo Lei) Approved By: _____A Lex (Alex Wang)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

Report No.: CQASZ20240801855E-01

1 Version

Revision History Of Report

Rep	ort No.	Version	Description	Issue Date
CQASZ202	40801855E-01	Rev.01	Initial report	2024-10-16

Report No.: CQASZ20240801855E-01

2 Test Summary

. cot Gaiiiiiai			
Test Item	Test Requirement Test method		Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203	ANSI C63.10 (2013)	PASS
Conducted Emission (150KHz to 30MHz)	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	N/A
Field Strength of the Fundamental Signal	47 CFR Part 15, Subpart C Section 15.231 (e)	ANSI C63.10 (2013)	PASS
Spurious Emissions	47 CFR Part 15, Subpart C Section 15.231 (b)/15.209	ANSI C63.10 (2013)	PASS
20dB Bandwidth	47 CFR Part 15, Subpart C Section 15.231 (c)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.231 (e)	ANSI C63.10 (2013)	PASS

N/A: Not Applicable, the EUT was working by DC.

Report No.: CQASZ20240801855E-01

3 Contents

	Page
1 VERSION	
2 TEST SUMMARY	
3 CONTENTS	
4 GENERAL INFORMATION	
4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST ENVIRONMENT AND MODE 4.4 DESCRIPTION OF SUPPORT UNITS 4.5 TEST LOCATION 4.6 TEST FACILITY 4.7 STATEMENT OF THE MEASUREMENT UNCERTAINTY 4.8 DEVIATION FROM STANDARDS 4.9 ABNORMALITIES FROM STANDARD CONDITIONS 4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER 4.11 EQUIPMENT LIST	
5 TEST RESULTS AND MEASUREMENT DATA	9
5.1 ANTENNA REQUIREMENT 5.2 SPURIOUS EMISSIONS 5.2.1 Duty Cycle 5.2.2 Spurious Emissions. 5.3 20db Bandwidth 5.4 DWELL TIME	
6 PHOTOGRAPHS - EUT TEST SETUP	24
6.1 RADIATED EMISSION	22
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	20

Report No.: CQASZ20240801855E-01

4 General Information

4.1 Client Information

Applicant:	Icarsoft Technology Inc.	
Address of Applicant:	1629 K St. Suite 300 N.W.Washington D.C., 20006 United States.	
Manufacturer:	Icarsoft Technology Inc.	
Address of Manufacturer:	1629 K St. Suite 300 N.W.Washington D.C., 20006 United States.	
Factory:	Dongguan Yongdong Electronic Technology Co., Ltd	
Address of Factory:	No. 10,4th Street, Zhangyang Fuzhu Industrial Zone,Zhangmutou town,Dongguan City	

4.2 General Description of EUT

Product Name:	Programmable tire pressure sensor
Model No.:	TPMS S6000
Test Model No.:	TPMS S6000
Trade Mark:	iCarsoft
Software Version:	03
Hardware Version:	v01
Sample Type:	⊠ Mobile ☐ Portable
Operation Frequency:	433.92MHz
Channel Numbers:	1
Modulation Type:	FSK
Antenna Type:	Internal antenna
Antenna Gain:	0dBi
Power Supply:	Button battery: DC 3V

Note: Using the new battery for testing.

Report No.: CQASZ20240801855E-01

4.3 Test Environment and Mode

Operating Environment:	Operating Environment:			
Radiated Emissions:	Radiated Emissions:			
Temperature:	25.4 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	Atmospheric Pressure: 1009 mbar			
Radio conducted item test	Radio conducted item test (RF Conducted test room):			
Temperature:	25.5 °C			
Humidity:	55 % RH			
Atmospheric Pressure:	Atmospheric Pressure: 1009 mbar			
Test mode:	Test mode:			
Transmitting mode:	Transmitting mode: Keep the EUT in transmitting mode with modulation.			

