Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Impedance Measurement Plot for Head TSL ### D2600V2, Serial No. 1070 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | <u> </u> | | | <u> </u> | | | | |---------------------------|-------------|---|----------|-------|-------|-------| | D2600V2 – serial no. 1070 | | | | | | | | | | 2600 Head | | | | | | Date of | Return-Loss | Return-Loss Delta Real Impedance Delta Imaginary Impedance Delt | | | | | | Measurement | (dB) | (%) | (ohm) | (ohm) | (ohm) | (ohm) | | 2021.12.20 | -23.6 | | 50.5 | | -6.6 | | | 2022.12.19 | -24.0 | 1.6% | 51.2 | -0.7 | -6.3 | -0.3 | | 2023.12.19 | -23.7 | 0.4% | 51.9 | -1.4 | -6.4 | -0.2 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ### Dipole Verification Data> D2600V2, serial no. 1070 #### 2600MHz - Head----2022.12.19 #### 2600MHz - Head----2023.12.19 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Kunshan City Certificate No. D3500V2-1037 Nov23 ### CALIBRATION CERTIFICATE Object D3500V2 - SN:1037 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: November 20, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 3503 | 07-Mar-23 (No. EX3-3503_Mar23) | Mar-24 | | DAE4 | SN: 601 | 03-Oct-23 (No. DAE4-601_Oct23) | Oct-24 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo Pina | Laboratory Technician | funtiles | | Approved by: | Sven Kühn | Technical Manager | 67 | Issued: November 22, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D3500V2-1037_Nov23 Report No.: FA491912 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Accreditation No.: SCS 0108 S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3500V2-1037_Nov23 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|----------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3500 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.9 | 2.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.3 ± 6 % | 2.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.52 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 65.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 19.5 % (k=2) | Appendix C ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.0 Ω - 1.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 32.9 dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.142 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | ig and a segret and a segretary | |
--|-------| | Manufactured by | SPEAG | | Strategie House Harrison and Ha | SFEAG | Certificate No: D3500V2-1037_Nov23 ### **DASY5 Validation Report for Head TSL** Date: 20.11.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1037 Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 2.91$ S/m; $\epsilon_r = 38.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 07.03.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 03.10.2023 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.12 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 6.52 W/kg; SAR(10 g) = 2.46 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 75.7% Maximum value of SAR (measured) = 12.1 W/kg ### Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Sporton Kunshan City Certificate No. D3700V2-1008_Nov23 ### CALIBRATION CERTIFICATE Object D3700V2 - SN:1008 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: November 20, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 3503 | 07-Mar-23 (No. EX3-3503_Mar23) | Mar-24 | | DAE4 | SN: 601 | 03-Oct-23 (No. DAE4-601_Oct23) | Oct-24 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo Pina | Laboratory Technician | - funtil | | Approved by: | Sven Kühn | Technical Manager | | Issued: November 21, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Report No.: FA491912 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3700V2-1008_Nov23 Page 2 of 6 ### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3700 MHz ± 1 MHz | , | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.1 ± 6 % | 3.06 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.67 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 67.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 19.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna
Parameters with Head TSL | Impedance, transformed to feed point | 49.5 Ω - 5.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.7 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.139 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | | |-----------------|---------| | Manufactured by | SPEAG | | | Oi Erid | Certificate No: D3700V2-1008_Nov23 Appendix C Report No.: FA491912 ### DASY5 Validation Report for Head TSL Date: 20.11.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1008 Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.06$ S/m; $\epsilon_r = 38.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 07.03.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 03.10.2023 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.55 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 6.67 W/kg; SAR(10 g) = 2.43 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.5% Maximum value of SAR (measured) = 13.0 W/kg 0 dB = 13.0 W/kg = 11.13 dBW/kg ### Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Kunshan City, China Certificate No. D3900V2-1048_Mar23 ### **CALIBRATION CERTIFICATE** Object D3900V2 - SN:1048 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: March 09, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 3503 | 07-Mar-23 (No. EX3-3503_Mar23) | Mar-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check; Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | 1/1 | | Approved by: | Sven Kühn | Technical Manager | () | Issued: March 21, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D3900V2-1048_Mar23 #### Report No.: FA491912 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3900V2-1048_Mar23 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------------------|---| | Extrapolation | Advanced Extrapolation | and a graduate to the trade | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3900 MHz ± 1 MHz
4100 MHz ± 1 MHz | (= ==================================== | ### Head TSL parameters at 3900 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.5 | 3.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.3 ± 6 % | 3.23 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 3900 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.88 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 69.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 4100 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.2 | 3.53 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.1 ± 6 % | 3.41 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 4 | | ### SAR result with Head TSL at 4100 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.68 W/kg | | SAR for nominal Head
TSL parameters | normalized to 1W | 67.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.3 W/kg ± 19.5 % (k=2) | Certificate No: D3900V2-1048_Mar23 Appendix C Report No.: FA491912 ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 3900 MHz | Impedance, transformed to feed point | 47.3 Ω - 3.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.3 dB | | ### Antenna Parameters with Head TSL at 4100 MHz | Impedance, transformed to feed point | 59.7 Ω + 0.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.1 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.104 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufacturally | | |-----------------|--------| | Manufactured by | SPEAG | | | OI EAG | Certificate No: D3900V2-1048_Mar23 Page 4 of 7 Report No. : FA491912 ### **DASY5 Validation Report for Head TSL** Date: 09.03.2023 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1048 Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4100 MHz Medium parameters used: f = 3900 MHz; σ = 3.23 S/m; ϵ_r = 37.3; ρ = 1000 kg/m³, Medium parameters used: f = 4100 MHz; σ = 3.41 S/m; ϵ_r = 37.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz, ConvF(7.26, 7.26, 7.26) @ 4100 MHz; Calibrated: 07.03.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.78 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 19.2 W/kg ### SAR(1 g) = 6.88 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.4% Maximum value of SAR (measured) = 13.5 W/kg ### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4100MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.74 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 18.8 W/kg ### SAR(1 g) = 6.68 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.1% Maximum value of SAR (measured) = 13.3 W/kg Certificate No: D3900V2-1048_Mar23 Page 5 of 7 ### Impedance Measurement Plot for Head TSL ### D3900V2, Serial No. 1048 Extended Dipole Calibrations if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | D3900V2 – serial no. 1048 | | | | | | | |---------------------------|---------------------|-----------|----------------------|----------------|---------------------------|----------------| | | | 3900 Head | | | | | | Date of Measurement | Return-Loss
