

WSET

WSET

W5C1

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

WSET

WSET

WSET

W5LT

WSET

FCC SAR Compliance Test Report

WSET

WSET

WSET

For

TECNO MOBILE LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET // 5 CT

WSET WSET WSET WSET

FOTAN NT HONGKONG

Model: K15SDA

	VSLI AND		Jul-191
X	Test Engineer:	Xu Yihan Xu Yiham	
WSET	Report Number:	WSCT-ANAB-R&E250100005A-SAR	
	Report Date:	06 March 2025	X
	WSET FCC/ID:7	2ADYY-K15SDA5C7	WSET
X	Check By:	Wei Liangmei Wes Langmes	
WSET	WSLT	WSET WSET WSET	
	Approved By:	Li Huaibi	
	WSCT Prepared By:	World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.	WSET
X		Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District,	
WSET	W5CT	Shenzhen City, Guangdong Province, China Tel: +86-755-26996192 W5 [7]	7
		Fax: +86-755-86376605	
	$\wedge \wedge$		
	WSET WSE	T WSET WSET	WSLT Hon& Test
\mathbf{X}	\mathbf{X}		WSCT Step
WSLI			Jan Star
ADD: Building A-B,Baoli	an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan S 28996053 26996144 FAX : 0086-755-86376605	treet, Bao'an District, Shenzhen City, Guangdong Province, China. E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com World Standardization Cartification& Testin	a Group(Shenzhen) Co. Ltd
Member of the WSCT Group	(WSCTSA)	Page 1 of 45	WSET

2	1	WSET	WSET	WSET		NSET	WSET
	É				\sim	A CONTRACTOR	ANAR
	27	World Standardizat	ion Certification & Testin	g Group (Shenzhen)Co	.,Itd.	ILAC-MRA	
/wsi	7	ReportNo.: WSCI-	ANAB-R&E2501	00005A-SAR	WSCT	The data later to	Certificate Number : AT-3951
		$\overline{\mathbf{V}}$	Та	ble of contents		\checkmark	
	1	General information		\sim		\wedge	
			WSET	WSET		NSET	WSET
1	1.1	Notes					
	1.2	Application details		×		X	4
we	1.3	Statement of Compli	ance	77	wsim	WST	
- uce	1.4	EUT Information	<u> </u>				6
	2	Testing laboratory		X		<u> </u>	
N	2		(Contraction of the contraction	hurse			
	1	ACCREDITATIONS		/			_
\rightarrow	4	Test Environment		×	\times	X	7
1	5	Applicant and Manufactu	ırer	<u> </u>			7
ZWSL	6	Test standard/s:			ZWSLI		8
	6.1	RF exposure limits		X		<u>X</u>	9
<u>.</u>	6.2	SAR Definition					
	7	SAR Measurement System	WSET	WISET			10
		The Massare Control of		X	X	X	40
	Y.1	The Measurement S	/stem				10
/WSL	7.2	Robot			WSCT	W5.5	
	7.3	Probe		······		<u> </u>	12
	7.4	DAE				<u> </u>	13
	7.5	Phantom	WSET	/WSET	$ \land \land$	WSET	WSET
	7.6	Device Holder			\sim	\sim	15
	1.0					\sim	40
W5L	<i>.</i>	SAR Scan General R	equirement		WSLT	WSL	
	7.8	Measurement proce	dure	~~~~		<u> </u>	17
	7.9	Tissue simulating lic	juids: dielectric p	roperties		<u> </u>	18
	7.10	Tissue simulating lic	uids: parameters			115.57	
1	8	System Check					20
	81	System check proce	dure		X		20
WSI		System shart [7]	AWS.	TET	WSET	WSE	
	0.2	System check result	· · · · · · · · · · · · · · · · · · ·				
	9	SAR Test Configuration.	×	X		×	22

ADD : Building A-8, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avanue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 深圳世标检测认证股份有限公司 TEL: 0088-755-26996192 26998053, 26998144 FAX: 0088-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com Http://www.wsct-cert.com

WS.

WSET

W5ET

Member of the WSCT Group (WSCT SA)

WSET

WSET

WSET

WSET

Page 2 of 45

WSET

WSET

WSET

W5ET

WSET

an& Te

WSET

		WSET 🗋		WSET	W5	<u>[7]</u>	W5L	7	WSET
W	7 <u>5</u> [7 [®] w	orld Standardizat	ion Certification & Te	sting Group (Shenzh	en) Co., Itd.		lac-MRA	
/w/s	ET	Report	No.: WSCT-	ANAB-R&E25	0100005A-SAF	W5C	7	And aladalate	TESTING LABORATORY Certificate Number : AT-3951
	9.1	Wi-Fi Te	st Configur	ration			X		22
	9.2	WiFi 2.40	G SAR Test	Procedures			1000		22
1	9.3	WiFi 5G	SAR Test Pr	ocedures					24
	10	Detailed	Test Result	s	<u> </u>	X		X	26
ws.	10.1	Conduct	ed Power m	easurements	15 GT		7		
	10.1.1	Conduct	ed Power of	Wi-Fi 2.4G					26
	10.1.2	Conduct	ed Power of	Wi-Fi 5G	·····	<u> </u>		<u> </u>	28
<u> </u>	10.1.3	Conduct	ed Power of	BTSET	W/5	ET	WSL	7	W32 CT
	10.1.4	Tune-up	powertolera	ance	\times	X		$- \times$	33
Aus	10.2	SAR test	results			WSI	-	WSF	
	10.2.1	Results o	overview of	Wi-Fi 2.4G				<i>(</i>	
	10.2.2	Results o	overview of	вт		<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		35
	10.2.3	Results of	overview of	Wi-Fi 5G		<u></u>		7	
	10.2.4	Results o	overview of	вт	\vee				
	11	Multiple [·]	Transmitter	Information			<u> </u>		
_ws	-11.1.1	Stand-ald	one SAR tes	t exclusion	ISET	W5L	7	W5 Ci	
	11.1.2	Simultan	eous Trans	mission SAR S	ummation Scer	nario	X		40
	11.2	Measure	ment uncert	tainty evaluatio	n for SAR test .	T	wst	7	
1	11.3	Measure	ment uncert	ainty evaluatio	n for system cl	neck	/		
	12	Test equi	ipment and	ancillaries use	d for tests	X		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44
W5	Annex	A: Syst	em perform	ance verificatio	ns.67		<u>, , , , , , , , , , , , , , , , , , , </u>		
	Annex	B: Meas	surement re	sults					45
	Annex	C: Calib	orationrepor	rts		<u> </u>		<u> </u>	45
2	Annex	D: Phot	ographs	WSET	/w/s	ET	WSL	7	W45 CT

ADD : Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. 👷 🙂 TEL: 0088-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing wang@wsct-cert.com Http://www.wsct-cert.com Http://www.wsct

WSE

WSET

WSET

WSET

Member of the WSCT Group (WSCT SA)

WSET

WSET

WSET

WSET

WSET

WSE1

Page 3 of 45

WSET

WSET

WSET

W5ET

WSET

ation& Testin

WSET

WSE1

WSET

WSE

Modified History

					_
)	REV.	Modification Description	Issued Date	Remark	
5	REV.1.0	Initial Test Report Relesse	06 February 2025	Li Huaibi	
			\sim		/

W5C

WSE

General information

1.1 Notes

1

WSET

7. TA

The test results of this test report relate exclusively to the test item specified in this test report. QTC Certification & Testing Co., Ltd. does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report is not to be reproduced or published in full without the prior written permission.

1.2 Application details

Date of receipt of test item:	2024-12-25	\sim	\sim
Start of test:	2024-12-27		\square
End of test:	2025-02-22	WSET	
\times	\times	\times \times	(\times)
WSET W	SET W	ISET WISE	T WSET
XX			
WISTET	WSET	WSET	WSET
	X	\times \times	$\langle X \rangle$
WSET W	SET V	ISET WSL	T incation& Testing
			Strenzher Strenzher
ADD : Building A-B,Baoli'an Industrial Park,No.58 and 60, Tangtou Avenue, Sh TEL : 0088-755-26996192 26996053 26996144 FAX : 0088-755-86376605	liyan Street, Boo'an District, Shenzhen City E-mail: fengbing.wang@wsct-cert.co	Guangdong Province, China. m Http: www.wsct-cert.com World Standard on	延設份有限公司 ton Certifications Testing Group(Sherzherg Co.,Ltd
Member of the WSCT Group (WSCT SA)	Page 4 of	45	

WSET

WSEI

WSE

VSE

1.3 Statement of Compliance

WSE7

WSE

WSE

WSE

WSF

The maximum results of Specific Absorption Rate (SAR) found during testing for K15SDA is as below:

5	Band	Position	MAX ReportedSAR _{1g} (W/kg)	Limit (W/kg)	/
	2.4G WIFI	Body-Worn 0mm	1.344	\bigvee	
	5.2G WIFI	Body-Worn 0mm	1.115	\times /	
	5.4G WIFI	Body-Worn 0mm	1.348		
	5.6G WIFI	Body-Worn 0mm	1.363		5.4
>	5.8G WIFI	Body-Worn 0mm	1.330	X	
	ВТ	Body-Worn 0mm	0.091		
5		Max.Simulta	aneous Transmission SAR(W/kg)	WSET	
	Items		Body SAR (Gap 0mm)	16	
	Sum SAR	\sim	1.454		

WSE

NSE.

NSCI

wer

WSE

WSE

WSE

15 E

W5 [

on& Tes

N51

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontraolled exposure limits of 1.6 W/Kg as averaged over any 1g tissue according to the FCC rule the ANSI/IEEE C95.1:2005, the NCRP Report Number 86 for uncontrolled environment, according to the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013.

WSF

NSE

ber of the WSCT Group (WSCT SA)

151

Page 5 of 45

1. The test results of this test report relate exclusively to the test item specified in this test report. World Standardization Certification & Testing Group (Shenzhen) Co., Ltd does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report is not to be reproduced or published in full without the prior written permission.

WSE

2. Per KDB 616217 D04 SAR for laptop and tablets, The standalone and simultaneous transmission SAR tests required for tablets are more conservative than the hotspot mode use configurations; therefore, additional testing for hotspot SAR is not required.