4.4 Description of Support Units

The EUT has been tested independently.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
/	/	1	/	/
0) 0 11				

2) Cable

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
/	/	/	/	/

4.5 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

Report No.: CQASZ20240801855E-01

4.6 Test Facility

A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.7 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** guality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

Test	Range	Uncertainty	Notes
Radiated Emission	Below 1GHz	5.12dB	(1)
Radiated Emission	Above 1GHz	4.60dB	(1)
Conducted Disturbance	0.15~30MHz	3.34dB	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.8 Deviation from Standards

None.

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

Report No.: CQASZ20240801855E-01

4.11 Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
				2023/09/08	2024/09/07
EMI Test Receiver	R&S	ESR7	CQA-005	2024/09/02	2025/09/01
				2023/09/08	2024/09/07
Spectrum analyzer	R&S	FSU26	CQA-038	2024/09/02	2025/09/01
		AFS4-00010300-18-		2023/09/08	2024/09/07
Preamplifier	MITEQ	10P-4	CQA-035	2024/09/02	2025/09/01
		AMF-6D-02001800-		2023/09/08	2024/09/07
Preamplifier	MITEQ	29-20P	CQA-036	2024/09/02	2025/09/01
				2023/09/08	2024/09/07
Preamplifier	EMCI	EMC184055SE	CQA-089	2024/09/02	2025/09/01
				2021/09/16	2024/09/15
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2023/09/08	2026/09/07
				2021/09/16	2024/09/15
Bilog Antenna	R&S	HL562	CQA-011	2023/11/01	2026/10/31
				2021/09/16	2024/09/15
Horn Antenna	R&S	HF906	CQA-012	2023/11/01	2026/10/31
	0.1	DD114 0470	004.000	2021/09/16	2024/09/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2023/09/07	2026/09/06
Coaxial Cable				2023/09/08	2024/09/07
(Above 1GHz)	CQA	N/A	C007	2024/09/02	2025/09/01
Coaxial Cable				2023/09/08	2024/09/07
(Below 1GHz)	CQA	N/A	C013	2024/09/02	2025/09/01
(= ::::::)				2023/09/08	2024/09/07
Antenna Connector	CQA	RFC-01	CQA-080	2024/09/02	2025/09/01
RF				2023/09/08	2024/09/07
cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2024/09/02	2025/09/01
		PWD-2533-02-SMA-		2023/09/08	2024/09/07
Power divider	MIDWEST	79	CQA-067	2024/09/02	2025/09/01

Test software:

	Manufacturer	Software brand
Radiated Emissions test software	Tonscend	JS1120-3
Conducted Emissions test software	Audix	e3
RF Conducted test software	Audix	e3

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Report No.: CQASZ20240801855E-01

5 Test results and Measurement Data

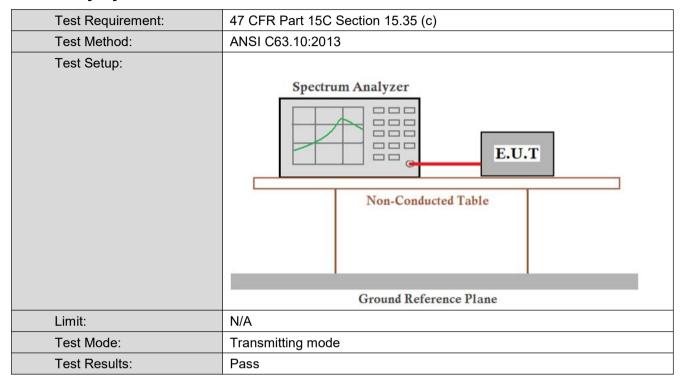
5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:



The antenna is Internal antenna. The best case gain of the antenna is 0dBi.