(dB) | Delta (%) | Real Impedance (ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2023.3.9 | -27.281 | | 47.345 | | -3.2717 | | | 2024.3.8 | -24.492 | -10.22 | 47.733 | -0.388 | -5.7212 | 2.4495 | | D3900V2 – serial no. 1048 | | | | | | | |---------------------------|---------------------|-----------|----------------------------|----------------|---------------------------|----------------| | | 4100 Head | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2023.3.9 | -21.099 | | 59.664 | | 0.078695 | | | 2024.3.8 | -21.721 | 2.95 | 58.764 | 0.9 | 0.18556 | -0.106865 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. #### Dipole Verification Data> D3900V2, serial no. 1048 #### 3900MHz&4100Mhz - Head ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Sporton Certificate No: D5GHzV2-1341_Dec21 ### **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1341 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: December 13, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec20) | Dec-21 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | MA | | Approved by: | Niels Kuster | Quality Manager | 792 | Certificate No: D5GHzV2-1341_Dec21 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Issued: December 14, 2021 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as
measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | *** | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | ### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 4.56 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | 7 111 | |---|--------------------|--| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5600 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 4.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.52 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 84.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1341_Dec21 # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | | |---|-----------------|--------------|------------------|--| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.2 ± 6 % | 5.06 mho/m ± 6 % | | | Head TSL temperature change during test | < 0.5 °C | | | | ### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ± 19.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 48.4 Ω + 0.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 35.7 dB | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | $53.8 \Omega + 7.2 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 22.2 dB | ### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 51.4 Ω + 5.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.8 dB | ### General Antenna Parameters and Design | Electrical Doloy (one direction) | | |----------------------------------|----------| | Electrical Delay (one direction) | 1.211 ns | | | 1.211113 | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | CDEAC | |-----------------|-------| | | SPEAG | Certificate No: D5GHzV2-1341_Dec21 ### **DASY5 Validation Report for Head TSL** Date: 13.12.2021 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1341 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.56 S/m; ϵ_r = 34.9; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.91 S/m; ϵ_r = 34.4; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.06 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### **DASY52 Configuration:** - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 30.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 01.11.2021 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.28 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 71.5% Maximum value of SAR (measured) = 18.5 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.67 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 8.52 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.6% Maximum value of SAR (measured) = 20.2 W/kg Certificate No: D5GHzV2-1341_Dec21 Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.44 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 31.2 W/kg SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 66.7% Maximum value of SAR (measured) = 19.8 W/kg 0 dB = 19.8 W/kg = 12.97 dBW/kg ### Impedance Measurement Plot for Head TSL ### D5GHzV2, Serial No. 1341 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### 5250MHz | D5GV2 – serial no. 1341 | | | | | | | |-------------------------|-------------|-------|----------------|-------|---------------------|-------| | | 5250 Head | | | | | | | Date of | Return-Loss | Delta | Real Impedance | Delta | Imaginary Impedance | Delta | | Measurement | (dB) | (%) | (ohm) | (ohm) | (ohm) | (ohm) | | 2021.12.13 | -35.7 | | 48.4 | | 0.1 | | | 2022.12.12 | -35.7 | 0.0% | 50.1 | -1.7 | -1.6 | 1.7 | | 2023.12.12 | -34.8 | -2.5% | 48.5 | -0.1 | -0.9 | 1 | #### 5600MHz | D5GV2 – serial no. 1341 | | | | | | | | |-------------------------|-------------|-------|----------------|-------|---------------------|-------|--| | | 5600 Head | | | | | | | | Date of | Return-Loss | Delta | Real Impedance | Delta | Imaginary Impedance | Delta | | | Measurement | (dB) | (%) | (ohm) | (ohm) | (ohm) | (ohm) | | | 2021.12.13 | -22.2 | | 53.8 | | 7.2 | | | | 2022.12.12 | -22.4 | 0.9% | 52.9 | 0.9 | 7.3 | -0.1 | | | 2023.12.12 | -21.3 | -4.1% | 52.8 | 1 | 8.3 | -1.1 | | #### 5750MHz | D5GV2 – serial no. 1341 | | | | | | | |-------------------------|-------------|-------|----------------|-------|---------------------|-------| | | 5750 Head | | | | | | |