75 C

757 E

ADD : Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, TEL: 0088-755-26996192 26998053 269980144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com Http://www.wsct-cert.com

Page 6 of 45

r of the WSCT Group (WSCT SA

WSE7

4/5

NSE

E1

NSCI

15 E

2 Testing laboratory

	/		
1	Test Site	World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.	1
Laboratory A:	Loborotony A:	Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan	1
	Laboratory A.	Street, Bao'an District, Shenzhen City, Guangdong Province, China	1
15		Building J-7F and Building D, Dongjiang Science & Technology Park, Tangjia	
	Laboratory B:	Community, Fenghuang Street, Guangming District, Shenzhen City, Guangdong	
	X	Province, China	

3 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

CDTI	IECEE(international Electrotechnical Commiss, The	Laboratory A
CBIL	certificate registration number is TL672)	Laboratory B
China	CNAS (The cortificated registration number: 1.2722)	Laboratory A
China	CNAS (The certificated registration number: L3732)	Laboratory B
	A2LA (The cortificated registration number: 5769.01)	Laboratory A
USA	AZLA (The certificated registration number: 5768.01)	Laboratory B
1167	ANAR (The cortificated registration number: AT 2051)	Laboratory A
UJA	ANAD (The certificated registration number.AT-3931)	Laboratory B

Copies of granted accreditation certificates are available for downloading from our web site, http://www.wsct-cert.com

4 Test Environment

	Required	Actual
Ambient temperature:	18 – 25 °C	22 ± 2 °C
Tissue Simulating liquid:	22 ± 2 °C	22 ± 2 °C
Relative humidity content:	30 – 70 %	30 - 70 %

5 Applicant and Manufacturer

	Applicant/Client Name:	TECNO MOBILE LIMITED	<i>W</i> -
×	Applicant Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG	
2	Manufacturer Name:	TECNO MOBILE LIMITED	
	Manufacturer Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG	

NDD: Building A-B,Baoli'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 深期世标检测认证股份有限公司 EL:0088-755-28996192 28998053 28998144 FAX: 0088-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com Http://www.wsct-cert.com

ber of the WSCT Group (WSCT SA)

Page 7 of 45

WSE

WSE

WSE7

WSCI

6 Test standard/s:

W5C7

WS	No.	Identity	Document Title WSCT WSCT	
	1	IEC/IEEE 62209-1528	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate in the Human Head from Wireless Communications Devices: Measurement Techniques	\langle
~	2 W	RSS-102 WSC1	Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands(Issue 5 March 2015)	[7]
	3	KDB447498 D01	General RF Exposure Guidance v06	
han	4	KDB616217 D04	SAR for laptop and tabletsv01r03	
	5	KDB248227D01	SARmeas for 802.11a/b/g v02r02	1
	6	KDB865664D01	SAR Measurement 100 MHz to 6 GHz v01r04	$\langle \cdot \rangle$
	7	KDB865664D02	RF Exposure Reporting v01r02	~
	1 10			BUY ME

6.1 RF exposure limits

				/
	HumanExposure	UncontrolledEnvironment GeneralPopulation	ControlledEnvironment Occupational	/w
<	SpatialPeakSAR* (Brain/Body/Arms/Legs)	1.60mW/g	8.00mW/g	
i)	SpatialAverageSAR** (WholeBody)	0.08mW/g	0.40mW/g	
	SpatialPeakSAR*** (Heads/Feet/Ankle/Wrist)	4.00mW/g	20.00mW/g	

The limit applied in this test report is shown in bold letters

Notes:

TheSpatial PeakvalueoftheSAR averagedover any1gram oftissue(definedasatissue volumeintheshapeofacube) and over the appropriate averaging time.

TheSpatial AveragevalueoftheSARaveragedoverthewholebody. TheSpatial PeakvalueoftheSAR averagedover any10gramsoftissue(definedasatissue volumeintheshapeofacube) and over the appropriate averaging time.

UncontrolledEnvironmentsaredefinedaslocationswherethereistheexposureofindividuals whohavenoknowledgeor control oftheir exposure.

ControlledEnvironmentsaredefinedaslocationswherethereisexposurethatmaybeincurred bypersonswhoareawareofthepotential for exposure, (i.e. asaresultofemploymentor occupation.

WSET

WSET

2.7/2

6.2 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by(dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

WSET

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

ADD : Building A-B, Baoli'an Industriel Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Prevince, China, 深圳世标检测认证股份有限公司

er of the WSCT Group (WSCT SA)

Page 9 of 45

mber of the WSCT Group (WSCT SA

World Standardization Certification & Testing Group (Shenzhen)Co., ltd. ReportNo.: WSCT-ANAB-R&E250100005A-SAR

WSET

WJLI

W5C1

OM A

7 SAR Measurement System

W SLI

7.1 The Measurement System

DASY8 is a flexible, high-precision near-field scanner optimized for automated measurements in freespace and tissue simulating liquids (TSL), using the most advanced probes covering the frequency range from 3 kHz to 110 GHz. The software enables point, area, and volume measurements and conformal scanning of complex geometries.

The DASY8 SAR module consists of an isotropic dosimetric probe (SAR) mounted on the TX2 precision robot, which allows field scanning inside anthropomorphic phantoms filled with tissuesimulating liquids. The probes are miniaturized, sensitive, isotopic, linear, stable and calibrated with precise boundary compensation. The spatial accuracy of probe positioning within the phantom is better than 0.2 mm. Scanning is optimized and adaptive to the induced field. The spatial SAR peak is determined without reconstruction.

Page 10 of 45

ADD : Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 深圳世标检测认证股份有限公司 TEL: 0088-755-26996192 26996053 26998144 FAX : 0086-755-88376605 E-mail: fengbing.wang@wsct-cert.com Hitp: www.wsct-cert.com World Standard ration Certifications Test

75 E

15 E

25/F

World Standardization Certification & Testing Group (Shenzhen)Co., ltd. ReportNo.: WSCT-ANAB-R&E250100005A-SAR

WSET

WSET

WSE

WSE

W5 E

on& Te

NSC

WSEI

75 E

15 E

WSE

15 E

15 E

7.2 Robot

W5

V5

WSET

WSE

WSF

The DASY8 system uses the high-precision industrial robots TX2-60L and TX2-90XL from Stäubli SA (France). The TX2 family of robots provides the ideal combination of speed, rigidity, size, and precision:

WSET

WSE

WSET

- High precision (repeatability 0.03 mm)
- High reliability and low maintenance costs (industrial design)
- ELF interference (motor control fields are shielded by the closed metallic construction)
- Hygienic encapsulated 6-axis arm enabled by a hollow shaft gearbox, no external cables.

JASN8

WSET

ADD : Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 深圳世标检测认证股份有限公司 TEL: 0088-755-26996192 26996053 26996054 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com Http://www.wsct-cert.com

NSE

45E

mber of the WSCT Group (WSCT SA)

Page 11 of 45

NSE

NSL

15

World Standardization Certification & Testing Group (Shenzhen)Co., ltd. ReportNo.: WSCT-ANAB-R&E250100005A-SAR

WSET

WSE

W5 [

15 E

'5 E

5 F

N51

7.3 Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and callbrated for use in liquid with high pemitivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

For the measurements the Specific Dosimetric E-Field Probe EX3DV4-SN:7895&7391 with following specifications is used

Frequency: 4MHz – 10GHz ; Linearity: ±0.2dB (30MHz – 10GHz)

Dynamic Range: 10µW/g–>100 mW/g Linearity: ±0.2dB (noise: typically <1µW/g)

Directivity (typical): ± 0.1 dB in TSL (rotation around probe axis) ± 0.3 dB in TSL (rotation normal to probe axis)

WSC

	Sensor Arrangement	Triangular
	Connector Angle	46.9°
	WSCT Probe Overall Length	337mm 7
	Probe Body Diameter	10mm
X	🔀 Tip Length	9mm 📈
/	Tip Diameter	2.5mm
WS L	Probe Tip to Sensor X Calibration Point	WSET 1mm WSET
	Probe Tip to Sensor Y Calibration Point	1mm
	Probe Tip to Sensor Z Calibration Point	1mm
	Recommended Measurement Distance from Surface	1.4mm
	WELT WELT WE	CT WELT

WSE

Building A-B, Baoli'an Industrial Park, No. 58 世标检测认证股份有限公 FAX: 0086-755-863766 8-755-26996192 26996053 26996144

15 E 1

ther of the WSCT Group (WSCT SA)

WSE

W5

Page 12 of 45

15 C

Page 13 of 45

WEITT

ADD : Building A-B, Baoli'an Industriel Park, No.58 and 60, Tangtou Avenue, Shiyan Steet, Bao'an District, Shenzhen City, Guangdong Province. China, TEL: 0088-755-26996192 26996053 26998144 FAX: 0086-755-86376605 E-mail: fengbing wang@wsct-cert.com Http://www.wsct-cert.com Http://www.wsct-cert.com Http://www.wsct-cert.com

mber of the WSCT Group (WSCT SA)

Page 14 of 45

NSC

A - I par s

WSET

WSE

WSF

75 /

V5 [

15/1

[1

15 E

7.6 Device Holder

151

15/20

K TR

WSE

WS/

W5L

The DASY instrument holder is designed to accommodate the various positions specified in the standard. It has two scales for instrument rotation (with respect to the body axis) and instrument tilt (with respect to the line between the ear reference points). The center of rotation for both scales is the Ear Reference Point (ERP). This eliminates the need to reposition the instrument when changing angles.

WSET

W5C

WSE

WSET

The DASY instrument holder is made of low-loss POM material with the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material in the immediate vicinity of the device was reduced because measurements indicated that the influence of the clamp on the test results could be reduced.

145

Device holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

75 E

ADD : Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, TEL: 0086-755-26996053 269980144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standard enton Certifications Testing Group (She

15E

nber of the WSCT Group (WSCT SA)

WSE

Page 15 of 45

WSI

7.7 SAR Scan General Requirement

According to kdb865664 D01 v01r04:

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset
distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR.Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013.The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports, unless further guidance has been provided by the FCC.

WSET

WSI

1-1	The pure			< 3 GHz		$>3 \mathrm{GHz}$			
	Maximum distance from	n alagast m	account and a cint	<u></u>		~5 OIL			
	(geometric center of pro	be sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ m}$	ım 🦯	$\frac{1}{2} \delta \ln(2) \text{ mm } \pm 0.$.5 mm		
0	Maximum probe angle a surface normal at the m	from probe easuremen	axis to phantom t location	75 [7] 30° ± 1°	WS	$20^{\circ} \pm 1^{\circ}$	WS C		
\rangle	$\langle \rangle$	X	≤2 GHz: ≤ 15 2-3 GHz: ≤ 12	mm 2 mm	3- 4 GHz: ≤ 12 mm 4- 6 GHz: ≤10 mm	n n			
vs	Maximum area sean spa	atial resolu	tion: $\Delta \mathbf{x}$ Area, $\Delta \mathbf{y}$	When the x or y di measurement plane	mension o e orientatio	f the test device, in t on, is smaller than th	the		
	Aita		X	above, the measure corresponding x or at least one measure	ement reso y dimensi rement poi	lution must be \leq the on of the test device nt on the test device	e with		
_	Maximum zoom scan s ΔyZoom	patial resol	ution: ΔxZoom ,	$2 \text{ GHz: } \le 8$ 2-3 GHz: ≤ 5	mm W5 mm*	3- 4 GHz: ≤5 mm* 4- 6 GHz: ≤ 4 mm	1 W 5 C 1*		
) 75		uniform §	grid: Δz Zoom (n)	≤5 mm		3- 4 GHz: ≤4 mm 4- 5 GHz: ≤ 3 mm 5- 6 GHz: ≤ 2 mm			
	Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δ zZoom (1): between 1 st two points closest to phantom surface	≤4 mm	\rangle	3-4 GHz: ≤ 3 mm 4-5 GHz: ≤ 2.5 mi 5-6 GHz: ≤ 2 mm	m		
5	Wister	grid	Δ zZoom (n>1): between subsequent points	<u><1</u>	.5∙∆zZoon	n (n-1) mm	WSE		
V 5	Minimum zoom scan volume	x, y,z	WSET	≥30 mm		$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$	n m		
	Volume 5- 6 GHz: ≥ 22 mm Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details. * When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of								
	respectively, for 2 GHz	to 3 GHz,	3 GHz to 4 GHz and 4 GHz	Hz to 6 GHz.		on may be appred,	10 GL OL		
/		7.77	WSET	WIST		WS/	Shenzhen		
Buildin	GA-B, Baoli'an Industrial Park, No. 58 and 60 -26996192 26996053 26698144 FAX	Tangtou Avenua, 1 (: 0086-755-863766	Shiyan Street, Boo'an District, Shenzhen Ci 05 E-mail: fengbing.wang@wsct-cert.c	o, Guangdong Province, China,	深圳世标检测;	↓近股份有限公司	ATTOS		
rofthe	NSCT Group (WSCT SA)		Page 16	of 45		and a second second a			

W/5 6

N5 [

75 E

WSET

7.8 Measurement procedure

Power Drift :

All SAR tests were performed with a fully charged battery under the DUT and transmitting at maximum output power. The DASY measurement software uses the power reference measurement and power drift measurement procedures to monitor the power drift of the DUT during SAR testing. Both methods measure the field value at a specified reference position before and after the SAR test. The software calculates the field difference in dB. If the power drift exceeds 5%, the SAR is retested.