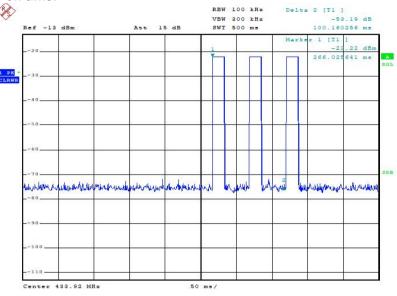
Report No.: CQASZ20240801855E-01

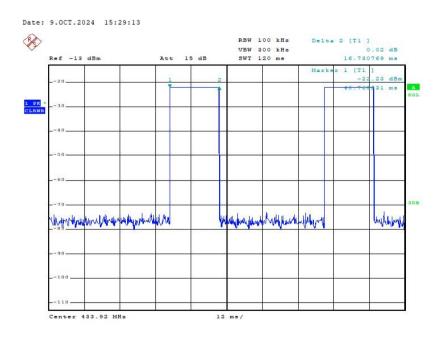
5.2 Spurious Emissions

5.2.1 Duty Cycle

T period	T on time	Duty cycle
(ms)	(ms)	
100	33.46	33.46%

Note:


Duty cycle=T on time / T period



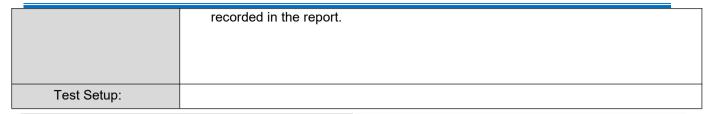
Report No.: CQASZ20240801855E-01

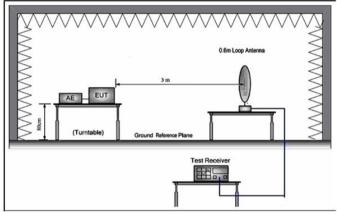
Test plot as follows:

T period and T on time:

Date: 9.OCT.2024 15:30:22

Report No.: CQASZ20240801855E-01


5.2.2 Spurious Emissions


Test Requirement:	47 CFR Part 15C Section 15.231(b)(e) and 15.209				
Test Method:	ANSI C63.10: 2013				
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
	Above IGHZ	Peak	1MHz	10Hz	Average
Limit: (Spurious Emissions)	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi- peak	3
	88MHz-216MHz	150	43.5	Quasi- peak	3
	216MHz-960MHz	200	46.0	Quasi- peak	3
	960MHz-1GHz	500	54.0	Quasi- peak	3
	Above 1GHz	500	54.0	Average	3
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.				

一一		Neport No.: CQA3220240801833E-01					
	Fundamental frequency (MHz)		Field strength of fundamental (microvolts/meter)		Field strength of spurious emission (microvolts/meter)		on
	40.66-40.70		1,000		100		
	70-130	0	500		50		
	130-17	74	500 to 1,500 ¹		50 to 150	50 to 150 ¹	
	174-26	60	1,500		150		
	260-47	70	1,500 to 5,000 ¹		150 to 500 ¹		
	Above	470	5,000		500		
			S-0705011		0.000.000.00		-
Limit:		Frequ	ency	Limit (dBuV/m	@3m)	Remark	
(Field strength of the fundamental		433.92	DMH ₇	72.87		Average Value	
signal)		100.02		92.87		Peak Value	
	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximu			ed to bing acy of ding ource shall n for the mency le g.			

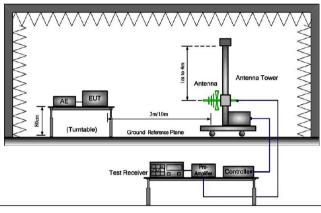


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

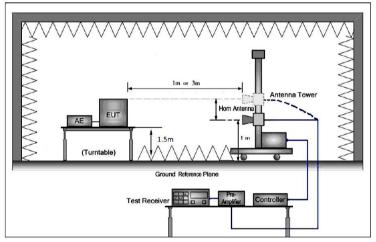


Figure 3. Above 1 GHz

Test Mode:	Transmitting mode
Test Results:	Pass

Report No.: CQASZ20240801855E-01

Measurement Data

5.2.2.1 Field Strength Of The Fundamental Signal

Average value:				
	Average value=Peak value + PDCF			
Calculate Formula:	PDCF=20 log(Duty cycle)			
Duty cycle= T on time / T period				
	T on time =33.46ms			
Test data:	T period =100ms			
	PDCF=-9.5			