Date of | Return-Loss | Delta | Real Impedance | Delta | Imaginary Impedance | Delta | | Measurement | (dB) | (%) | (ohm) | (ohm) | (ohm) | (ohm) | | 2021.12.13 | -25.8 | | 51.4 | | 5 | | | 2022.12.12 | -26.1 | 1.2% | 50.1 | 1.3 | 5 | 0 | | 2023.12.12 | -25.9 | 0.4% | 51.7 | -0.3 | 6.1 | -1.1 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ### Dipole Verification Data> D5GHzV2, serial no. 1341 #### 5250MHz - Head----2022.12.12 #### 5600MHz - Head----2022.12.12 #### 5750MHz - Head----2022.12.12 #### 5250MHz - Head----2023.12.12 #### 5600MHz - Head----2023.12.12 #### 5750MHz - Head----2023.12.12 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client : sporton Certificate No: 24J02Z000532 ### CALIBRATION CERTIFICATE Object DAE4 - SN: 1386 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: August 30, 2024 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) °C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 11-Jun-24 (CTTL, No.24J02X005147) | Jun-25 | | | | | 7 | Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Jun SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 02, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: 24J02Z000532 Page 1 of 3 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ## Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: 24J02Z000532 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn #### DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1......+3mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Υ | z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.568 ± 0.15% (k=2) | 404.652 ± 0.15% (k=2) | 404.172 ± 0.15% (k=2) | | Low Range | 4.02064 ± 0.7% (k=2) | 4.01389 ± 0.7% (k=2) | 4.0123 ± 0.7% (k=2) | ## **Connector Angle** | 150.5° ± 1 ° | |--------------| | | Certificate No: 24J02Z000532 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Shenzhen City Certificate No. EX-3819 Aug24 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3819 Calibration procedure(s) QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes Calibration date August 22, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) ℃ and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards ID | | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|-----------------------| | | | 26-Mar-24 (No. 217-04036/04037) | Mar-25 | | Power sensor NRP-Z91 | SN: 103244 | 26-Mar-24 (No. 217-04036) | Mar-25 | | OCP DAK-3.5 (weighted) | SN: 1249 | 05-Oct-23 (OCP-DAK3.5-1249_Oct23) | Oct-24 | | OCP DAK-12 | SN: 1016 | 05-Oct-23 (OCP-DAK12-1016_Oct23) | Oct-24 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 26-Mar-24 (No. 217-04046) | Mar-25 | | DAE4 | SN: 660 | 23-Feb-24 (No. DAE4-660_Feb24) | Feb-25 | | Reference Probe EX3DV4 | SN: 7349 | 03-Jun-24 (No. EX3-7349_Jun24) | Jun-25 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |-------------------------|------------------|-----------------------------------|------------------------| | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-24) | In house check: Jun-26 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-24) | In house check: Jun-26 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-24) | In house check: Jun-26 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-24) | In house check: Jun-26 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | Name Function Signature Calibrated by Joanna Lleshaj Laboratory Technician Approved by Sven Kühn Technical Manager Issued: August 23, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX-3819_Aug24 Page 1 of 22 Report No.: FA491912 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvE - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency
dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k = 2) | |--------------------|----------|----------|----------|-------------| | Norm (µV/(V/m)²) A | 0.44 | 0.44 | 0.46 | ±10.1% | | DCP (mV) B | 105.1 | 102.4 | 105.5 | ±4.7% | ## Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | $dB\sqrt{\mu V}$ | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