WSET

Area scan:

All antennas and radiating structures that may contribute to the measured SAR or influence the SAR distribution must be included in the area scan. The areas of the transmitter(s), antenna(s) and host device, when projected onto the phantom, must be within the area scan measurement region. The area scan measurement resolution must enable the extrapolation algorithms of the SAR system to correctly identify the peak SAR location(s) for subsequent zoom scan measurements to correctly determine the 1-g SAR. Area scans are performed at a constant distance from the phantom surface, determined by the measurement frequencies.

Zoom Scan:

Except when area scan based 1-g SAR estimation applies, a zoom scan measurement is required at the highest peak SAR location determined in the area scan to determine the 1-g SAR. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. The zoom scan volume must be larger than the required minimum dimensions described 7.7. There must be at least one measurement point within the first 5 mm from the phantom surface for measurements \leq 3 GHz, two measurement points for measurements \leq 5 GHz and three measurement points for measurements above 5 GHz. When graded grids are used, which only applies in the direction normal to the phantom surface, the initial grid separation closest to the phantom surface and subsequent graded grid increment ratios must satisfy the required protocols in 7.7. The 1-g SAR averaging volume must be fully contained within the zoom scan measurement volume oundaries;otherwise, the measurement must be repeated by shifting or expanding the zoom scan volume. The similar requirements also apply to 10-g SAR measurements.

ADD : Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 探期世标检测认证股份有限公司

15 E

ber of the WSCT Group (WSCT SA)

NSE

Page 17 of 45

15 E

WSET

NSE

5 E 1

NSE1

World Standardization Certification & Testing Group (Shenzhen)Co., ltd. ReportNo.; WSCT-ANAB-R&E250100005A-SAR

WSET

WSET

15 E T

SP

WSET

WSET

7.9 Tissue simulating liquids: dielectric properties

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must befiled with around 25 liters of homogeneous body tissue simulating liquid. For body SAR testing, the liquidheight from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in the Figure.

WSET

W5C1

	X	Simulating I	iquid for 5GHz, Manufactured by S	PEAG
	ws	Ingredients	(% by w	eight)
	-	Water	50-65	5%
2		Mineral oil	10-30)%
		Emulsifiers	8-25	%
	\rightarrow	Sodium salt	0-1.5	%
	wst	WSET	WSET WSE	WSET
/				$\overline{\vee}$
		WISTER WISTER	WSIT	WISTON WISTON
	~			
1				
				\land
		WSET WSET	WSET	WSET Anteallone Testing T
	\sim		\times \times	
	hurst	TT WETT		The second
	ADD : Building	A-B,Baoll'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Str	iet, Bao'an District, Shenzhen City, Guangdong Province, China.	深圳世标检测认证股份有限公司
,	TEL: 0088-755-2	26996192 26998053 2698144 FAX: 0088-755-86376605 SCT Group (WSCT SA)	E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com	World Standard ration Certification& Testing Group(Shenzhen) Co.,Ltd

WS FT

WSFT

WSC

W5C1

WSET

7.10 Tissue simulating liquids: parameters

/ ·							
WS.	Used Target	Target	t Tissue	Measure	d Tissue	Liquid	
	Frequency	ε _r (+/-5%)	σ (S/m) (+/-5%)	٤r	σ (S/m)	Temp.	Test Date
	2450MHz Head	39.20 (37.24~41.16)	1.80 (1.71~1.89)	40.27	1.82	21.6°C	2025-02-17
-	2550MHz Head	39.10 (37.15~41.05)	1.91 (1.82~2.01)	40.80	1.90	21.6°C	2025-02-17
>	5200MHz Head	36.00 (34.20~37.80)	4.66 (4.43~4.89)	36.30	4.54	21.6°C	2025-02-17
	5300MHz Head	35.90 (34.10~37.70)	4.76 (4.52~5.00)	35.52	4.83	21.6°C	2025-02-17
161	5500MHz Head	35.60 (33.82~37.38)	4.96 (4.71~5.20)	35.80	4.88	21.6°C	2025-02-19
	5600MHz Head	35.50 (33.73~37.27)	5.07 (4.82~5.32)	35.94	5.13	21.6°C	2025-02-19
	5800MHz Head	35.30 (33.54~37.06)	5.27 (5.01~5.53)	35.30	5.23	21.6°C	2025-02-19
1.11							

 ϵ_r = Relative permittivity, σ = Conductivity

W STEIL

8 System Check

8.1 System check procedure

The System check is performed by using a System check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the System check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

WSC

System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

WSET

WSET

World Standardization Certification & Testing Group (Shenzhen)Co., ltd. ReportNo.: WSCT-ANAB-R&E250100005A-SAR

WSET

WSE

WSE

WS7/8.2 System check results

The system Check is performed for verifying the accuracy of the complete measurement system and performance of the software. The following table shows System check results for all frequency bands and tissue liquids used during the tests (plot(s) see annex A).

WSE

W5C

WSE

WSE

15 E'

V5 E1

W5 F

ion& Tes

W5 [

-	price to the second		and the second s	and the second			and the second second	
/	System Check	Target SAR (1W) (+/-10%)		Measured SAR (Normalized to 1W)		Liquid	Test Date	
	-,	1-g (W/kg)	10-g (W/kg)	1-g (W/kg)	10-g (W/kg)	l emp.		
T	D2550V2 Body	54.10 (48.69~59.51)	24.70 (22.23~27.17)	55.80	25.60	21.6°C	2025-02-17	
	D5200V2 Body	76.00 (68.40~83.60)	22.00 (19.80~24.20)	71.70	20.70	21.6°C	2025-02-17	>
	D5300V2 Body	80.60 (72.54~88.66)	23.30 (20.97~25.63)	\$ 80.80	23.10 W	21.6°C	2025-02-17	75 D
	D5500V2 Body	85.60 (77.04~94.16)	24.50 (22.05~26.95)	79.00	22.25	21.6°C	2025-02-19	
7	D5600V2 Body	83.30 (74.97~91.63)	24.10 (21.69~26.51)	78.70	22.40	21.6°C	2025-02-19	
	D5800V2 Body	79.00 (71.10~86.90)	22.70 (20.43~24.97)	77.60	22.00	21.6°C	2025-02-19	X
	Mater							

Note:

WS ET

WSET

WSI

V51

6-11

1.All SAR values are normalized to 1W forward power.

WSE

15 E 1

1-17

W5 E

2. The actual forward power output to the dipole antenna is 20dbm(100mw), so the measured value differs ten times from the table

75 E

NSE

WSE

1 A TE

d-1/ =

LS/E

ADD : Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China 2010 Arg 2010 A

mber of the WSCT Group (WSCT SA)

Page 21 of 45

INVATE /

V5 C

9 SAR Test Configuration

WJLI

9.1 Wi-Fi Test Configuration

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for Wi-Fi mode test. The Absolute Radio Frequency Channel Number(ARFCN) is allocated to 1,6 and 11 respectively in the case of 2450 MHz.During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. 802.11b/g operating modes are tested independently according to the service requirements in each frquency band. 802.11b/g modes are tested on channel 1, 6, 11; however, if output power reduction is 51 necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

Mode	Band	GHz	Channel	"Default Test Channels"		
modo	Dalia	0112	onannor	802.11b	802.11g	
		2412	1#	ALC: S	Δ	
802.11b/g	2.4 GHz	2437	6	\checkmark \checkmark		
	\sim	2462	11#	N	Δ	

Notes:

 $\sqrt{}$ = "default test channels"

 \triangle = possible 802.11g channels with maximum average output ¼ dB the "default test channels"

= when output power is reduced for channel 1 and /or 11 to meet restricted band requirements

the highest output channels closest to each of these channels should be tested.

802.11 Test Channels per FCC Requirements

9.2 WiFi 2.4G SAR Test Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions.

A)802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following: 1) When the reported SAR of the highest measured maximum output power channel (section 3.1 of of KDB 248227D01v02) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.

Page 22 of 45

DD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avonue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 深圳世标检测认证股份有限公司 EL: 0088-755-26996192 26998014 FAX: 0086-755-88376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standards prices Comparison Certifications, Testing Group(S

WSE

2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

B) 2.4GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3 of of KDB 248227D01v02r01). SAR is not required for the following 2.4 GHz OFDM conditions.

1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.

2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified

maximum output power and the adjusted SAR is \leq 1.2 W/kg.

C) SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 g/n OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

N51

9.3 WiFi 5G SAR Test Procedures

A)U-NII-1 and U-NII-2A Bands

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following:

1)When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR.

2)When different maximum output power is specified for the bands, begin SAR measurement in theband with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is \leq 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, both bands are tested independently for SAR.

3)The two U-NII bands may be aggregated to support a 160 MHz channel on channel number 50. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power certified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion.

B)U-NII-2C and U-NII-3 Bands

The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. when Terminal Doppler Weather Radar (TDWR) restriction applies, all channels that operate at 5.60 – 5.65 GHz must be included to apply the SAR test reduction and measurement procedures.

When the same transmitter and antenna(s) are used for U-NII-2C band and U-NII-3 band or 5.8 GHz band of §15.247, the bands may be aggregated to enable additional channels with 20, 40 or 80 MHz bandwidth to span across the band gap, as illustrated in Appendix B. The maximum output power for the additional band gap channels is limited to the lower of those certified for the bands. Unless band gap channels are permanently disabled, they must be considered for SAR testing. The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz may be grouped with the 5.8 GHz channels in U-NII-3 or §15.247 band to enable two SAR probe calibration frequency points to cover the bands, including the band gap channels. When band gap channels are supported and the bands are not aggregated for SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

NDD: Building A-B,Baoll'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 家期世标检测认证股份有限公司 TEL: 0088-755-289980192 28998053 28998144 FAX: 0088-755-88376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standard: ration Certification& Testing Group(She

ber of the WSCT Group (WSCT SA)

Page 24 of 45

WSC

ADD : Building A-8, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China: 深圳世标检测认证股份有限公司

15 F

NSE

Page 25 of 45

25/C

75 E

NSC

WSET

WSET

10 Detailed Test Results

WJLI

10.1 Conducted Power measurements

The measuring conducted average power (Unit:dBm)is shown as below.

AWSLI N

10.1.1 Conducted Power of Wi-Fi 2.4G

I ANT 1		\land \land
	802.11b	
1(2412)	6(2437)	11(2462)
18.80	18.17	18.45
	802.11g	
1(2412)	6(2437)	11(2462)
18.34	17.93	17.85
	802.11n(HT20)	
1(2412)	6(2437)	11(2462)
18.93	18.48	18.19
	802.11n(HT40)	
7(2422)	6(2437)	9(2452)
18.99	18.40	18.36
	1(2412) 18.80 1(2412) 18.34 1(2412) 18.93 7(2422) 18.99	802.11b 1(2412) 6(2437) 18.80 18.17 802.11g 802.11g 1(2412) 6(2437) 18.34 17.93 802.11n(HT20) 802.11n(HT20) 1(2412) 6(2437) 18.93 18.48 802.11n(HT40) 7(2422) 6(2437) 18.99

WSET

WITLI

AUX ANT2

WS

Mode		802.11b	
Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
Average Power(dBm)	16.68	17.52	16.86
Mode		802.11g	K
Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
Average Power(dBm)	17.19	17.23	17.22
Mode		802.11n(HT20)	
Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
Average Power(dBm)	16.96 🔨	16.87	16.76
Mode		802.11n(HT40)	
Channel/Frequency(MHz)	7(2422)	6(2437)	9(2452)
Average Power(dBm)	17.07	17.05	17.06

MIMO Mode

WSET

WSE1

Mode	802.11n(HT20)				
Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)		
Average Power(dBm)	21.07	20.76	20.54		
Mode		802.11n(HT40)			
Channel/Frequency(MHz)	7(2422)	6(2437)	9(2452)		
Average Power(dBm)	21.15	20.79	20.77		

WSET

WSE

WSET

W5 E 7

on& Tesu

75 E T

WSE

NSET

15 E

Member of the WSCT Group (WSCT SA)

Page 26 of 45

W5 E1

WSET

WSE

<KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters>

(1) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is <= 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is <= 0.8 W/kg or all test positions are measured.</p>

WSC.