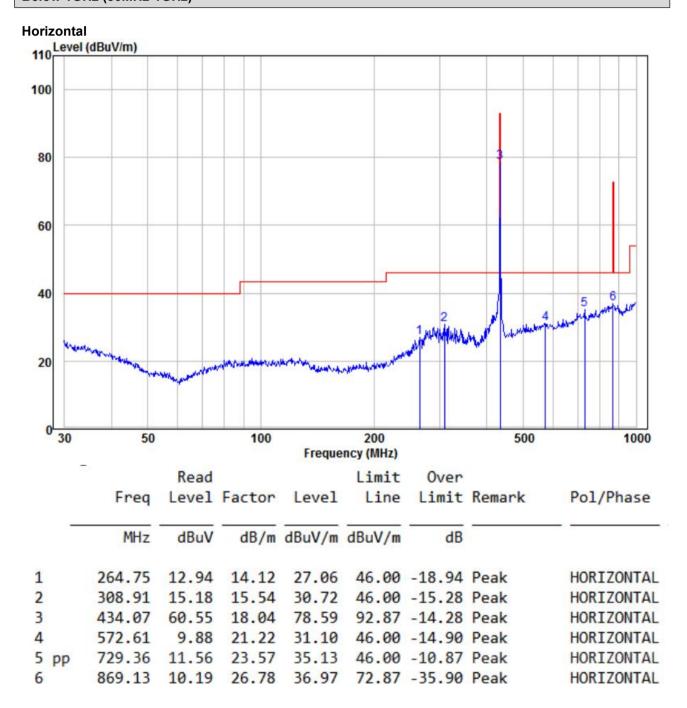
Antenna polarization: Horizontal						
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
434.07	60.55	18.04	78.59	92.87	-14.28	Peak
434.07	-	-	69.09	72.87	-3.78	Average
869.13	10.19	26.78	36.97	72.87	-35.9	Peak
869.13	-	-	27.47	52.87	-25.4	Average

Antenna polarization: Vertical						
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
434.07	47.4	18.04	65.44	92.87	-27.43	Peak
434.07	-	-	55.94	72.87	-16.93	Average
869.13	10.45	26.81	37.26	72.87	-35.61	Peak
869.13	-	-	27.76	52.87	-25.11	Average