k = 2 | |---------------|-----------------------------|---|---------|------------------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 147.9 | ±1.0% | ±4.7% | | | | Y | 0.00 | 0.00 | 1.00 | | 135.4 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 118.4 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 12.28 | 84.53 | 19.02 | 10.00 | 60.0 | ±2.8% | ±9.6% | | | ,, | Y | 20.00 | 94.71 | 23.35 | | 60.0 | | | | | | Z | 20.00 | 91.76 | 21.67 | | 60.0 | | | | 10353 | Pulse Waveform (200Hz, 20%) | X | 20.00 | 90.43 | 19.49 | 6.99 | 80.0 | ±1.5% | ±9.6% | | | ,, | Y | 20.00 | 95.24 | 22.66 | | 80.0 | | | | | | Z | 20.00 | 92.28 | 20.72 | | 80.0 | | | | 10354 | Pulse Waveform (200Hz, 40%) | X | 20.00 | 91.98 | 18.82 | 3.98 | 95.0 | ±1.2% | ±9.6% | | | . 2.00 | Y | 20.00 | 99.32 | 23.41 | | 95.0 | | | | | | Z | 20.00 | 93.87 | 20.07 | | 95.0 | | | | 10355 | Pulse Waveform (200Hz, 60%) | X | 20.00 | 95.42 | 19.27 | 2.22 | 120.0 | ±1.2% | ±9.6% | | 10000 1 010 | | Y | 20.00 | 106.46 | 25.54 | | 120.0 | | | | | | Z | 20.00 | 97.95 | 20.80 | | 120.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 1.65 | 65.40 | 14.56 | 1.00 | 150.0 | ±1.7% | ±9.6% | | | | Y | 1.85 | 66.48 | 15.61 | | 150.0 | | | | | | Z | 1.74 | 65.90 | 14.96 | 1 | 150.0 | 1 | | | 10388 | QPSK Waveform, 10 MHz | X | 2.16 | 67.29 | 15.23 | 0.00 | 150.0 | ±1.0% | ±9.6% | | | | Y | 2.47 | 69.13 | 16.34 | | 150.0 | | | | | | Z | 2.29 | 68.09 | 15.64 | 1 | 150.0 | 1 | | | 10396 | 64-QAM Waveform, 100 kHz | X | 3.02 | 70.76 | 18.65 | 3.01 | 150.0 | ±0.6% | ±9.6% | | | | Y | 3.37 | 72.18 | 19.65 | | 150.0 | | | | | | Z | 3.69 | 74.02 | 20.05 | 1 | 150.0 | 1 | | | 10399 | 64-QAM Waveform, 40 MHz | X | 3.50 | 67.03 | 15.57 | 0.00 | 150.0 | ±0.8% | ±9.6% | | | | Y | 3.54 | 67.08 | 15.81 | | 150.0 | | | | | | Z | 3.42 | 66.66 | 15.44 | 1 | 150.0 | | | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 4.71 | 65.08 | 15.10 | 0.00 | 150.0 | ±1.7% | ±9.6% | | | | Y | 4.91 | 65.45 | 15.44 | 1 | 150.0 | | | | | | Z | 4.81 | 65.36 | 15.26 | 1 | 150.0 | 1 | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). B Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
msV ⁻² | T2
ms V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | Т6 | |---|----------|----------|----------------------|-------------------------|--------------------------|----------|-----------------------|-----------------------|------| | x | 47.2 | 341.18 | 33.50 | 13.26 | 0.63 | 5.01 | 1.42 | 0.20 | 1.01 | | v | 55.9 | 410.21 | 34.54 | 23.24 | 0.26 | 5.10 | 1.09 | 0.33 | 1.01 | | z | 50.3 | 362.98 | 33.49 | 15.86 | 0.61 | 5.03 | 2.00 | 0.16 | 1.01 | #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle | -69.7° | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX-3819_Aug24 Page 4 of 22 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc ^H
(k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-----------------------------| | 13 | 55.0 | 0.75 | 16.39 | 13.97 | 15.19 | 0.00 | 1.25 | ±13.3% | | 750 | 41.9 | 0.89 | 9.81 | 8.75 | 9.26 | 0.35 | 1.27 | ±11.0% | | 835 | 41.5 | 0.90 | 9.40 | 8.38 | 8.87 | 0.35 | 1.27 | ±11.0% | | 900 | 41.5 | 0.97 | 8.87 | 7.91 | 8.37 | 0.35 | 1.27 | ±11.0% | | 1750 | 40.1 | 1.37 | 7.94 | 7.08 | 7.50 | 0.35 | 1.27 | ±11.0% | | 1900 | 40.0 | 1.40 | 7.95 | 7.09 | 7.51 | 0.35 | 1.27 | ±11.0% | | 2000 | 40.0 | 1.40 | 7.96 | 7.10 | 7.52 | 0.35 | 1.27 | ±11.0% | | 2300 | 39.5 | 1.67 | 7.86 | 7.01 | 7.42 | 0.35 | 1.27 | ±11.0% | | 2450 | 39.2 | 1.80 | 7.82 | 6.98 | 7.39 | 0.35 | 1.27 | ±11.0% | | 2600 | 39.0 | 1.96 | 7.68 | 6.85 | 7.26 | 0.35 | 1.27 | ±11.0% | | 3300 | 38.2 | 2.71 | 6.83 | 6.09 | 6.45 | 0.35 | 1.27 | ±13.1% | | 3500 | 37.9 | 2.91 | 6.91 | 6.16 | 6.52 | 0.35 | 1.27 | ±13.1% | | 3700 | 37.7 | 3.12 | 6.92 | 6.17 | 6.53 | 0.35 | 1.27 | ±13.1% | | 3900 | 37.5 | 3.32 | 6.83 | 6.09 | 6.45 | 0.36 | 1.27 | ±13.1% | | 4100 | 37.2 | 3.53 | 6.69 | 5.97 | 6.32 | 0.36 | 1.27 | ±13.1% | | 5250 | 35.9 | 4.71 | 5.59 | 4.99 | 5.28 | 0.31 | 1.27 | ±13.1% | | 5600 | 35.5 | 5.07 | 5.26 | 4.69 | 4.97 | 0.28 | 1.27 | ±13.1% | | 5750 | 35.4 | 5.22 | 5.17 | 4.61 | 4.89 | 0.27 | 1.27 | ±13.1% | C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) Certificate No: EX-3819 Aug24 and are valid for TSL with deviations of up to ±10% if SAR correction is applied. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020. ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc ^H
(k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-----------------------------| | 6500 | 34.5 | 6.07 | 5.85 | 5.22 | 5.52 | 0.20 | 1.27 | ±18.6% | C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration Certificate No: EX-3819_Aug24 frequency and the uncertainty for the indicated frequency band. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) and are valid for TSL with deviations of up to ±10%. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary. H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide:R22) Uncertainty of Frequency Response of E-field: ±6.3% (k=2) # Receiving Pattern (ϕ), $\theta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell, $f_{eval} = 1900 \, \text{MHz}$) Uncertainty of Linearity Assessment: ±0.6% (k=2) August 22, 2024 ### **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Error (ϕ, θ) , f = 900 MHz Certificate No: EX-3819_Aug24 Page 10 of 22 Uncertainty of Spherical Isotropy Assessment: ±2.6% (k=2) X [deg] -0.4