WSE

(2) For Wi-Fi 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

WSET

WSET

WSCI

15 C T

10.1.2 Conducted Power of Wi-Fi 5G

							/	
				Ant 1				10 -
$\overline{}$	Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)	2
/		000.44a	36	5180	16.00 ±1.0	15.55	No	
WSI	7	802.11a	48	5240	16.00 ±1.0	15.58	No	l
		000 44+ 11700	36	5180	15.00 ±1.0	14.52	No	
		802.11n-H120	48	5240	15.00 ±1.0	14.97	No	X
		000 44+ 11740	38	5190	17.00 ±1.0	16.54	No	
	U-NII-1	802.11n-H140	46	5230	14.50 ±1.0	14.32	No	Y
	(5150-5250)	000 44-2 1/1/1700	36	5180	15.00 ±1.0	14.93	No	۲
\sim		802.11ac-VH120	48	5240	17.00 ±1.0	16.65	Yes	
\wedge			38 🧹	5190	14.00 ±1.0	13.50	No	
une o	A.	802.11ac-VH140	46	5230	14.00 ±1.0	13.64	No	
<u>754</u>		802.11ac-VHT80	42	5210	12.00 ±1.0	11.90	No	
				Ant 2				
	Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)	7
	/	902 110	36	5180	17.00 ±1.0	16.57	No	
X		602.11a	48	5240	18.00 ±1.0	17.79	No	
/		000 11 p UT20	36	5180	15.50 ±1.0	15.31	No	
WSL	7	802.TIN-FI120	48 / 5	5240	16.50 ±1.0	16.46 W/5	7 No	
		902 11n UT40	38	5190	14.50 ±1.0	14.47	No	
	U-NII-1 (5150-5250)	002.1111-1140	46	5230	20.00 ±1.0	19.72	Yes	×
	(3130-3230)		36	5180	15.50 ±1.0	15.25	No	
	WSET	002.11ac-VH120	48	5240	16.50 ±1.0	W 5 16.22	No	7
1	/	902 11 oo \/UT 40	38	5190	14.50 ±1.0	14.33	No	
X		002.11ac-v11140	46	5230	15.00 ±1.0	14.89	No	
\square		802.11ac-VHT80	42	5210	13.50 ±1.0	13.45	No	
WSI				MIMO				
	Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)	×
		802 11n UT20	36	5180	18.00 ±1.0	17.94	No	
	WSET	002.111112051	48	5240 <i>5 L</i> T	19.00 ±1.0	W5_18.79	No	
1		802 11n HT40	38	5190	19.00 ±1.0	18.64	No	
X		002.111-11140	46	5230	21.00 ±1.0	20.82	Yes	
1	(5150-5250)	802 11ac-\/HT20	36	5180	18.50 ±1.0	18.10	No	
WSL	(0100 0200)		48 / 5	5240	19.50 ±1.0	19.45 19.45	No	
			38	5190	17.00 ±1.0	16.95	No	
	X	002.11aC-VH140	46	5230	17.50 ±1.0	17.32	No	×
		802.11ac-VHT80	42	5210	16.00 ±1.0	15.75	No	
	WSIT	WSI		WSET		WSET	ation& Test	Z

ADD : Building A-B, Baoli'an Industriel Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 深圳世标检测认证股份有限公司

15 E T

WSE

Page 28 of 45

WSET

WSE

WSET

World Standardization Certification & Testing Group (Shenzhen)Co., ltd. ReportNo.: WSCT-ANAB-R&E250100005A-SAR

WSET

				Ant 1				1
	Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)	C 1
\sim		000.110	52	5260	14.50 ±1.0	14.19	No	
		802.11a	64 🦯	5320	15.00 ±1.0	14.57	No	
we			52	5260	15.50 ±1.0	15.09 w/c/	No	
7.000		802.111-H120	64	5320	17.00 ±1.0	16.53	Yes	
			54	5270	13.00 ±1.0	12.97	No	/
	U-NII-2a	802.11n-H140	62	5310	14.50 ±1.0	14.07	No	1
A.	(5250-5550)		52	5260	15.50 ±1.0	15.31	No	l als
	/ Held	802.11ac-VH120	64	5320	15.50 ±1.0	15.20	No	
\sim		000 44 \// 17 40	54	5270	13.00 ±1.0	12.82	No	
		802.11ac-VH140	62 🥖	5310	14.50 ±1.0	14.26	🔪 No	
har	1	802.11ac-VHT80	58	5290	12.50 ±1.0	12.39	No	
/WSL				Ant 2				
	Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)	<
	WSET	000 44 WS/	52	5260 5 7 7	17.00 ±1.0	16.55	No	
1	/	802.11a	64	5320	17.50 ±1.0	17.04	Yes	
$\sim \chi$			52	5260	16.00 ±1.0	15.89	No	
		802.11n-H120	64	5320	16.50 ±1.0	16.50	No	
wsi	7	WEST IT IS	54	5270	15.00 ±1.0	14.54	No	
7	U-NII-2a	802.11n-H140	62	5310	16.00 ±1.0	15.54	No	
	(5250-5350)		52	5260	15.50 ±1.0	15.26	No	
	\sim	802.11ac-VH120	64	5320	16.50 ±1.0	16.17	No 🖊	1
2	and the second		54	5270	14.50 ±1.0	14.41	No	a and a second
1	/ 11-191	802.11ac-VH140	62	5310	15.00 ±1.0	14,99	No	LI
		802.11ac-VHT80	58	5290	14.00 ±1.0	13.75	No	
\sim				MIMO				
/wist	Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)	
	X	802 11p-HT20	52	5260	19.00 ± 1.0	18.52	No	X
		002.11111120	64	5320	20.00 ± 1.0	19.53	Yes	
N	WSET	802 11p-HT40	7 54	5270 s c 7	17.00 ±1.0	W 5 16.84	No	E 1
		002.11111140	62	5310	18.00 ±1.0	17.88	No	
X	(5250-5350)	802 11ac-\/UT20	52	5260	18.50 ±1.0	18.30	No	
/	(0200 0000)	002.1120	64	5320	19.00 ±1.0	18.72	No	
WSL	7		54 / 5	5270	17.00 ±1.0	16.70	No	
		002.11ac-VH140	62	5310	18.00 ±1.0	17.65	No	
	X	802.11ac-VHT80	58	5290	16.50 ± 1.0	16.13	No	X
							/	1

ADD : Building A-8, Baoli'an Industrial Park, No.58 and 60, Tanglou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 深圳世标检测认证股份有限公司

W 5

WSET

VSET

Member of the WSCT Group (WSCT SA)

25 E

WSET

WSE1

W5

Page 29 of 45

WSET

WSCT

WSE1

W5ET

WSET

n& Te

WSET

WSET

WSET

WSC1

PT1

VSCT

				Anti				
2	Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)	
	1 unin	A sector	100	5500	13.00 ±1.0	12.71	No	LU
\searrow		802.11a	140	5700	14.50 ±1.0	14.07	No	
			100 🦯	5500	15.50 ±1.0	15.22	🔪 No	
hard		802.11n-H120	140	5700	14.00 ±1.0	13.73	No	
			102	5510	15.00 ±1.0	14.98	No	
	U-NII-2c	802.11n-H140	134	5670	16.00 ±1.0	15.76	No	
	(5470-5725)		100	5500	16.50 ±1.0	16.50	No	1
2		802.11ac-VH120	140	5700	17.00 ±1.0	16.77	Yes	
	WSLT		102	5510	15.00 ±1.0	14.93	No	191
		802.11ac-VHT40	134	5670	16.00 ±1.0	15.78	No	
			106 🥖	5530	13.50 ±1.0	13.50	No	
		802.11ac-VH180	122	5610	14.50 ±1.0	14.32	No	
_W5L				Ant 2				
	Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)	<
	WSET	002 110 WS	100	5500	17.50 ±1.0	17.38	Yes	C 7
1	/	002.11a	140	5700	16.00 ±1.0	15.97	No	
\sim		902 11n UT20	100	5500	16.50 ±1.0	16.35	No	
		ου <u>2</u> .1111-Π120	140	5700	15.50 ±1.0	15.18	No	
WSI		000 110 UT40	102	5510	15.00 ±1.0	14.92	No	
7 11 - 13	U-NII-2c	оuz.нп-п140	134	5670	15.00 ±1.0	14.73	No	
	(5470-5725)	000 44 co \// IT00	100	5500	16.50 ±1.0	16.19	No	
6	\wedge	602.11ac-VH120	140	5700	15.00 ±1.0	14.88	No 🦯	1
A.	and and a second	000 44 co \// IT 40	102	5510	15.00 ±1.0	14.91	No	1 (11) 7
	/ 11-151	802.11ac-VH140	134	5670	15.50 ±1.0	15.07	No	L
			106	5530	14.50 ±1.0	14.05	No	
		802.11ac-VH180	122 🥖	5610	14.00 ±1.0	13.63	🔪 No	
harris				MIMO				
71150	Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)	$\overline{\langle}$
		802 11n-HT20	100	5500	19.00 ±1.0	18.83	No	
	WSET	WSI	7 140	5700 s r t	18.00 ±1.0	w s 17.53	No	E 7
	/	802 11n-HT40	102	5510	18.00 ±1.0	17.96	No	
X			134	5670	18.50 ±1.0	18.29	No	
/	U-NII-2c	802 11ac-\/HT20	100	5500	19.50 ±1.0	19.36	Yes	
WSI	(5470-5725)	002.1100-011120	140	5700	19.00 ±1.0	18.94 105	No	
		802 11ac-\/UT40	102	5510	18.00 ±1.0	17.93	No	
	\times	002.11ac-v11140	134	5670	18.50 ±1.0	18.45	No	X
		802 11ac-\/UT80	106	5530	17.00 ±1.0	16.79	No	
	WSFT	002.11ac-v11100	122	5610	17.50 ±1.0	17.00	No	N ph
			8.4 C				aca. Sho	

ADD: Building A-8, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China. TEL: 0086-755-26996192 269980132 269980144 FAX: 0088-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com Http://wwww.wsct-ce

VSET

WSE1

Page 30 of 45

WSC1

WSE

WSET

				Ant 1			
	Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)
1	100	802 11a	149	5745	15.00 ±1.0	14.54	No
X		002.114	165	5825	17.00 ±1.0	16.98	No
1		802 11p-HT20	149	5745	14.00 ±1.0	13.57	No
WSI		002.1111120	165	5825	16.00 ±1.0	15.82 🦯	No
211215	U-NII-3	802 11p HT40	151	5755	16.00 ±1.0	15.91	No
	(5725-	802.1111-1140	159	5795	17.50±1.0	17.09	No
	5825)		149	5745	16.50 ±1.0	16.08	No
N.	here	802.11ac-VH120	165	5825	18.00 ±1.0	17.97	Yes
	111		151	5755	15.50 ±1.0	15.11	No
	/	802.11ac-VH140	159	5795	17.00 ±1.0	16.51	No
		802.11ac-VHT80	155 🥖	5775	15.00 ±1.0	14.64	No
				Ant 2			
/w/s/	Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)
	/		149	5745	15.50 ±1.0	15.33	No
	100	802.11a	165	5825	17.50 ±1.0	17.50	No
1	1		149	5745	15.50 ±1.0	15.28	No
		802.11n-H120	165	5825	17.50 ±1.0	17.43	No
	U-NII-3		151	5755	14.50 ±1.0	14.36	No
hurs	(5725-	802.11n-H140	159	5795	16.50 ±1.0	16.38 🦯	No
ZUEL	5825)		149	5745	15.50 ±1.0	15.33	No
		802.11ac-VH120	165	5825	18.00 ±1.0	17.60	Yes
8			151	5755	15.00 ±1.0	14.82	No
2	1	802.11ac-VH140	159	5795	16.50 ±1.0	16.03	No
1		802.11ac-VHT80	155	5775	14.50 ±1.0	14.09	No
	-			MIMO			
AVIST.	Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)
		802 11a HT20	149	5745	18.00 ±1.0	17.52	No
		802.111-H120	165	5825	20.00 ± 1.0	19.71	No
	/	802 11a HT40	151	5755	18.50 ±1.0	18.21	No
	U-NII-3	5/7 802.111-H140	159	5795 577	16.50 ±1.0	16.38	No
1	(5725-		149	5745	19.00 ±1.0	18.73	No
X	5825)	002.11aC-VH120	165	5825	21.00 ±1.0	20.80	Yes
1			151	5755	18.00 ±1.0	17.98	No
WIST	7	802.11aC-VH140	159	5795	19.50 ±1.0	19.29 🦯	VSCNO
	1	802.11ac-VHT80	155	5775	17.50 ±1.0	17.38	No
			1				

<KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters>

For WLAN 5 GHz, the initial test configuration was selected according to the transmission mode with thehighest maximum output power. When the reported SAR of initial test configuration is > 0.8 W/kg, SAR is required for the subsequent highest measured output power channel until the reported SAR result is <= 1.2 W/kg or all required channels are measured. For other transmission modes, SAR is not required when the highest reported SAR for initial test configuration is adjusted by the ratio of subsequent test configuration to initial test configuration specified maximum output power and it is <= 1.2 W/kg

NDD: Building A-8,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. EL: 0086-755-28996053 26998053 26998144 FAX: 0086-755-88376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standard Lation Certification & Testing Group(Standard Lation & Certification & Certification & Testing Group(Standard Lation & Certification & Certification & Testing Group(Standard Lation & Certification & Certifi

Page 31 of 45

15 E

10.1.3 Conducted Power of BT

The maximum output power of BT is:

WSET

W

WSET

WSET

-	Mode		GFSK mode		
-	Channel/Frequency(MHz)	0(2402)	39(2441)	78(2480)	1
	Peak Power(dBm)	7.29	7.24	7.77	
	Mode		Pi/4DQPSK mode		
	Channel/Frequency(MHz)	0(2402)	39(2441)	78(2480)	
	Peak Power(dBm)	9.07	W5_7 9.05	5 CT 10.01 / W 5	57°)
	Mode		8DPSK mode		
S	Channel/Frequency(MHz)	0(2402)	39(2441)	78(2480)	
1	Peak Power(dBm)	9.68	9.67	10.21	

AWSET

WSFT

WSFT

WSET

WSET

WSE7

WSCI

	The maximum output pov	ver of BLE is:	\sim	\times \searrow	1
	Mode		1Mbps		\mathbf{N}
	Channel/Frequency(MHz)	0(2402)	20(2440)	39(2480)	
	Peak Power(dBm)	7.25	7.22	7.59	97.6
	Mode		2Mbps		1
>	Channel/Frequency(MHz)	0(2402)	20(2440)	39(2480)	
/	Peak Power(dBm)	7.39	7.58	7.86	
75	TT WST	WSET	WSET	WSCT	

WSET

Page 32 of 45

WSET

W5ET

WSET

WSIT

WSET

WSET

ation& Testin

WSCT

WSET

10.1.4 Tune-up powertolerance

Band		Tune-up power t	olerance(dBm)
		802.11b	Max output power =19.0±1.0dBm
	2.4G	802.11g	Max output power =18.5±1.0dBm
	(MAIN ANT1)	802.11n (HT20)	Max output power =19.0±1.0dBm
		802.11n (HT40)	Max output power =19.0±1.0dBm
2 ACIMIEI	WSET	802.11b	Max output power =18.0±1.0dBm
2.460010	2.4G	802.11g	Max output power =17.5±1.0dBm
X	(AUX ANT2)	802.11n (HT20)	Max output power =17.0±1.0dBm
		802.11n (HT40)	Max output power =17.5±1.0dBm
	2.4G	802.11n (HT20)	Max output power =21.5±1.0dBm
	(MIMOMode)	802.11n (HT40)	Max output power =21.5±1.0dBm
\sim	MAIN ANT1	802.11ac-VHT20	Max output power =17.0±1.0dBm
U-NII-1(5150-5250)	AUX ANT2	802.11n-HT40	Max output power =20.0±1.0dBm
	MIMOMode	802.11n-HT40	Max output power =21.0±1.0dBm
WSET	MAIN ANT1	802.11 n-HT20	Max output power =17.0 ±1.0dBm
U-NII-2a(5250-5350)	AUX ANT2	802.11a	Max output power =17.5±1.0dBm
X	MIMOMode	802.11n-HT20	Max output power =20.0±1.0dBm
	MAIN ANT1	802.11 ac-VHT20	Max output power =17.0±1.0dBm
U-NII-2c(5470-5725)	75 AUX ANT2	/w/s = 802.11a	Max output power =17.5±1.0dBm
	MIMOMode	802.11ac-VHT20	Max output power =19.5±1.0dBm
\times	MAIN ANT1	802.11ac-VHT20	Max output power =18.0±1.0dBm
U-NII-3(5725-5825)	AUX ANT2	802.11ac-VHT20	Max output power =18.0±1.0dBm
(TITAL)	MIMOMode	802.11ac-VHT20	Max output power =21.0±1.0dBm
/ uria		GFSK	Max output power =10.5±1.0dBm
ВТ	π/4	DQPSK	Max output power =10.5±1.0dBm
\mathbf{X}	8	DPSK	Max output power =10.5±1.0dBm
BIE	1	Mbps	Max output power =8.0±1.0dBm
	2	Mbps	Max output power =8.0±1.0dBm

WSET

WSFT

WSET

WSET

WSET

WSE

WISET

WSE1

WSET

WSET

W5ET

WSET

WSET

WSET

WSET

ADD : Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 深圳世标检测认证股份有限公司 TEL: 0088-755-26996192 26998053 26998144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standard ration Certifications, Testing Group(Shendh

WSEI

W5ET

Member of the WSCT Group (WSCT SA)

WSET

Page 33 of 45

WSET

WSET

WSET

WSET

10.2 SAR test results Notes:

1) Per KDB447498 D01v05 r02,the SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the scaled SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

2) Per KDB447498 D01v05r02, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz. When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

3)Per KDB447498 D01v06, All measurement SAR result is scaled-up to account for tune-up tolerance is compliant.

4) Per KDB648474 D04v01r03, body-worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn with headset SAR.

5)Per KDB248227 D01v02r02,the procedures required to establish specific device operating configurations for testing the SAR of 802.11 a/b/g transmitters.

6) Per KDB865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%, and the measured SAR <1.45W/Kg, only one repeated measurement is required.</p>

7) Per KDB865664 D02v01r02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when 5 the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing(Refer to appendix B for details).

8) Per KDB6162147 D04v01r02, the SAR requirements for laptop and tablet computers, and its to determine the minimum test separation distance .

Page 34 of 45

NDD: Building A-B,Baoll'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 深圳世标检测认证股份有限公司 EL: 0088-755-28996192 28998053 26998144 FAX: 0086-755-88376805 E-mail: fengbing wang@wsct-cert.com Http://www.wsct-cert.com World Standard ration Certifications, Testing Group (Shi

WSE

WSET

WSET

WSLT

WSET

WSET

W5ET

WSET

WSET

WSET

WSET

ation& Testin

WSET

WSET

10.2.1 Results overview of Wi-Fi 2.4G

WSET

WSE

WSET

WSET

						1				\sim
	Mode	Test Position	Test	SAR Valu	e (W/kg)	Power	Conducted	Tune-up	Scaled	Scaling
	Mode	0 Body with 0mm	/Freq.(MHz)	1-g	10-g	(%)	(dBm)	(dBm)	(W/kg)	Factor
1				WLAN	V2.4g(gap	0mm)				
	\sim	Front	7/2442	0.392	0.175	2.250	18.99	19.00	0.393	1.002
	802.11n-HT40 MAIN ANT1	Back	7/2442	0.231	0.092	-3.750	18.99	19.00	0.232	1.002
1	VSET	Торисси	7/2442	0.932	0.416	-1.000	18.99	19.00	0.934	1.002
	1	Front	6/2437	0.523	0.238	4.750	17.52	18.00	0.584	1.117
	802.11b AUX ANT2	Back	6/2437	0.285	0.124	-0.500	17.52	18.00	0.318	1.117
		Тор	6/2437	0.833	0.310	-0.250	17.52	18.00	0.930	1.117
1		LT Front	7/2442	0.629	0.282	-1.750	21.15	21.50	0.682	1.084
	802.11n-HT40 MIMO	Back	7/2442	0.477	0.201	3.250	21.15	21.50	0.517	1.084
	\wedge	Top[7/2442	1.240	0.517	-0.100	21.15	21.50	1.344	1.084

WSET

WSET

10.2.2 Results overview of BT

W5ET

75 F

WSET

W5ET

	\sim				\sim						
1	Test Position of	Test	Test	Test (W/kg) Drift Power		SAR Value (W/kg) Power Conducted up		Tune- up	Scaled	Scalig	
- N	Body with 0mm	/Freq.(MHz)	Mode	1-g	10-g	(%)	(dBm)	Limit(d Bm)	(W/kg)	factor	
					BTantenn	a to side	\mathbf{X}				
	Front side	78/2480	8DPSK	0.041	0.019	4.300	10.21	10.50	0.044	1.069	
	Rear side	78/2480	8DPSK	0.033	0.014	1.200	10.21	10.50	0.035	1.069	
	Left side	78/2480	8DPSK	0.056	0.027	0.550	10.21	10.50	0.060	1.069	
	Top side	78/2480	8DPSK	0.085	0.039	1.640	10.21	10.50	0.091	1.069	
	MILLER	1111	Teles 1	1	VIEICE		(WILLIAM)		MALE CT	C	

WSET

ADD : Building A-B,Baoli'an Industrial Park,No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. 深圳世标检测认证股份有限公司 TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standard ration Certifications, Testing Group(Shenzh

WSET

Member of the WSCT Group (WSCT SA)