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

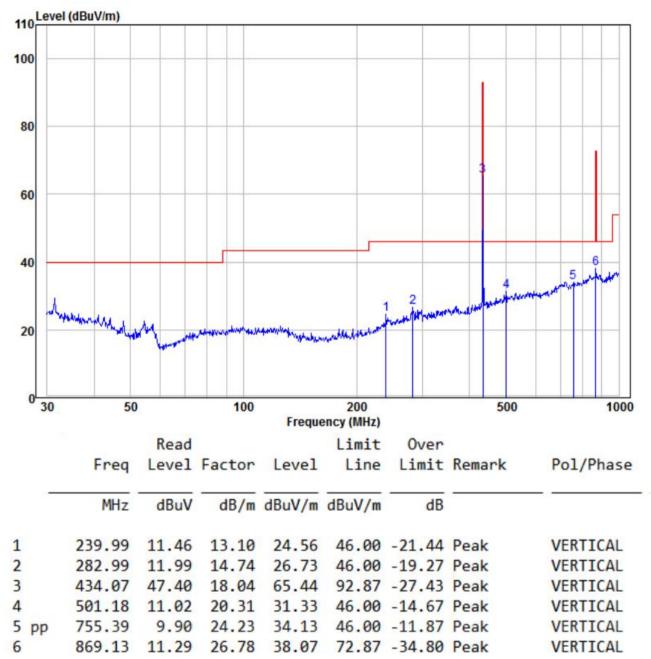

Report No.: CQASZ20240801855E-01

5.2.2.2 Spurious Emissions

9KHz-30MHz

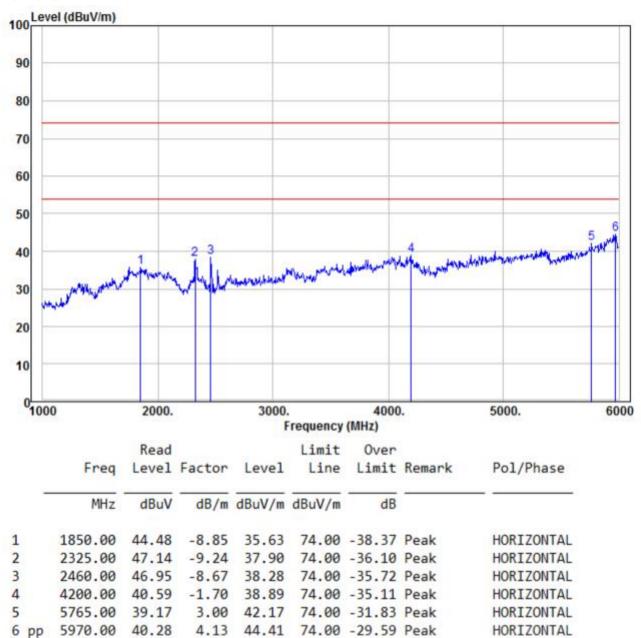
9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Below 1GHz (30MHz-1GHz)



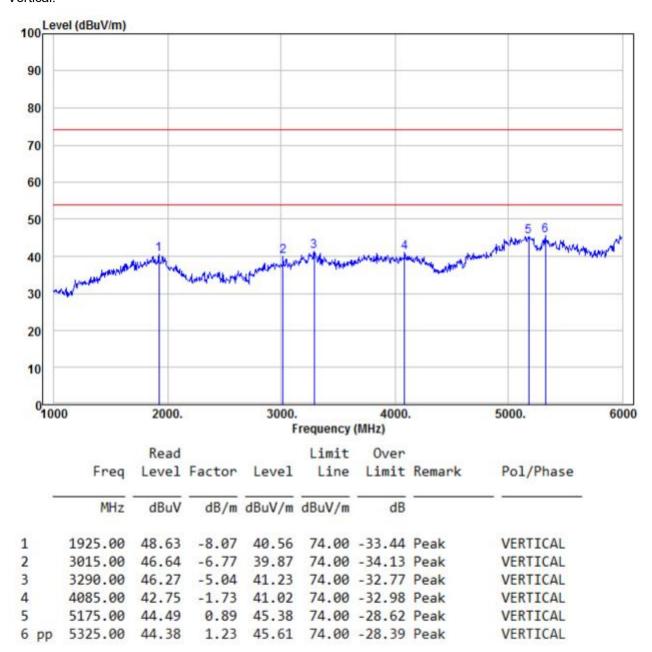
Report No.: CQASZ20240801855E-01

Vertical



Report No.: CQASZ20240801855E-01

Above 1GHz(1GHz-5GHz)


Horizontal

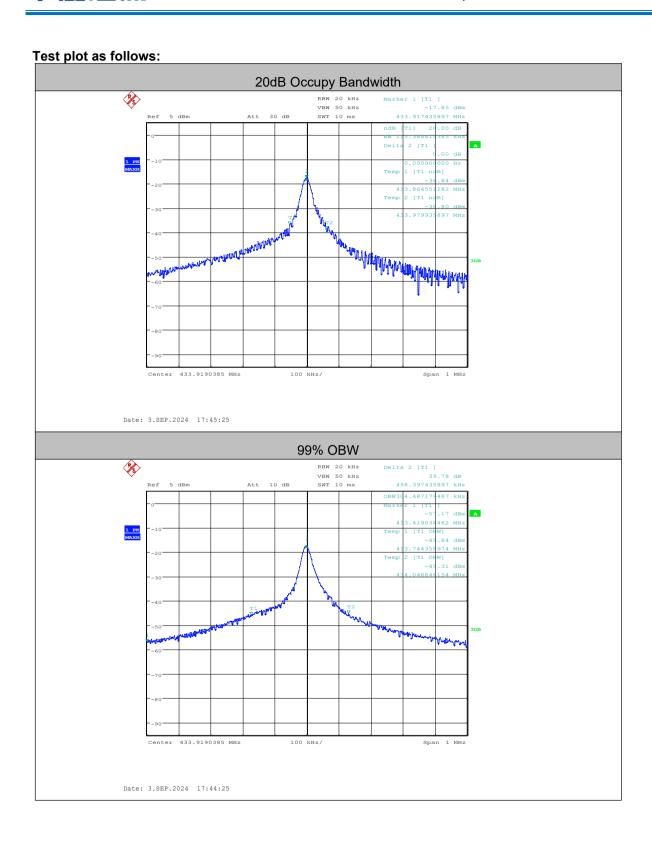
Report No.: CQASZ20240801855E-01

Vertical:

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) The disturbance above 5GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
- 3) As shown in this section, for frequencies above 1GHz, the field the strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted aver average limits. Specified above by more than 20dB under any condition of modulation. So, only the peak measurements were show in the report.

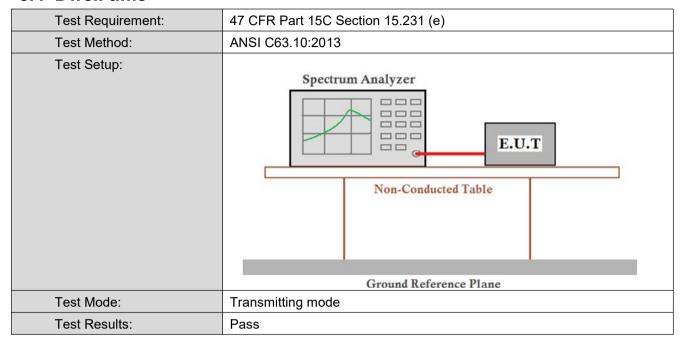
Report No.: CQASZ20240801855E-01


5.3 20dB Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.231 (c)		
Test Method:	ANSI C63.10:2013		
Limit:	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Mode:	Transmitting mode		
Test Results:	Pass		

Measurement Data

20dB bandwidth (kHz)	Limit (kHz)	Results
115.38	1084.8	PASS



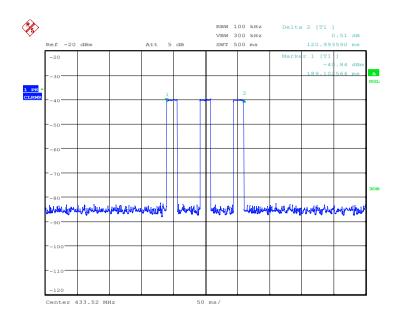
Report No.: CQASZ20240801855E-01

5.4 Dwell time

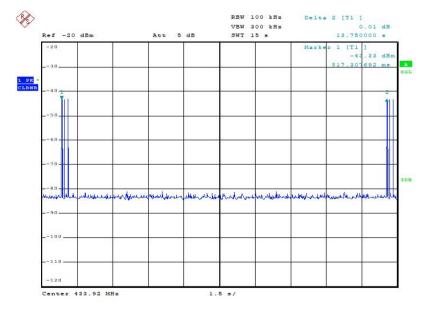
Requirements:

Regulation 15.231 (e)

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.


Result:

Test item	Limit (MHz)	Results
Silent period	≥10S	12.75S
Transmission time	≤1 S	120.99ms



Report No.: CQASZ20240801855E-01

Test plot as follows:

Date: 3.SEP.2024 17:21:32

Date: 16.0CT.2024 17:49:23



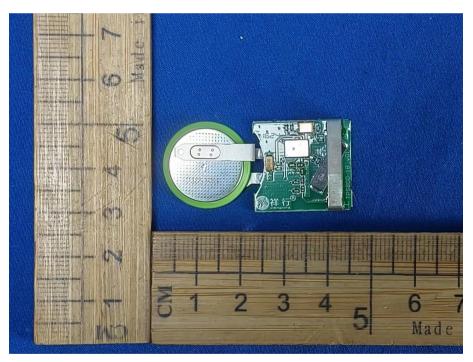
Report No.: CQASZ20240801855E-01

6 Photographs - EUT Test Setup

6.1 Radiated Emission

Report No.: CQASZ20240801855E-01

7 Photographs - EUT Constructional Details



*** End of Report ***