WSET

WSET

WSET

WSCI

Page 35 of 45

WSET

WSET

WSET

WSET

NSCI

P47

15 E T

10.2.3 Results overview of Wi-Fi 5G

					1	~				1
	Modo	Test Position of	Test channel	SAR Value	e (W/kg)	Power	Conducted	Tune-up	Scaled	Scaling
	Mode	Body with 0mm	/Freq.(MHz)	1-g	10-g	(%)	(dBm)	(dBm)	(W/kg)	Factor
				WLAN	5.2g(gap 0m	ım)		L		
		Front	48/5240	0.298	0.082	1.250	16.65	17.00	0.323	1.084
	ANT1	Back	48/5240	0.345	0.097	0.750	16.65	17.00	0.374	1.084
4	WSLT	Тор	48/5240	0.892	0.243	-3.750	16.65	17.00	0.967	1.084
		Front	46/5230	0.274	0.071	-3.250	19.72	20.00	0.292	1.067
	802.11n-H140 ANT2	Back	46/5230	0.297	0.080	-2.000	19.72	20.00	0.317	1.067
	horse	Тор	46/5230	0.715	0.192	-4.250	19.72	20.00	0.763	1.067
2	11151	Front	46/5230	0.402	0.128	1.750	20.82	21.00	0.419	1.042
	802.11n-HT40 MIMO-ANT	Back	46/5230	0.438	0.146	4.500	20.82	21.00	0.457	1.042
	\wedge	Тор	46/5230	1.070	0.319	-1.000	20.82	21.00	1.115	1.042
				WLAN	5.4g(gap 0m	ım)				
4	902 11p HT20	Front 5127	64/5320	0.243	0.068	1.250	5 16.53	17.00	0.271	1.114
	ANT1	Back	64/5320	0.468	0.146	0.750	16.53	17.00	0.521	1.114
	/	Тор	64/5320	0.912	0.286	-2.000	16.53	17.00	1.016	1.114
	802 112	Front	64/5320	0.175	0.049	1.500	17.04	17.50	0.195	1.112
	ANT2	Back	64/5320	0.401	0.128	-3.250	17.04	17.50	0.446	1.112
ļ	\sim	Тор	64/5320	0.824	0.236	4.500	17.04	17.50	0.916	1.112
	000 44+ 1/700	Front	64/5320	0.169	0.034	1.750	19.53	20.00	0.993	1.114
	MIMO-ANT	Back	64/5320	0.382	0.117	0.250	19.53	20.00	0.426	1.114
4	WSLI	Top 521	64/5320	1.210	0.347	-4.250	19.53	20.00	1.348	1.114
ļ				WLAN	5.6g(gap 0m	ım)		~		
	802 11ac-\/HT20	Front	140/5700	0.249	0.073	-3.250	16.77	17.00	0.263	1.054
	ANT1	Back	140/5700	0.418	0.127	-2.750	16.77	17.00	0.441	1.054
	W5	Тор	140/5700	1.080	0.315	-1.250	16.77	17.00	1.139	1.054
	802 11a	Front	100/5500	0.218	0.062	4.500	17.38	17.50	0.224	1.028
	ANT2	Back	100/5500	0.346	0.103	-2.250	17.38	17.50	0.356	1.028
		Тор	100/5500	0.856	0.258	-3.500	17.38	17.50	0.880	1.028
4	802 11ac-\/HT20	Front 5 27	100/5500	0.328	0.101	1.500	19.36	19.50	0.339	1.033
	MIMO-ANT	Back	100/5500	0.569	0.175	0.750	19.36	19.50	0.588	1.033
	7	Тор	100/5500	1.320	0.397	-0.050	19.36	19.50	1.363	1.033
			105/5005	WLAN:	5.8g(gap 0m	im)	47.07	40.00	0.005	4 007
	802.11ac-VHT20	Front	165/5825	0.204	0.062	-2.250	17.97	18.00	0.205	1.007
	ANT1	Васк	165/5825	0.291	0.095	0.750	17.97	18.00	0.293	1.007
ŀ	X	Гор	165/5825	0.956	0.291	-3.500	17.97	18.00	0.963	1.007
	802.11ac-VHT20	Front	165/5825	0.275	0.081	-1.250	17.60	18.00	0.302	1.096
4	ANT2	Back	165/5825	0.239	0.073	-3.000	17.60	18.00	0.262	1.096
-		Гор	165/5825	0.837	0.229	-4.750	17.60	18.00	0.918	1.096
	802.11ac-VHT20	Front	165/5825	0.384	0.125	-1.500	20.80	21.00	0.402	1.047
	MIMO-ANT	Back	165/5825	0.448	0.134	-0.250	20.80	21.00	0.469	1.047
	10/1	Гор	165/5825	1.270	0.382	-4.500	20.80	21.00	1.330 tions	Tes, 1.047

ADD : Building A-B,Baoli'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 深圳世标检测认证股份有限公司

15 E

Member of the WSCT Group (WSCT SA)

WSE

W 5

Page 36 of 45

WSE1

WSE

W5 E7

WSET

WSET

WSET

WSET

WSET

10.2.4 Results overview of BT

WSET

WSET

Test Position of	Test channel	Test	SAR (W/	Value ′kg)	Power Drift	Conducted Power	Tune- up	Scaled SAR ₁₋₀	Scalig
Body with 0mm	/Freq.(MHz)	wode	1-g	10-g	(%)	(dBm)	Limit(d Bm)	(W/kg)	factor
BTantenn					a to side	\sim		\sim	
Front side	78/2480	8DPSK	0.041	0.019	4.300	10.21	10.50	0.044	1.069
Rear side	78/2480	8DPSK	0.033	0.014	1.200	10.21	10.50	0.035	1.069
Left side	78/2480	8DPSK	0.056	0.027	0.550	10.21	10.50	0.060	1.069
Top side	78/2480	8DPSK	0.085	0.039	1.640	10.21	10.50	0.091	1.069

Page 37 of 45

WSET

W5CT

Note:According to section 6.1.4.5 device with swivel antennas, if the antennas can be rotated to two planes, an evaluation should be performed and documented on the report to decide the highest exposure conditions, and only that position need consideration.

In addition, in case of this antenna, the two representative positions 0degree and 90degree shall be evaluated independently for each required EUT edge. When evaluating the test surfaces, the nearest distance between the antenna and the edges is applicable.

75 /E

NSC

ADD : Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China: 深圳世标检测认证股份有限公司

mber of the WSCT Group (WSCT SA)

Page 38 of 45

11.1.1 Stand-alone SAR test exclusion

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤

WSE

50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

- mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where
- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

WSE

15 E

15 F

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine

SAR test exclusion.

Body-Wornposition

44	Mode	Pmax(dBm)	Pmax(mW)	Distance(mm)	f(GHz)	Calculation Result	exclusion Threshold	SAR test exclusion
14	BT	10.21	10.50	5.00	2.45	3.29	7.50	Pass

NSET

NSE

WSE

W5 F

WSE

15 E

25/C

WSI

NSE

75 E

75 E

15 E

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, Shiyan Street, Bao'an Avenue, Shiyan Street, Bao'an

ADD: Building A-B, Baoli an Industrial Park, No.68 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, TEL: 0086-755-28996192 26998053 269980144 FAX: 0086-755-88376605 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com Http://www.wscl-cert.com

nber of the WSCT Group (WSCT SA)

Page 39 of 45

WSET

World Standardization Certification & Testing Group (Shenzhen)Co., ltd. ReportNo.: WSCT-ANAB-R&E250100005A-SAR

WSET

WSET

WSET

WSET

W5ET

11.1.2 Simultaneous Transmission SAR Summation Scenario

WSCI

ATTACA AND A	ATTENDED	177	The local division of	(marca)		
	Mada	Desitien	Ant WIFI	Ant 1 BT	WIFI+ BT	
X	Mode	Position	1g(W/kg)	1g(W/kg)	1g(W/kg)	\times
	2.4Cwifi	Front	0.682	0.044	0.726	
WSET		Back	0.517/52	0.035	0.552	WSET
		Тор	1.344	0.060	1.404	
X	E 2Chuifi	Front	0.419	0.091	0.510	X
	5.2GWIII	Back	0.457	0.044	0.501	
WEIT		Тор 🦯	1.115	0.035	1.150 🦯	VERT
/ ucian	E 4Chuifi	Front	0.993	0.060	1.053	
\sim		Back	0.426 🔪	0.091	0.517	
\wedge		Тор	1.348	0.044	1.392	
	E COwifi	Front	0.339	0.035	0.374	
WSET	5.6GWIII	Back	0.588	0.060	0.648	WSET
		Тор	1.363	0.091	1.454	
X	E OC wifi	Front	X 0.402	0.044	0.446	X
		Back 🧹	0.469	0.035	0.504	
WSET		Тор	5 71.330	0.060 - 7	1.390 🦯	75ET
				/		

WSET

WSEI

of the WSC1 Group (WSC1 SA)

WSET

Page 40 of 45

WSE1

W5ET

WSET

World Standardization Certification & Testing Group (Shenzhen)Co., ltd. ReportNo.; WSCT-ANAB-R&E250100005A-SAR

WSET

ET

11.2 Measurement uncertainty evaluation for SAR test

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Satimo. The breakdown of the individual uncertainties is as follows:

WSET

WSCT

	Measurer	ment Un	certain	ty eval	uation for	SAR test				
5	Uncertainty Component	Tol.	Prob.	Div.	C_i	C_i	1g U _i	10g U _i	Vi	
	measurement system	(±%)	Dist.		(19)	(109)	(±%)	(±%)		/
	Probe Calibration	5.8	N	1	1	1	5.8	5.8	∞	
	Axial Isotropy	3.5	R	$\sqrt{3}$	(1-C _p) ^{1/2}	$(1-C_p)^{1/2}$	1.43	1.43 🌙	00	
	Hemispherical Isotropy	5.9	R	$\sqrt{3}$	√Cp	√Cp	2.41	2.41	∞	1
١	Boundary Effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	8	
/	Linearity	4.7	R	$\sqrt{3}$	1 /	1	2.71	2.71	∞	
Ģ	system Detection Limits	1/1	s R	$\sqrt{3}$	1000	FT	0.58	0.58	∞	
	Modulation response	3	N	7	/1	1	3.00	3.00	00	2
	Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞	
	Response Time	0	R	$\sqrt{3}$	1	1 🥖	0.00	0.00	œ	
	Integration Time	1.4	R	√3	71	1 W	0.81	0.81 🌙	~	7
,	RF Ambient Conditions-Noise	3	R	√3	1	1	1.73	1.73	×	
	RF Ambient Conditions- Reflections	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞	
5	Probe Positioner Mechanical Tolerance	1.4 1	5 R	√3	1 1 1	CT1	0.81	0.81	∞	
	Probe positioning with respect to Phantom Shell	1.4	R	√3	1	1	0.81	0.81	∞	
	Extrapolation, interpolation and Integration Algorithms for	72.3	R	√3	71	1/1	5 1.33	1.33	V @5 /	2
	Max.SAR Evaluation									
1	Test Sample Related	0.0		4			0.00	0.00	44	
	Device Helder Upperteinty	2.6	IN	1	1		2.60	2.60	71	
5	Output Power Variation SAD drift	3 14	S IN		11/2		3.00	3.00	/	
	measurement	5	R	√3	1	1	2.89	2.89	8	/
	SAR scaling	2	R	$\sqrt{3}$	1	1	1.15	1.15	∞	
							X		1	

WSET WSET W

WSET

WSE

WSE1

W5 E1

N5 E1

WSET

WSE

WSET

WSE

WSE

WSET

n& Te

WSCI

15 E T

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 深圳世标检测认证股份有限公司 TEL: 0088-755-26996053 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wscf-cert.com Http://www.wscf-cert.com Http://www.wscf-cert.com

mber of the WSCT Group (WSCT SA)

Page 41 of 45

WSET

15 E

WSC1

WSET

WSET

2

WSET

WSC7

WSET

WSET

WSET

WSET

NS	Phantom and Tissue Parameters									1
	Phantom Uncertainty (shape and thickness tolerances)	4	R	√3	1	1	2.31	2.31	8	7
	Uncertainty in SAR correction for deviation (in permittivity and conductivity)	2	N	ws	Ţ	0.84	2.00	1.68	ws i	7
1	Liquid conductivity (meas.)	2.5	N	1	0.64	0.43	1.60	1.08	5	
/	Liquid conductivity (target.)	5	R	$\sqrt{3}$	0.64	0.43	1.85	1.24	5	
NS	CT Liquid Permittivity (meas.)	2.5	5 N	1	0.60	<i>C</i> 0.49	1.50	1.23	∞	
	Liquid Permittivity (target.)	5	R	√3	0.60	0.49	1.73	1.42	∞	
	Combined Standard Uncertainly	A	Rss	1000	1	k	10.63	10.54	form	-
1	Expanded Uncertainty{95% CONFIDENCE INTERRVAL}		k				21.26	21.08		
	Y Y					1.5				

WSET

WSE7

WSET

WSET

WSET

WSET

WSE

11.3 Measurement uncertainty evaluation for system check

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Satimo. The breakdown of the individual uncertainties is as follows:

WSET

W5C1

		Uncertai	nty For Syste	em Perforr	mance Check			/		
7.	Lincertainty Component	Tol.	Prob.	Div	C _i V S	CTC i	1g 🦯	75 10g	V.	
	Oncertainty Component	(±%)	Dist.	Div.	1g	10g	U _i (±%)	U _i (±%)	Vi	7
	measurement system					-				ſ
	Probe Calibration	5.8	N	1	1	1	5.80	5.80	~~~~	
	Axial Isotropy	3.5	R	√3	(1-C _p) ^{1/2}	(1-C _p) ^{1/2}	1.43	1.43	~~~	
	Hemispherical Isotropy	5.9	R	√3	√Cp	√Cp	2.41	2.41	∞	7°
2	Boundary Effect	1	R	√3	1	1	0.58	0.58	∞	
	Linearity	4.7	R	3	1	1	2.71	2.71	∞	
1	system detection Limits	1	R	√3	1	1	0.58	0.58	∞	
	Modulation response	0	N	1	1	1	0.00	0.00	∞	
75	Readout Electronics	0.5	VSNT N	1	1 11/5	CT 1	0.50	0.50	∞	
	Response Time	0	R	$\sqrt{3}$	1	1	0.00	0.00	00	7
	Integration Time	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞	
	RF ambient Conditions - Noise	3	R	3	1	1	1.73	1.73	∞	
	RF ambient Conditions – Reflections	3	R	$\sqrt{3}$	1	1	1.73	1.73	00	
	Probe positioned Mechanical Tolerance	1.4	R	√3			0.81	0.81		7
	Probe positioning with respect to Phantom Shell	1.4	R	√3	1	1	0.81	0.81	∞	
25	Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	2.3	vs BT	√3	1 WIS	CT \	1.33	v 5 ^{1.33}	ø	
	Dipole		1					1		
	Deviation of experimental source from numerical source	4	N	1	1	1	4.00	4.00	~	~
	Input power and SAR drift measurement	75	R	√3 5 /	7	1 W	5 2.89	2.89	W~5 [7
1	Dipole axis to liquid Distance	2	R	√3	1	1	1.16	1.16	ø	
1	Phantom and Tissue Parameters									
T	Phantom Uncertainty (shape and thickness tolerances)	4	R	√3	1		2.31	2.31	∞	
L	Uncertainty in SAR correction for deviation (in permittivity and conductivity)	2	N	1	110	0.84	2.00	1.68	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7
	Liquid conductivity (meas.)	2.5	N	1	0.64	0.43	1.60	1.08	5	
	Liquid conductivity (target.)	5	R	√3	0.64	0.43	1.85	1.24	5	2
	Liquid Permittivity (meas.)	2.5	N	W 51	0.60	0.49	1.50	1.23	∞	7
)	Liquid Permittivity (target.)	5	R	√3	0.60	0.49	1.73	1.41	∞	
	Combined Standard Uncertainty		Rss		here		10.28	9.98		
E	Expanded Uncertainty (95% Confidence interval)	/	k		/ 110		20.57	19.95		7

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, TEL: 0086-755-28996192 26996053 26996144 FAX: 0086-755-268376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com Http://www.wsct-cert.com World Standard: action Certification & Testing Group (Shenz

WSET

iber of the WSCT Group (WSCT SA)

WSE

Page 43 of 45

WSCI

WSEI

15 E 1

n& 1

WSCI

56

W5C

World Standardization Certification & Testing Group (Shenzhen)Co., ltd. ReportNo.; WSCT-ANAB-R&E250100005A-SAR

WSET

12 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

urer Device Type			calibration		ł
			Last Cal.	Due Date	
SATIMO COMOSAR DOSIMETRIC E FIELD PROBE	SSE2	3523-EPGO-428	2024-06-18	2025-06-17	
SATIMO COMOSAR 750 MHz REFERENCE DIPOLE	SID750	SN 48/16 DIP0G750-444	2023-06-25	2026-06-24	
SATIMO COMOSAR 835 MHz REFERENCE DIPOLE	SID835	SN 14/13 DIP0G835-235	2023-06-25	2026-06-24	
SATIMO COMOSAR 900 MHz REFERENCE DIPOLE	SID900	SN 14/13 DIP0G900-231	2023-06-25	2026-06-24	
SATIMO COMOSAR 1800 MHz REFERENCE DIPOLE	SID1800	SN 14/13 DIP1G800-232	2023-06-25	2026-06-24	
SATIMO COMOSAR 1900 MHz REFERENCE DIPOLE	SID1900	SN 14/13 DIP1G900-236	2023-06-25	2026-06-24	7
SATIMO COMOSAR 2000 MHz REFERENCE DIPOLE	SID2000	SN 14/13 DIP2G000-237	2023-06-25	2026-06-24	
SATIMO COMOSAR 2450 MHz REFERENCE DIPOLE	SID2450	SN 14/13 DIP2G450-238	2023-06-25	2026-06-24	
SATIMO COMOSAR 2600 MHz REFERENCE DIPOLE	SID2600	SN 28/14 DIP2G600-327	2023-06-25	2026-06-24	2
SATIMO Software	OPENSAR	N/A	N/A	N/A	P
SATIMO Phantom	COMOSAR IEEE SAM PHANTOM	SN 14/13 SAM99	W5 MA	N/A W/S	9
R & S Universal Radio Communication Tester	CMU 200	119733	2024-10-21	2025-10-20	
R & S Universal Radio Communication Tester	CMW500	144459	2024-10-21	2025-10-20	
R & SUniversal Radio Communication Tester	E7515B	MY60192341	2024-10-21	2025-10-20	Ś
HP Network Analyser	8753D	3410A08889	2024-10-21	2025-10-20	7
HP Signal Generator	E4421B	GB39340770	2024-10-28	2025-10-27	
Keithley Multimeter	Keithley 2000	4014539	2024-10-28	2025-10-27	
SATIMO Amplifier	Power Amplifier	MODU-023-A- 0004	2024-10-21	2025-10-20	
Agilent Power Meter	E4418B	GB43312909	2024-10-21	2025-10-20	
🛛 🛛 Agilent 📔 Power Meter Sensor	E4412A	MY41500046	2024-10-21	2025-10-20	5

ADD : Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, TEL: 0088-755-26996053 26998054 FAX: 0086-755-86376605 E-mail: fengbing wang@wsct-cert.com Http://www.wsct-cert.com Http://www.wsct-cert.com

WSC.

mber of the WSCT Group (WSCT SA)

WSE

Page 44 of 45

WSE

15 E I

WSL

ADD : Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 家期世标检测认证股份有限公司 TEL: 0088-755-26996053 26998053 26998144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standard Jation Certifications Testing Group(Shend

15 E

lember of the WSCT Group (WSCT SA)

W54

Page 45 of 45

'S C)

15 E

Annex A: System Check

Tested Model : K15SDA

Report Number:

WSCT-ANAB-R&E250100005A-SAR

Measurement Report for Device, , , UID 0 -, Channel 0 (2550.000MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	50.0 x 10.0 x 8.0		Dipole

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	,		CW,	2550.000,	6.94	1.90	40.8
Head Simulating			0	0			
Liquid							

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V5.0 (30deg probe tilt) -	HBBL-600-10000 Charge:xxxx,	EX3DV4 - SN7895, 2024-10-28	DAE4ip Sn1872, 2024-10-18
2243			

Scan Setup			Measurement Result	s	
	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	40.0 x 80.0	30.0 x 30.0 x 30.0	Date	2025-02-17	2025-02-17
Grid Steps [mm]	10.0 x 10.0	5.0 x 5.0 x 1.5	psSAR1g [W/kg]	5.48	5.58
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/kg]	2.53	2.56
Graded Grid	N/A	Yes	Power Drift [dB]	0.00	0.01
Grading Ratio	N/A	1.5	Power Scaling	Disabled	Disabled
MAIA	N/A	N/A	Scaling Factor [dB]		
Surface Detection	VMS + 6p	VMS + 6p	TSL Correction	No correction	No correction
Scan Method	Measured	Measured	M2/M1 [%]		80.5
			Dist 3dB Peak [mm]		9.0

Measurement Report for Device, , , UID 0 -, Channel 0 (5200.000MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	50.0 x 10.0 x 8.0		Dipole

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	,		CW,	5200.000,	5.34	4.54	36.3
Head Simulating			0	0			
Liquid							

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V5.0 (30deg probe tilt) -	HBBL-600-10000 Charge:xxxx,	EX3DV4 - SN7895, 2024-10-28	DAE4ip Sn1872, 2024-10-18
2243			

Scan Setup			Measurement Result	S	
-	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	40.0 x 80.0	22.0 x 22.0 x 22.0	Date	2025-02-17	2025-02-17
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/kg]	6.41	7.17
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/kg]	1.91	2.07
Graded Grid	N/A	Yes	Power Drift [dB]	0.02	0.01
Grading Ratio	N/A	1.4	Power Scaling	Disabled	Disabled
MAIA	N/A	N/A	Scaling Factor [dB]		
Surface Detection	VMS + 6p	VMS + 6p	TSL Correction	No correction	No correction
Scan Method	Measured	Measured	M2/M1 [%]		62.3
			Dist 3dB Peak [mm]		7.2

Measurement Report for Device, , , UID 0 -, Channel 0 (5300.000MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	50.0 x 10.0 x 8.0		Dipole

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	,		CW,	5300.000,	5.28	4.65	36.2
Head Simulating			0	0			
Liquid							

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V5.0 (30deg probe tilt) -	HBBL-600-10000 Charge:xxxx,	EX3DV4 - SN7895, 2024-10-28	DAE4ip Sn1872, 2024-10-18
2243			

Scan Setup	Measurement Results					
-	Area Scan	Zoom Scan		Area Scan	Zoom Scan	
Grid Extents [mm]	40.0 x 80.0	22.0 x 22.0 x 22.0	Date	2025-02-17	2025-02-17	
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/kg]	7.15	8.08	
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/kg]	2.09	2.31	
Graded Grid	N/A	Yes	Power Drift [dB]	0.01	0.08	
Grading Ratio	N/A	1.4	Power Scaling	Disabled	Disabled	
MAIA	N/A	N/A	Scaling Factor [dB]			
Surface Detection	VMS + 6p	VMS + 6p	TSL Correction	No correction	No correction	
Scan Method	Measured	Measured	M2/M1 [%]		61.4	
			Dist 3dB Peak [mm]		7.2	

Measurement Report for Device, , , UID 0 -, Channel 0 (5500.000MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	50.0 x 10.0 x 8.0		Dipole

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	,		CW,	5500.000,	4.87	4.88	35.8
Head Simulating			0	0			
Liquid							

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V5.0 (30deg probe tilt) -	HBBL-600-10000 Charge:xxxx,	EX3DV4 - SN7895, 2024-10-28	DAE4ip Sn1872, 2024-10-18
2243			

Scan Setup	Measurement Results					
	Area Scan	Zoom Scan		Area Scan	Zoom Scan	
Grid Extents [mm]	40.0 x 80.0	22.0 x 22.0 x 22.0	Date	2025-02-19	2025-02-19	
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/kg]	6.98	7.90	
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/kg]	2.03	2.25	
Graded Grid	N/A	Yes	Power Drift [dB]	0.03	0.02	
Grading Ratio	N/A	1.4	Power Scaling	Disabled	Disabled	
MAIA	N/A	N/A	Scaling Factor [dB]			
Surface Detection	VMS + 6p	VMS + 6p	TSL Correction	No correction	No correction	
Scan Method	Measured	Measured	M2/M1 [%]		59.5	
			Dist 3dB Peak [mm]		7.2	

Measurement Report for Device, , , UID 0 -, Channel 0 (5600.000MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	50.0 x 10.0 x 8.0		Dipole

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	,		CW,	5600.000,	4.87	5.00	35.6
Head Simulating			0	0			
Liquid							

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V5.0 (30deg probe tilt) -	HBBL-600-10000 Charge:xxxx,	EX3DV4 - SN7895, 2024-10-28	DAE4ip Sn1872, 2024-10-18
2243			

Scan Setup	Measurement Results					
-	Area Scan	Zoom Scan		Area Scan	Zoom Scan	
Grid Extents [mm]	40.0 x 80.0	22.0 x 22.0 x 22.0	Date	2025-02-19	2025-02-19	
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/kg]	7.00	7.87	
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/kg]	2.04	2.24	
Graded Grid	N/A	Yes	Power Drift [dB]	0.02	0.01	
Grading Ratio	N/A	1.4	Power Scaling	Disabled	Disabled	
MAIA	N/A	N/A	Scaling Factor [dB]			
Surface Detection	VMS + 6p	VMS + 6p	TSL Correction	No correction	No correction	
Scan Method	Measured	Measured	M2/M1 [%]		58.4	
			Dist 3dB Peak [mm]		7.2	

Measurement Report for Device, , , UID 0 -, Channel 0 (5800.000MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	50.0 x 10.0 x 8.0		Dipole

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	,		CW,	5800.000,	4.84	5.23	35.3
Head Simulating Liquid			0	0			

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V5.0 (30deg probe tilt) -	HBBL-600-10000 Charge:xxxx,	EX3DV4 - SN7895, 2024-10-28	DAE4ip Sn1872, 2024-10-18
2243			

Scan Setup	Measurement Results					
	Area Scan	Zoom Scan		Area Scan	Zoom Scan	
Grid Extents [mm]	40.0 x 80.0	22.0 x 22.0 x 22.0	Date	2025-02-19	2025-02-19	
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/kg]	6.76	7.76	
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/kg]	2.00	2.20	
Graded Grid	N/A	Yes	Power Drift [dB]	0.01	0.01	
Grading Ratio	N/A	1.4	Power Scaling	Disabled	Disabled	
MAIA	N/A	N/A	Scaling Factor [dB]			
Surface Detection	VMS + 6p	VMS + 6p	TSL Correction	No correction	No correction	
Scan Method	Measured	Measured	M2/M1 [%]		56.9	
			Dist 3dB Peak [mm]		7.6	

Annex B: Measurement Results

Tested Model : K15SDA

Report Number: WSCT-ANAB-R&E250100005A-SAR

Measurement Report for Device, EDGE TOP, WLAN 2.4GHz, Channel 7 (2442.000MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	360.0 x 236.0 x 160.0		Laptop

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	EDGE TOP,	WLAN	WLAN,	2442.000,	7.9	1.80	39.2
HBBL 5-	0.00	2.4GHz	10516-AAA	7			
10000MHz							

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V5.0 (30deg probe tilt) -	HBBL 5-10000MHz ,	EX3DV4 - SN7391, 2024-11-29	DAE4 Sn1495, 2024-07-24
1901			

can Setup	Measurement Results					
	Area Scan	Zoom Scan		Area Scan	Zoom Scan	
Grid Extents [mm]	40.0 x 120.0	30.0 x 30.0 x 30.0	Date	2025-02-17	2025-02-17	
Grid Steps [mm]	10.0 x 10.0	5.0 x 5.0 x 1.5	psSAR1g [W/kg]	1.08	1.24	
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/kg]	0.424	0.517	
Graded Grid	N/A	Yes	Power Drift [dB]	-0.04	-0.10	
Grading Ratio	N/A	1.4	Power Scaling	Disabled	Disabled	
MAIA	N/A	N/A	Scaling Factor [dB]			
Surface Detection	VMS + 6p	VMS + 6p	TSL Correction	No correction	No correction	
Scan Method	Measured	Measured	M2/M1 [%]		73.2	
			Dist 3dB Peak [mm]		5.0	

Measurement Report for Device, EDGE TOP, WLAN 5GHz, Channel 46 (5230.000MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	360.0 x 236.0 x 160.0		Laptop

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	EDGE TOP,	WLAN	WLAN,	5230.000,	5.66	4.67	36.0
HBBL 5-	0.00	5GHz	10417-AAD	46			
10000MHz							

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V5.0 (30deg probe tilt) -	HBBL 5-10000MHz ,	EX3DV4 - SN7391, 2024-11-29	DAE4 Sn1495, 2024-07-24
1901			

can Setup	Measurement Results					
	Area Scan	Zoom Scan		Area Scan	Zoom Scan	
Grid Extents [mm]	40.0 x 120.0	22.0 x 22.0 x 22.0	Date	2025-02-17	2025-02-17	
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/kg]	1.03	1.07	
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/kg]	0.290	0.319	
Graded Grid	N/A	Yes	Power Drift [dB]	-0.01	-1.00	
Grading Ratio	N/A	1.4	Power Scaling	Disabled	Disabled	
MAIA	N/A	N/A	Scaling Factor [dB]			
Surface Detection	VMS + 6p	VMS + 6p	TSL Correction	No correction	No correction	
Scan Method	Measured	Measured	M2/M1 [%]		60.8	
			Dist 3dB Peak [mm]		5.2	

Measurement Report for Device, EDGE TOP, WLAN 5GHz, Channel 64 (5320.000MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	360.0 x 236.0 x 160.0		Laptop

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	EDGE TOP,	WLAN	WLAN,	5320.000,	5.43	4.75	35.9
HBBL 5-	0.00	5GHz	10417-AAD	64			
10000MHz							

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V5.0 (30deg probe tilt) -	HBBL 5-10000MHz ,	EX3DV4 - SN7391, 2024-11-29	DAE4 Sn1495, 2024-07-24
1901			

can Setup	Setup Measurement Results				
	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	40.0 x 120.0	22.0 x 22.0 x 22.0	Date	2025-02-17	2025-02-17
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/kg]	1.15	1.21
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/kg]	0.328	0.347
Graded Grid	N/A	Yes	Power Drift [dB]	-0.04	-4.25
Grading Ratio	N/A	1.4	Power Scaling	Disabled	Disabled
MAIA	N/A	N/A	Scaling Factor [dB]		
Surface Detection	VMS + 6p	VMS + 6p	TSL Correction	No correction	No correction
Scan Method	Measured	Measured	M2/M1 [%]		61.0
			Dist 3dB Peak [mm]		5.4

Measurement Report for Device, EDGE TOP, WLAN 5GHz, Channel 100 (5500.000MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	360.0 x 236.0 x 160.0		Laptop

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	EDGE TOP,	WLAN	WLAN,	5500.000,	4.94	5.08	35.5
HBBL 5-	0.00	5GHz	10417-AAD	100			
10000MHz							

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V5.0 (30deg probe tilt) -	HBBL 5-10000MHz ,	EX3DV4 - SN7391, 2024-11-29	DAE4 Sn1495, 2024-07-24
1901			

Scan Setup	tup Measurement Results				
	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	40.0 x 120.0	22.0 x 22.0 x 22.0	Date	2025-02-19	2025-02-19
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/kg]	1.21	1.32
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/kg]	0.365	0.397
Graded Grid	N/A	Yes	Power Drift [dB]	-0.07	-0.05
Grading Ratio	N/A	1.4	Power Scaling	Disabled	Disabled
MAIA	N/A	N/A	Scaling Factor [dB]		
Surface Detection	VMS + 6p	VMS + 6p	TSL Correction	No correction	No correction
Scan Method	Measured	Measured	M2/M1 [%]		59.8
			Dist 3dB Peak [mm]		5.3

Measurement Report for Device, EDGE TOP, WLAN 5GHz, Channel 165 (5825.000MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	360.0 x 236.0 x 160.0		Laptop

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	EDGE TOP,	WLAN	WLAN,	5825.000,	5.02	5.30	35.3
HBBL 5-	0.00	5GHz	10417-AAD	165			
10000MHz							

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V5.0 (30deg probe tilt) -	HBBL 5-10000MHz ,	EX3DV4 - SN7391, 2024-11-29	DAE4 Sn1495, 2024-07-24
1901			

Scan Setup	etup Measurement Results				
	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	40.0 x 120.0	22.0 x 22.0 x 22.0	Date	2025-02-19	2025-02-19
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/kg]	1.11	1.27
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/kg]	0.370	0.382
Graded Grid	N/A	Yes	Power Drift [dB]	-0.07	-4.50
Grading Ratio	N/A	1.4	Power Scaling	Disabled	Disabled
MAIA	N/A	N/A	Scaling Factor [dB]		
Surface Detection	VMS + 6p	VMS + 6p	TSL Correction	No correction	No correction
Scan Method	Measured	Measured	M2/M1 [%]		60.4
			Dist 3dB Peak [mm]		5.4

Annex C: Calibration Reports

Tested Model : K15SDA

Report Number: WSCT-ANAB-R&E250100005A-SAR

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

WSCT Shenzhen Certificate No.

D2550V2-1015_Aug24

CALIBRATION CERTIFICATE

I		
	Object	D2550V2 - SN: 1015
	Calibration procedure(s)	QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz
	Calibration date	August 16, 2024
	This calibration certificate docun The measurements and the unco	nents the traceability to national standards, which realize the physical units of measurements (SI). ertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch: Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Beference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

	Name	Function	Signature
Calibrated by	Aidonia Georgiadou	Laboratory Technician	H=1
Approved by	Sven Kühn	Technical Manager	ala
This calibration certificate	e shall not be reproduced except in fi	ull without written approval of the lab	Issued: August 19, 2024 poratory.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid sensitivity in TSL / NORM x,y,z ConvF not applicable or not measured N/A

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

DASY System Handbook

Methods Applied and Interpretation of Parameters

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 5mm, dz = 1.5mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	2550MHz ±1MHz	

Head TSL parameters at 2550 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.1	1.91 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	37.5 ±6%	1.95 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 2550 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.1 W/kg ±17.0% (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	6.21 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ±16.5% (k = 2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 2550 MHz

Impedance	50.4 Ω – 1.3 jΩ
Return Loss	-37.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.151 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

System Performance Check Report

Summary								
Dipole		2	Frequency [MF	lz]	TSL	Power [dBm]		
D2550V2 - SN1015		8	2550		HSL	24		
Exposure Condition	S							
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], C	hannel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	2550, 0		7.35	1.95	37.5
Hardware Setup								
Phantom	TSL, Measured	Date	1	Probe, Calibration Date	e	DAE,	Calibration Date	
MFP V8.0 Center	HSL, 2024-08-	-16	1	X3DV4 - SN7349, 20	24-06-03	DAE4	ip Sn1836, 2024–01–10	
Scans Setup					Measureme	nt Results		
				Zoom Scan				Zoom Scan
Grid Extents [mm]				30 x 30 x 30	Date			2024-08-16
Grid Steps [mm]			5	.0 x 5.0 x 1.5	psSAR1g [W/I	(g]		13.6
Sensor Surface [mm]				1.4	psSAR10g [W	/Kg]		6.21
Graded Grid				Yes	Power Drift [c	IB]		0.01
Grading Ratio				1.5	Power Scaling	1		Disabled
MAIA				N/A	Scaling Facto	r (dB)		
Surface Detection				VMS + 6p	TSL Correctio	n		Positive / Negative
Scan Method				Measured	-			

0 dB = 29.0 W/Kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taraturaSwiss Calibration Service

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

WSCT Shenzhen Certificate No.

D5GHzV2-1412_Oct24

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN: 1412
Calibration procedure(s)	QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3 - 10 GHz
Calibration date	October 17, 2024
This calibration certificate do The measurements and the u	cuments the traceability to national standards, which realize the physical units of measurements (SI). uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	22-Jul-24 (No. 4030A315008547)	Jul-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	24-Sep-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sep-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

	Name	Function	Signature
Calibrated by	Paulo Pina	Laboratory Technician	tantia
Approved by	Sven Kühn	Technical Manager	A. A. Jeshhl
This calibration certific	ate shall not be reproduced except	in full without written approval of the l	lssued: October 17, 2024 aboratory.